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13402 Marseille Cedex20, France,
ballard@lma.cnrs-mrs.fr, leger@lma.cnrs-mrs.fr, elaine@lma.cnrs-mrs.fr

Abstract. The stability of the equilibrium states of a simple mechanical system

with unilateral contact and Coulomb friction is explored. When the external force

is constant, the equilibrium states are completely determined by the mechanical

properties of the system and the stability or instability of each of these states is

proved. When the external force varies in time two stability results are given.

1 Introduction

The aim of this work is to determine the stability of equilibrium states for
a mechanical system involving unilateral contact with Coulomb friction. Be-
cause of the nonsmoothness of such systems due to the presence of frictionnal
contact, the usual methods used to determine the stability of equilibrium
states are practically inoperate. The analysis is performed here by direct in-
tegration of the dynamics with initial data close to equilibrium. The stability
or instability results are proved by considering the discrete dynamical system
induced by the numerical integration method. The convergence of this method
has been proved and used to establish the existence result.

We begin by setting the equations and by giving the existence and unique-
ness results. In the case of a constant external force the set of equilibria is
determined explicitly by the mechanical parameters of the system, namely its
stiffness, friction coefficient and external forces. The stability results concern-
ing all these equilibria are stated and the proof is briefly sketched.

We then consider the case where the external force depends on time. In
fact we operate a small time dependant perturbation of the constant external
force previously studied. Interesting results concerning the equilibria of the
perturbed problem and the evolution in time of solutions to this problem with
initial data out of equilibrium are given.
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2 The basic equations and the dynamics

We restrict our attention to the mass-spring system, now quite classical since
the work of Klarbring [4], represented on Figure 1.

Fig. 1. The mass-spring model.

n and t denote respectively the normal and tangential components of the
displacement U and of the reaction R of the mass m. We recall the nonreg-
ularized unilateral contact and Coulomb friction laws in which μ denotes the
friction coefficient:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Un ≤ 0, Rn ≤ 0, Un.Rn = 0,

|Rt| ≤ μ|Rn|,

|Rt| < μ|Rn| =⇒ U̇t = 0,

|Rt| = μ|Rn| =⇒ U̇t = −λRt, λ ≥ 0,

(1)

We denote by MMA([0, T ]; R2) (motions with measure acceleration) the vec-
tor space of those integrable functions of [0, T ] into R2 whose second derivative
in the sense of distributions is a measure. It is nothing but the space of inte-
grals of functions of bounded variation over [0, T ]. Functions U in MMA are
continuous and admit left and right derivatives (in the classical sense) U̇−,
U̇+, at any point, both being functions of bounded variation. We recall that
a function of bounded variation, being a uniform limit of a sequence of step
functions, is universally integrable (integrable with respect to any measure).

The evolution problem, formulated along the lines of Moreau [7], [8], is
the following:
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Problem P. Find U ∈ MMA([0, T ]; R2) and R ∈ M([0, T ]; R2) such that:

• U(0) = U0 ; U̇+(0) = V0

• Ü + K ·U = F + R, in [0, T ]

• Un ≤ 0, Rn ≤ 0, UnRn = 0

•

∫

[0,T ]

[

Rt · (V − U̇+
T ) − μRn(|V | − |U̇+

t |)
]

≥ 0,

∀V ∈ C0([0, T ]; R)

• Un(t) = 0 =⇒ U̇+
n (t) = −eU̇−

n (t), in ]0, T ].

(2)

F denotes the external force, e ∈ [0, T ] a real constant (the so-called restitution
coefficient) and (U0, V0) some initial condition, assumed to be compatible with
the unilateral constraint, that is

U0n ≤ 0 and U0n = 0 =⇒ V0n ≤ 0. (3)

In the following we consider completely inelastic shocks, i.e. e = 0. In this
case, the unilateral contact conditions and the shock law can be replaced in
(2) by

Un ≤ 0 with

⎧

⎨

⎩

Un < 0 =⇒ Rn = 0,

Un = 0 =⇒ U̇+
n ≤ 0, Rn ≤ 0, U̇+

n Rn = 0.

(4)

It has been recently established that problem (P) has a solution as soon
as the data F is an integrable function of [0, T ]. The proof of this result uses
the convergence of a time discretization, and is heavily inspired by the proof
given by Monteiro-Marques in [6]. The main qualitative point of this proof
is that the time discretization is the same as that of the numerical software
NSCD [3] and will be used in the following as a discrete dynamical system.

It has also been obtained recently [1] that, for given intial data, the tra-
jectory is not generally unique, and that uniqueness holds only if the data F

is an analytical function of [0, T ].

3 The set of equilibria

The equilibrium states of problem (P), which have been explored in [2], are
the set of displacements U and reactions R satisfying, in addition to conditions
(1), the following system:

⎧

⎨

⎩

Kt.Ut + W.Un = Ft + Rt

W.Ut + Kn.Un = Fn + Rn,

(5)
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where (Ft, Fn) denotes the external force and K =

(

Kt W

W Kn

)

the stiffness

matrix of the system of springs.
Looking first for solutions without contact, immediatly leads to:

⎧

⎪

⎨

⎪

⎩

Un =
A

detK
, Ut =

Kn.Ft − W.Fn

detK

Rn = Rt = 0,

(6)

where quantity A is defined as A = Kt.Fn − W.Ft. Conditions (1) then
imply that (6) will be an equilibrium solution only if A ≤ 0.

