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This paper deals with the first-order numerical analysis of thin
layers. Theoretical results are recalled and compared with nu-
merical data obtained on two classical examples. The effects of
concentrated forces are discussed. �DOI: 10.1115/1.2424716�

1 Introduction
The aim of this study was to perform a first-order asymptotic

and numerical analysis on linear thin layers. The rigidity of the
thin layers is assumed here not to depend on its thickness. During
the last few decades several authors have developed asymptotic
theories applied to thin layers �see Ref. �1��. These problems have
mostly been studied at order zero, and only a few authors have
performed first-order studies �2�. We assume that only the geo-
metrical parameter of the layer �the thickness� tends towards zero,
and, analyze the limit problem using matched asympotic expan-
sions �3�. In this limit problem, the layer vanishes geometrically
and is replaced by an interface. The aim of this study is to check
quantitatively the validity of the theoretical approach. This point
is a crucial one for mechanical engineers because in practice, the
thickness of the thin layer is generally very small.

The paper is organized as follows: in Sec. 2, the mechanical
problem and the theoretical results are presented. Section 3 deals
with two numerical examples. In Sec. 4, we analyze the influence
of the concentrated forces obtained in the theoretical limit prob-
lem. In Sec. 5, we draw some conclusions and discuss the per-
spectives.

2 The Mechanical Problem and Theoretical Results
Let us consider two elastic bodies which are perfectly bonded

with a third one which is very thin. For sake of simplicity, we
work only in two dimensions. The structure is denoted � with
boundary �� and is referred to the local frame �O ,x1 ,x2�. A sur-
face load is applied to the part of the structure �1. The structure is
embedded in part �0. We take �� to denote the part of � such that
�x2 � �� /2 �the adherent� and B� to denote the complementarity
part � /�� �the adhesive�. Segment S is the intersection between
� and the line �x2=0�. We adopt the small perturbations hypoth-

esis and the adhesion between �� and B� is assumed to be perfect.
Note that S is the surface to which the adhesive tends geometri-
cally. The material composing is assumed to be elastic. We take �
and � to denote the Lamé coefficients of the adhesive. Contrary to
more classical studies, the order of magnitude of the stiffness is
assumed to be the same in the adherent and in the adhesive �see
Fig. 1�.

2.1 Presentation of the Problem. In what follows, a jump
across S is denoted by �.� and a jump across the interface S�

between �� and B� is denoted by �.��. The equations of the prob-
lem are written as follows �� denotes the stress tensor and u the
displacement vector�:

div � = 0 in �

�n = F on �1

u = 0 on �0

�u�� = 0 on S�

��n�� = 0 on S� �1�

The constitutive equations are written as follows �e=e�u� denotes
the strain tensor�

� = Ae�u� in ��

� = � tr�e�u��I + 2�e�u� in B� �2�

In the previous equation, A denotes a given elasticity tensor.

2.2 Matched Asymptotic Expansions. We assume that the
solution of the above problem can be expanded into power series
of �. Using the matched asymptotic expansions method �4�, we
introduce internal �Eq. �4�� and external �Eq. �3�� expansions of
the displacement vector u� and the stress tensor �� which are
valid sufficiently far from the edges. The two expansions are as-
sumed to be coincident in a set of intermediate points �Eq. �5��.
We write

u��x1,x2� = �
m=0

�

�mum�x1,x2�, ���x1,x2� = �
m=0

�

�m�m�x1,x2�

�3�

u��x1,x2� = �
m=0

�

�mvm	x1,
x2
�

, ���x1,x2� = �

m=0

�

�m�m	x1,
x2
�


�4�

v0�x1, ± � � = u0�x1,0±�

�0�x1, ± � � = �0�x1,0±�

v1�x1, ± � � = u1�x1,0±� + lim
y→±�

y
�u0

�x2
�x1,0±� �5�

�1�x1, ± � � = �1�x1,0±� + lim
y→±�

y
��0

�x2
�x1,0±�

Let y2=x2 /�.
Introducing these expansions into Eqs. �1� and �2�, we obtain

	ij
n = �ekk

n 
ij + 2�eij
n , n = 0,1

�v j
0

�y2
= 0, j = 1,2

e11
0 =

�v1
0

�x1

1Corresponding author.
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e22
0 =

