
HAL Id: hal-00106798
https://hal.science/hal-00106798

Submitted on 16 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Peer-to-Peer Usage Analysis: a Distributed Mining
Approach

Florent Masseglia, Pascal Poncelet, Maguelonne Teisseire

To cite this version:
Florent Masseglia, Pascal Poncelet, Maguelonne Teisseire. Peer-to-Peer Usage Analysis: a Distributed
Mining Approach. AINA: Advanced Information Networking and Applications, 2006, Vienna, Austria.
�hal-00106798�

https://hal.science/hal-00106798
https://hal.archives-ouvertes.fr


Peer-to-Peer Usage Analysis: a Distributed Mining Approach

Florent Masseglia
INRIA Sophia Antipolis, Axis Project-Team

BP93 06802 Sophia Antipolis - France
Florent.Masseglia@sophia.inria.fr

Pascal Poncelet
EMA-LGI2P/Site EERIE

Parc Scientifique Georges Besse, 30035 Nı̂mes Cedex 1 - France
Pascal.Poncelet@ema.fr

Maguelonne Teisseire
LIRMM UMR CNRS 5506

161 Rue Ada 34392 Montpellier Cedex 5 - France
teisseire@lirmm.fr

Abstract

With the huge number of information sources available
on the Internet, Peer-to-Peer (P2P) systems offer a novel
kind of system architecture providing the large-scale com-
munity with applications for file sharing, distributed file
systems, distributed computing, messaging and real-time
communication. P2P applications also provide a good in-
frastructure for data and compute intensive operations such
as data mining. In this paper we propose a new approach
for improving resource searching in a dynamic and distrib-
uted database such as an unstructured P2P system. This
approach takes advantage of data mining techniques. By
using a genetic-inspired algorithm, we propose to extract
patterns or relationships occurring in a large number of
nodes. Such a knowledge is very useful for proposing the
user with often downloaded or requested files according to
a majority of behaviors. It may also be useful in order to
avoid extra bandwidth consumption.

1 Introduction

With the huge number of information sources avail-
able in the Internet and the high dynamics of their data,
Peer-to-Peer (P2P) systems offer a novel kind of system
architecture providing the large-scale community behavior
with applications for file sharing, distributed file systems,
distributed computing, messaging and real-time communi-
cation [6].

P2P application also provides a good infrastructure for
data and compute intensive operations such as data mining.
For instance, it may be discovered, in a P2P file sharing
network, such as Gnutella [3], that “Mandriva Linux 2005”
distribution is often downloaded as “CD1.iso, then CD2.iso
and finally CD3.iso”. Such an approach is considered in
[10] where the authors propose to mine association rules,
i.e. sets of objects which tend to associate with one another,
in a P2P system. The proposed algorithm combines locally,
i.e. at each node, association rule mining algorithm with
a majority voting protocol to discover at each node all
of the association rules that exist in the distributed database.

In this paper we consider a new approach for improving
resource searching in a dynamic and distributed database
such as an unstructured P2P system and we consider
two new concepts for discovering frequent behaviors
among users of such a system: (i) Thesequential order
between the actions performed on each node (requests or
downloads) has to be taken into account for better results.
(ii) Maintaining, on a “meter peer”, the global result
of distributed calculations will considerably reduce the
amount of communications between connected peers.
First, we argue that considering the timestamps of each
action performed on nodes could be very informative. For
instance, by examining the frequent actions performed, we
can obtain that for 77% of nodes from which a request
is sent for ”Mandriva Linux”, the file ”Mandriva Linux
2005 CD1 i585-Limited-Edition-Mini.iso” is chosen and
downloaded, then a new request is performed with the



possible name of the remaining iso images (i.e ”Mandriva
Linux 2005 Limited Edition”) and in the large number of
returned results the image corresponding to ”Mandriva
Linux 2005 CD2 i585-Limited-Edition-Mini.iso” is chosen
and downloaded. Such a knowledge is very useful for
proposing the user with often downloaded or requested
files according to a majority of behaviors. Proposing the
user with often downloaded or requested files could also be
useful in order to avoid extra bandwidth consumption. In
our previous example, two large broadcasting operations
are performed: first when requesting a specific resource
(”Mandriva Linux”) and second when requesting the
remaining iso images (”Mandriva Linux 2005 CD2”).
If we know that a large number of nodes interested by
Linux distributions will download the corresponding iso
images with a special format, it is easy to improve the first
request. In our example, a user searching for the Mandriva
distribution (”Mandriva Linux”) would be answered with
the usual files and an additive answer containing the iso
images (”Mandriva Linux 2005 CD* i585-Limited-Edition-
Mini.iso”). Such request modification can thus enhance the
resource location as well as avoid the second broadcast.