Looking for equilibrium solutions in contact with the obstacle, that is such
that Un = 0, we find that system (1), (5) reduces to:

⎧

⎨

⎩

W.Ut = Fn + Rn

Kt.Ut = Ft + Rt

|Rt| ≤ μ|Rn|,
(7)

which gives

⎧

⎪

⎨

⎪

⎩

Rt =
Kt

W
Rn +

A

W

|Rt| ≤ μ|Rn|.

(8)

The solutions of (8) determine the equilibria in the {Rt, Rn} plane. As shown
on figure 2, these equilibria belong to the intersection of an affine line which
represents the equilibrium equation and of the Coulomb cone.

The dependance of the set of equilibria on the stiffness parameters, friction
coefficient and external load is summarized in table 1.

4 Stability analysis

4.1 Main steps of the analysis

Having investigated the equilibrium states under constant data, we analyze the
stability of these equilibria. As announced in the introduction, this stability
analysis consists in choosing an initial data for problem (P) in a neighborhood
of any of the equilibria in a classical phase space, and studying the evolution
in time of the distance between the corresponding trajectory and the equilib-
rium. This analysis uses estimates on the iterates of the time discretization,
considered as a dynamical system, that was used to establish the existence
result.

Proposition 1 summarizes the stability results in the case of a constant
force. We conclude this section by studying the case where the external force
varies in time.4



Fig. 2. The sets of equilibria in the {Rt, Rn} plane.
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Table 1. The equilibrium states with respect to parameters A and µ.

A < 0 A = 0 A > 0

2 solutions in
impending positive
and negative slip

µ < KT

W
1 solution 1 solution in +

without contact grazing contact infinitely many
solutions in strict
sticked contact

1 solution in 1 solution in impen-
grazing contact ding negative slip

µ = KT

W
1 solution + +

without contact infinitely many infinitely many
solutions in impen- solutions in strict
ding positive slip sticked contact

1 solution 1 solution in 1 solution in impen-
without contact grazing contact ding negative slip

µ > KT

W
+ + +

1 solution infinitely many solu- infinitely many solu-
in impending tions in strict tions in strict
positive slip sticked contact sticked contact

Proposition 1. Under a constant external force

• if there are only two equilibria, the one which is in contact is unstable;
• if there are infinitely many equilibrium states in impending sliding, they

are all unstable, except the vertex of the cone which is Lyapunov stable;
• as soon as there are infinitely many equilibrium states in strictly sticked

contact, all the equilibria are Lyapunov stable;
• if the parameters are such that the vertex of the cone is the unique equi-

librium state, then this equilibrium is asymptotically stable.

These results are obtained thanks to several technical lemmas, of which we
give hereafter three significative examples.

6



4.2 Some technical lemmas

The first two lemmas are simple and intuitive. Considering an equilibrium
state in contact perturbed by a normal or a tangential velocity, then, under
some conditions, the trajectory will come into contact again. More precisely:

Lemma 1. Let (Ueq, Req) with Req
n strictly negative be an equilibrium solu-

tion, and Vn0 a perturbation of this equilibrium at time t0, then there exists t̄,
t0 < t̄ < +∞, such that Un(t̄) = 0.

Lemma 2. Let (Ueq, Req) be a grazing equilibrium state (Req
n = 0 and Ueq

n =
0) and Vt0 a perturbation of this equilibrium at time t0, then there exists t̃,
t0 < t̃ < +∞, such that Un(t̃) = 0.

The last lemma is more technical, and is already very close to a stability
result:

Lemma 3. Let (Ueq, Req) be an equilibrium state with Req
n strictly negative.

Let the dynamics after any perturbation be such that there exists a time t∗ <

+∞ with Vt(t
∗) = 0 and Rn(t∗) < 0.

Then, if there exists an equilibrium state (Ûeq, R̂eq) such that Req
n (t∗) =

R̂eq
n , Vt(t) = 0 ∀t > t∗.

4.3 Stability under nonconstant forces

The two theorems given below prove a conjecture recently suggested to the
authors by Michel Jean.

Let us choose the external force F under the form F (t) = F0 + ǫξ(t),
where ξ(t) is an analytical function and ǫ a positive parameter. (P0) (resp.
(Pε)) denotes problem (P) where ǫ = 0 (resp. ǫ > 0). In fact (P0) represents
the problem previously studied, i.e. with a constant external force and (Pε) a
perturbation of (P0).

A solution (Uε, Rε) of problem (Pε) where Uε is constant will be referred
to as a space-equilibrium solution.

The two following results are established:

Theorem 1. The following statements i) and ii) are shown to be equivalent:
i) (U0, R0) is an equilibrium solution of problem (P0) such that the reaction
(Rn0, Rt0) is strictly inside the Coulomb cone.
ii) ∃ ǫ0 > 0 such that ∀ǫ < ǫ0, the solution (Uε, Rε) of problem (Pε), obtained
with the equilibrium solution of (P0) as initial data, is a space-equilibrium
solution with Uε = U0.

Theorem 2. Assume ǫ is such that there exists a space-equilibrium solution to
problem (Pε). Then any solution of (Pε), with a nongrazing equilibrium solu-
tion of problem (P0) as initial data, leads in finite time to a space-equilibrium
solution of (Pε).7
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