�v2
1

�y2

e12
0 =

1

2
	 �v2

0

�x1
+

�v1
1

�y2



� i2
0

�y2
= 0

� i1
0

�x1
+

� i2
1

�y2
= 0 �6�

2.3 Asymptotic Results. By integration, Eqs. �5� and �6� �ii�
mean that �ui

0�=0, i=1,2. Likewise, Eqs. �5� and �6� �vi� mean
that ��i2

0 �=0, i=1,2. In conclusion, we have the following order
zero system

�u1
0��x1� = 0 �7a�

�u2
0��x1� = 0 �7b�

��22
0 ��x1� = 0 �7c�

��12
0 ��x1� = 0 �7d�

In the same way, by integration, Eqs. �5� and �6� �i� with n=0 and
�6� �iii-v� mean that the jump in the displacements �ui

1� i=1,2 is
not equal to zero and depends on �i2

0 and �ui
0 /�x1. The corre-

sponding results are given in Eq. �8�.
The jump in the stresses is obtained using Eqs. �5� and �6� �vii�,

and �6� �i� �by derivation�. In conclusion, we have the following
order one system

�u1
1��x1� =

�12
0

�
−

�u2
0

�x1
�8a�

�u2
1��x1� =

�22
0

� + 2�
−

�

� + 2�

�u1
0

�x1
�8b�

��22
1 ��x1� = −

��12
0

�x1
�8c�

��12
1 ��x1� = −

4��� + ��
� + 2�

�2u1
0

�x1
2 −

�

� + 2�

��22
0

�x1
�8d�

Note that the model obtained is nonlocal.

3 Numerical Tests
The aim of this section is to check quantitatively the validity of

the theory. It is crucial to obtain values of the thickness for which
it is possible to substitute the real problem by the limit one. The
computations were performed using the ANSYS �Multiphysics
solver, Plan82 element, plane stress� software program �5�. The
discretization of the thin layer is done by two or four elements in
the thickness and 200 elements in the width. This numerical sec-
tion contains two parts, corresponding to two examples. In the
first part, we observe the jumps in the displacements �u1� and �u2�
and the jumps in the stress vector ��22� and ��12� along the inter-
face zone �based on Eq. �7��. In the second one, we check the
validity of Eq. �8�.

3.1 First Numerical Example

3.1.1 Geometry of the Problem. In this section, we describe
numerical tests performed on a long square bar bonded with a
rigid obstacle �Fig. 2�. The width of the bar was equal to 99 mm
and the thickness of the thin layer was equal to 1 mm. A horizon-
tal load was applied to the whole left part of the structure and a
vertical one was applied to only the upper left nodes of the square
bar. The mechanical data are given in Table 1.

3.1.2 Numerical Synthesis

3.1.2.1 Jump in the displacements at order 0 (Eqs. (7a) and
(7b)). The first step in the numerical test consists of checking that
the values of the jump in the displacements at order zero tend
toward zero. In this example, the jump in the displacements is
equal to the displacement of the upper nodes of the thin layer. It is
confirmed that the displacement is small �see Figs. 4�a� and 4�b��.
The values of the displacements tend toward zero: these values
are in the �2.10−4 ,5 .10−4� mm range with u1 and in the

Fig. 1 The mechanical problem

Fig. 2 First example: square bar bonded with a rigid body „di-
mensions in mm…

Table 1 Mechanical data

Example 1 2
thickness �mm� 1 1

Substrate: Young’s modulus �GPa� 200 200
Substrate: Poisson ratio 0.3 0.3
Thin layer: Young’s modulus �GPa� 160 160
Thin layer: Poisson ratio 0.3 0.3
Total x1 force �N� 1800 1800

�18 nodes� �18 nodes�
Total x2 force �N� −1200 −1000

�60 nodes� �50 nodes�
Finite element 8-node

quadrangle
8-node

quadrangle

2



�−3.10−4 ,3 .10−4� mm range with u2. These values are approxi-
mately 100 times smaller than those in the adherent. It is noticed
that in this modeling, contrary to other theories for which the
rigidity of the adhesive is small, the jump in the displacements
tends toward zero.