Second, mining either association rules or sequential
patterns in such a very large distributed database than an
unstructured P2P system is far away from trivial. By nature
such systems are dynamic, i.e. nodes act independently of
one another, and Indeed as nodes must act independently
of one another, intermediate results may be overturned as
new data arrives. Furthermore, whenever a node departs,
the sequence of that node also disappears, and the global
database has to be reconsidered for taking into account and
propagating such a departure. Traditional approaches for
mining sequential patterns [9, 7] are irrelevant in such a
dynamic context because they consider that the whole data-
base is available. In the literature, incremental approaches
were proposed [4, 1] but they suffer the same limitations.
They mainly consider that new clients or new items are
added to the original database. In [5], we proposed to dis-
cover relationships and global patterns that exist between
connecting users (Web Usage Mining). This approach was
mainly defined in order to take advantage of the computing
power available on the machine a user navigates with.
We proposed a new “client/server/engine” architecture for
taking advantage of this computing power. In this paper
our goal is different since it takes into account the dynamic
nature of the considered system. We consider that the con-
nected nodes can act with a special peer (a “meter peer”)
in order to provide the end user with a good approximation
of patterns embedded in this very large distributed database.

The rest of the paper is organized as follows. Section 2
goes deeper into presenting the problems of sequential pat-

terns in a very large distributed database. In Section 3 we
propose our approach for mining sequential patterns in an
efficient way. Section 4 reports the result of our experi-
ments. In Section 5, we summarize our findings and con-
clude the paper with future avenues for research.

2 Problem Statement

This section is devoted to stating the problem and extend
the initial sequential mining problem [9] by considering a
large-scale distributed database.

Let I = {x1, . . . , xn} be a set of distinct literals called
items. I is called an itemset. In the following we assume that
for each item we are provided with the action performed,
i.e. request or download. An itemxi is thus denoted either
[d, xi] for downloading or[r, xi] for requesting.

A sequenceis an ordered list of itemsets denoted by<

s1s2 . . . sn > wheresj is an itemset. For instance, let us
consider the following actions performed on a nodeS=<

([d, 3]) ([d, 4] [d, 5]) ([d, 8]) >. S means that 3 was first
downloaded, then 4 and 5 at the same moment (i.e. in the
same transaction) and finally 8.

Let D be a database of customerdata-sequences. The
support for a sequences, also calledsupp(s), is defined
as the fraction of total data-sequences that contains. If
supp(s) ≥ minsupp, with a minimum support value
minsupp given by the user,s is considered as afrequent
sequential pattern.

Here we adapt the problem statement proposed by [10]
to our concern. When the database is dynamically updated,
i.e. transactions are added to it or deleted from it over time,
we denoteDt the database at timet. Let us assume that
the database is also partitioned among an unknown number
of nodes. We denote such a partition of nodeu, at time
t, Du

t . In fact Du
t corresponds to the sequence of actions

performed on the node. Let us assume thatDt =
⋃

Du
t ...

Dv
t , whereut ... vt are the available nodes at timet. The

problem of sequential pattern mining in such a large-scale
distributed systemsDt is thus to find the set of frequent
sequential patterns inDt according to theminsupp value.

Let us consider thatFDt
is the result to obtain (the re-

sult that would be exhibited by an algorithm which would
explore the whole set of solutions),FDt

is thus the set of
frequent sequential patterns to find inDt. Let us now con-
sider ˜FDt

, the set of approximate sequential patterns. We
require that, as nodesut ... vt are dynamics, ˜FDt

will con-
verge as fast as possible toFDt

.

Example 1 Let us consider three sequences standing for
downloading operations performed on nodesut, vt andwt:



Dut
< ([d, 1])([d, 2])([d, 3])([d, 4])([d, 5]) >

Dvt
< ([d, 1])([d, 2])([d, 1])([d, 3])([d, 5]) >

Dwt
< ([d, 1])([d, 2])([d, 4])([d, 5])([d, 6]) >

From such sequences, the set of items with their as-
sociated support is the following: ([d, 1])[100%], ([d, 2])
[100%], ([d, 3]) [66%], ([d, 4]) [66%], ([d, 5]) [100%]
and ([d, 6]) [33%]. Let us assume that a support value,
minsupp, is set to 100%, then the set of frequent sequences
at timeti onFDti

is: FDti
={< ([d, 1]) ([d, 2]) ([d, 5]) >}.

Let us now assume, at timeti+1 that the nodewt

departs, then the set of frequent sequences becomes
FDti+1

={< ([d, 1]) ([d, 2]) ([d, 3]) ([d, 5]) >} since the
support of the item ([d, 3]) is now 100%.