3.1.2.2 Jump in the stress vector at order 0 (Eqs. (7c) and
(7d)). In the case of the stress vector, we computed three sets of
values �Fig. 3�: the lower and the upper nodes of the layer and the
lower nodes of the body �Figs. 4�c� and 4�d��. The three curves
�denoted inf-adh, sup-adh, and inf-body in Fig. 4� are very similar,
the jump tends towards zero, and it is possible to choose any of
these three values for the following computations. In particular,
the computation of the gradient can be done indifferently on one
of the three surfaces.

3.1.2.3 Jump in the displacements at order 1 (Eqs. (8a) and
(8b)). In this case, the thin layer is bonded directly with a rigid
body and some of the terms in Eqs. �8a� and �8b� can be simpli-
fied. In particular, the jump in the displacement at order zero is
equal to zero as are the displacement and its x1 derivatives. Since
the lower nodes are clamped, the jump in the displacements at
order one is computed as the displacements of the upper nodes in
the thin layer divided by �. In Eq. �8a� the jump in the displace-
ment of u1 at order one is approximately �12 at order zero divided
by � �Fig. 5�a��. In Eq. �8b� the jump in the displacements of u2
at order one is approximately �22 at order zero divided by �
+2� �Fig. 5�b��.

3.1.2.4 Jump in the stress vector at order 1 (Eqs. (8c) and
(8d)). At order one, it can be seen from Fig. 4 that the stresses are
very small. This is computed by dividing the numerical displace-
ment obtained in the upper nodes of the layer by �. Stresses at
order zero are computed in the upper nodes of the layers. For Eqs.
�8c� and �8d�, the jump in the stress vector at order one is taken to
be equal to the difference between the values obtained in the
upper and lower nodes of the layer. Figure 5�c� shows that stress
�12 �denoted str.� is similar to the derivative of �22 �denoted d-str.�
at order zero �upper nodes of the layer� divided by � / ��+2��.
The derivatives of the stresses at order zero are computed in the
upper nodes of the layer. In Fig. 5�d�, we can see that the jump in
the stress �22 at order one is approximately zero as predicted in
Eq. �8c�.

3.1.2.5 Conclusion. In Fig. 5, we have checked the results by
comparing each term of Eqs. �8�. The agreement found to exist
between the curves confirms the validity of the theory presented in
Ref. �2� and developed in this paper. One notes a divergence of
the theory on the edges. From a mathematical point of view, this
theory is valid only in the open set and not in the closed set. This
problem will be taken into account thereafter.

3.2 Second Numerical Example

3.2.1 Geometry of the Problem. In this section, we describe
numerical tests performed on two bars connected with a thin layer
�Fig. 6�. The width of the bars is equal to 99.5 mm and the thick-
ness of the thin layer is equal to 1 mm. The lower bar is clamped
underneath. A horizontal load is applied to the whole left side of
the top bar and a vertical one is applied to the upper left part of
the top bar.

3.2.2 Numerical Synthesis

3.2.2.1 Jump in the displacements at order 0 (Eqs. (7a) and
(7b)). The first step in the numerical validation procedure consists
of checking that the values of the jump in the displacements at
order zero tend toward zero. In this example, the jump in the
displacements is equal to the difference between the displace-
ments of the upper nodes and the lower nodes of the thin layer.
The jump was found to be small �Figs. 7�a� and 7�b��. The
values of the jumps tend to zero. These values are in
the �2.10−4 ,5 .10−4� mm range with u1 and in the
�−2.10−4 ,1 .10−4� mm range with u2.

Fig. 3 First example: three lines of nodes

Fig. 4 Square bar: numerical results on the contact zone: „a…
u1 displacements; „b… u2 displacements; „c… �22 stresses; „d…
�12 stresses „-… lower zone on the adhesive, „. . .… upper zone on
the adhesive, „-.… lower zone on the elastic body…

Fig. 5 Square bar: numerical results on the contact zone: „a…
†u1‡ displacements; „b… †u2‡ displacements; „c… †�12‡ stresses;
„d… †�22‡ stresses „„. . .… jump in the stress, „-… derivative…
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3.2.2.2 Jump in the stress vector at order 0 (Eqs. (7c) and
(7d)). In the case of the stress vector, we computed the stress
difference between the lower and upper nodes of the layer �Figs.
7�c� and 7�d��. The two values were found to be similar and the
jump tends toward zero.

3.2.2.3 Jump in the displacements at order 1 (Eqs. (8a) and
(8b)). In this case, the thin layer is not bonded directly with a rigid
body and the terms in Eqs. �8a� and �8b� are not simplified. The
jump in the displacements at order one is taken to be the com-
puted jump in the displacements divided by �. The derivative of
the displacement �Eqs. �8a� and �8b�� is approximated for the
upper nodes of the thin layer. We compared Eqs. �8a� and �8b�
with the numerical jump in the displacement at order one �denoted
disp. in Fig. 8�. It can be seen from Figs. 8�a� and 8�b� that these
values are very similar.

3.2.2.4 Jump in the stress vector at order 1 (Eqs. (8c) and
(8d)). In Eqs. �8c� and �8d�, the jump in the stress vector at order
one is taken to be equal to the difference between the values in the
upper and lower nodes of the layer. The derivatives of the stresses
at order zero are computed in the upper nodes of the layer. As Fig.
8�c� shows, stress �12 �denoted str.� is similar to the derivative of
�22 �denoted d-str.� at order zero �upper nodes of the layer� di-
vided by � / ��+2�� �Eq. �8d��. In Fig. 8�d�, we can see that the
jump in stress �22 at order one is similar to the values obtained
upon computing the right hand side of Eq. �8c�.

3.2.2.5 Conclusion. The numerical data given in Fig. 8 are
compared with the theoretical results obtained in each term of Eq.
�8�. The good agreement obtained confirms the validity of the
theory proposed in Ref. �2�.

4 Comments on Concentrated Forces at the Edges
As seen in the previous sections �Figs. 4, 5, 7, and 8�, the

results presented in Eq. �8� are no longer valid near the edges. In
this case, it is necessary to include concentrated forces in the
model. In particular, the limit model does not take into account the
singularities of stresses on the edges. In this paragraph, one pre-
sents a way of taking into account partial effects of the singulari-
ties near the edges. Let us consider a small circle centered at the
edge of the thin layer �see Fig. 9�. Using the divergence formula
and Eqs. �1�, �4�, and �6� �i��vii�, we obtain

�
C�

�n +�
D�

�n = 0

�
C�

�1n +�
−1/2

−1/2

	0n = 0

Fig. 6 Second example: two bonded bars „dimensions in mm…

Fig. 7 Two bars: numerical results on the contact zone: „a…
†u1‡ displacements; „b… †u2‡ displacements; „c… †�22‡ stresses;
and „d… †�12‡ stresses

Fig. 8 Two bars: numerical data on the contact zone „a… †u1‡

displacements; „b… †u2‡ displacements „. . . displacements, -
stress…; „c… †�22‡ stresses; „d… †�12‡ stresses „„. . .… jump in the
stress, „-… derivative…

Fig. 9 Concentrated forces

4



�
C�

�1n = − 	4��� + ��
� + 2�

�u1
0

�x1
−

�

� + 2�
�22
0 
e1 �9�

Therefore the concentrated forces at the edges P±, denoted F, are

F = − 	4��� + ��
� + 2�

�u1
0

�x1
−

�

� + 2�
�22
0 
�P±�e1 �10�

The validity of these theoretical results can be seen by compar-
ing Eq. �10� with the computed numerical data. We applied to the
limit problem �first example� a concentrated force exerted on the
first line of elements as shown in Eq. �10�. The value of this force
is obtained by performing computations on the real data �see Fig.
10�. In Fig. 11, the limit problem with and without concentrated
forces and the initial problem with the thin layer are compared.
The results show the considerable improvement obtained in the
case involving concentrated forces �Fig. 11�.

5 Conclusion
In this study, we have both developed and numerically vali-

dated an asymptotic model for the interface described in Ref. �2�.
This interface model is nonlocal. Good agreement was obtained
between theoretical and numerical data. One obtains a law that
could be modeled numerically at order 1 by particular cohesive
elements. We now intend to develop a theory on similar lines
dealing with the nonlinear constitutive laws pertaining to the thin
layer, in particular, taking into account damage or heterogeneities
�as in adhesives reinforced by particles�.
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Fig. 10 Application of the concentrated forces

Fig. 11 Numerical solution on the edge „a… limit problem with
concentrated forces; „b… limit problem without concentrated
forces; and „c… initial problem with two layers
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