3 A new heuristic approach for mining se-
quential patterns in Peer-to-Peer systems

As a matter of fact, the nodes in a P2P context may
connect or depart frequently whileDt is still being an-
alyzed. Our proposal is to considerDt as a unit able to
receive candidate sequences, to evaluate the support of
each candidate on sequence inDt and to send back the
result. This kind of “scan”, distributed on all the connected
nodes relies on a stochastic algorithm for combinatorial
optimization problems. We first give an overview of our
approach and our algorithms are then described.

First Dt is empty until a nodeut sends its sequence.
The unstructured P2P architecture we propose allows a
special peer (hereafter the “DistributedSP peer”) to get
connected to each new peer arriving on the network (let us
consider the peer “v” in algorithm 2, then the instruction
send(v,@DistributedSP ) allows DistributedSP to be
aware ofv’s arrival). Our method then relies on a distri-
bution of the candidate sequences, as described in Figure
1. The “DistributedSP peer” performs the instructions
of the DistributedSP heuristic, from “GetValuation” to
“Broadcast”. At first, the set of frequent items is extracted
from the connected peers (a mere counting for each peer
is sufficient). Then the whole set of candidates having
length 2 is generated from the set of frequent items. The
candidates get evaluated by the connected peers (ut..vt)
in order to count those having the required threshold in
the whole database, i.e. onDt =

⋃
Du

t ... Dv
t . The

results are collected by theDistributedSP peer (i.e. the
“GetValuation” function). Then the heuristic is applied
(based on genetic operators) and the new set of candidates
is sent to the connected peers for evaluation. This process
is repeated until no change enhances the solution (As data
evolves each time and as nodes are dynamic, each change
might enhance the solution and the solution will thus follow

the nodes behavior on and on...).

Now let us consider theDistributedSP algorithm (Cf.
Algorithm 1). DistributedSP first starts when a nodeut

joins our system ((recvut)). The set of frequent patterns is
thus initialized with the sequence ofut. While nodes are
available, we consider patterns sent toDistributedSP by
thegetV aluation function in order to test if sequences are
frequents. SCORE stands for the average marks given by
all nodes for candidates. If SCORE is greater or equal to
a minimum support value, this candidate becomes frequent.
Nevertheless, sequences are not only evaluated as included
or not, we also consider the distance between the size of
the candidate’s subset included, compared to the total size
of candidates (C.f Algorithm 2). The aim of this approach
is to take into account that a sequence could be unfrequent
but could be useful for generating candidates. For efficiency
reasons, i.e. in order to avoid to generate too much candi-
dates, we consider a user defined thresholdmindist. When
the score of a sequence is greater than or equal to mindist,
then this sequence will be inserted into the approximate set
in order to be considered for the generating phase. Thanks
to frequent patterns, approximate sequences and neighbor-
hood operators, candidates are generated and sent to all con-
nected nodes by broadcasting in order to know either their
threshold or their distance from a frequent sequence.

Algorithm 1: DistributedSP algorithm
Data: FDt

the frequent sequences for nodeut, nodesut ...vt on
line and a user-defined parametermindist standing for the
minimum distance for a candidate to be considered.

Result: FDt
the sequential patterns corresponding to the frequent

behavior patterns onDt.
// Initialization
recv (ut);
FDt

← Du
t ;

// main process
while nodes are on linedo

nodesAvailable ← recv(ut...vt);
˜FDt

← ∅;
candidates ← getV aluation(nodesAvailable);
for c ∈ candidates do

if SCORE(c) > minsupp then
insert(c, FDt

);

else
if SCORE(c)) ≥ mindist then

insert(c, ˜FDt
);

candidates ← neighborhoodOperators(̃FDt
, FDt

);
Broadcast(@nodesAvailable, candidates);

As they proved to be efficient in [5], for neighborhood
operators we propose “Genetic-like” operators as well as
operators based on sequential patterns properties. When
we talk about random sequence, we use a biased random
such that sequences having a high threshold may be chosen
before sequences having a low threshold. In the following,



Figure 1. Overview of the DistributedSP heuristic

for brevity, we note an itemxi without considering its
associated operation (download or request).
New frequent items:When a new frequent item is occurring
(after being requested by one or more users) it is used
to generate all possible 2-candidate sequences with other
frequent items. The candidates set generated is thus added
to the global candidates set.
Adding items: This operator aims at choosing a random
item among frequent items and adding this item to a
random sequences, after each item ins. This operator
generateslength(s) + 1 candidate sequences.
Basic crossover:This operator uses two different random
sequences and proposes two new candidates coming from
their amalgamation.
Enhanced crossover:This operator aims at choosing two
random sequences, and the crossover is not performed in
the middle of each sequence, but at the end of the longest
prefix common to the considered sequences.
Final crossover: An ultimate crossover operator was de-
signed in order to improve the previous ones. This operator
is based on the same principle than the enhanced crossover
operator, but the second sequence is not randomly chosen.
Indeed, the second sequence is chosen as being the one
having the longest common prefix with the first one.
Sequences extension:This operator aims at adding new
frequent items at the end of several random frequent
sequences.

Let us now consider thenode algorithm (C.f. Algorithm
2). Two mains operations are performed. First when a new
neighborvt tries to connect on a nodeut (recv(v,connect)),

a message is sent fromu to v in order to give the address
of the DistributedSP . The nodevt is thus included into
the process. Second, when a message fromDistributedSP

is received then the following operation is performed. A
score, representing the distance between a candidate and
the local operations performed on the node is computed,
Du

t . If a candidate is included inDu
t then the score is set by

100+size(candidate). As our approach is heuristic-based,
the main idea is thus to give a rewards to candidate fully
included into a sequence. Furthermore, setting a number
greater than 100, assure that our sequence is fully included
in DistributedSP . Otherwise as we are interested in long
sequences because they are much more informative, long
sequences are rewarded. This is done by considering the
Longest-Common-Subsequence (LCS) [2] algorithm. Then
the most the sequence is included, the most its score in-
creases.

4 Experiments

To evaluate our approach, we implemented a simula-
tor capable of running simulated unstructured P2P system.
Conducted experiments were done by using real datasets.
We use a classical benchmark (Pumsb) [8] and an access
log file (AccessLog). The access log files contains all the re-
quest performed by the users on the web site of Inria. Since
the activities of users on a P2P network are expected to be
quite similar to requests on a web site, we believe that this
file gives a good approximation for our purpose. As the file
“pumsb” was first defined for the association rules problem,
it has been transformed as follows: a different date is added



Algorithm 2: Node algorithm
Data: CS the candidate sequences to evaluate andDt

u the partition
of nodeu at timet.

Result: LSCORE the set of local scores assigned to each se-
quence.

if (recv(v,connect) then
send(v,@DistributedSP );

if (recv(@DistributedSP ,CS) then
for S ∈ CS do

LSCORE[S] ← ∅

if (S ⊆ Dt
u) then

LSCORE[S]← 100+size(S);

else
//GiveS a mark, and a
//better mark to long sequences

LSCORE[S]←
size(LCS(S,Dt

u
))∗100

size(S)
−

size(S);

send(@DistributedSP , LSCORE);

for each items in the files entries.
Experiments were firstly conducted in order to analyze the
convergence of the results as well as the communications
costs. Furthermore experiments were conducted in order to
analyze how our approach behaves when the nodes depart
or arrive, e.g. at the beginning of the process onlyclassical
musicis downloaded and after a long time onlypop songs
are downloaded.

Pumsb

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

Generation

%
Q

u
a
li

ty

Access Log

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

Generation

%
Q

u
a
li

ty

Figure 2. Results quality for proposed popu-
lations

4.1 Convergence of the result and commu-
nication costs

In this section, we consider the convergence of the result.
As previously said (C.f. Section 2), we require that if nodes
ut ... vt remain static long enough then the approximated
solution ˜FDt

will converge toFDt
. Another important

aspect that we have to consider is the communication
cost. Broadcasting operations are in fact closely related
to the number of candidate generation performed in order
to obtain the set of real frequent sequences in the whole
databaseDt. The lower the number of generation is, the

lower the number of broadcasting operations are. In the
same way, the candidate generation is also closely related
to the convergence of the result.

Algorithm 3: Quality measurement algorithm
Data: candidatePopulation, a candidate population to value.

realResults the real results to obtain (for comparison).
Result: quality, the quality percentage for proposed results com-

pared to real results.
sum←0;
for s1 ∈ candidatePopulation do

localQuality←0;
for s2 ∈ realResults do

localQuality←max(localQuality,
(LCS(s1,s2)/size(s2))*100);

sum+ = localQuality;

quality←sum/size(candidatePopulation);
return(quality);

A traditional level-wise algorithm was first applied on
the whole database. Each candidate population proposed
by our approach is thus compared to real result in order
to obtain its local quality. This quality (Algorithm 3)
is obtained as follows: we measure for each candidate
population, the Longest-Common Subsequence (LCS)
between the candidate sequences and the real result. Then
the database was partitioned between different nodes and
our approach was applied. Result of experiments are
reported on Figure 2. For instance, we can notice that,
for Pumsb, at first generation, the quality of the candidate
population is greater than 50%. At second, we obtain 70%.
We can notice that, for both datasets, from generation 6
the result quality is near 95% and we have to wait until the
seventh generation to obtain 100%. These result show the
efficiency of our approach since long frequent sequences
are obtained when considering no more than 7 broadcasting
operations.

4.2 Behaviors of nodes

One important characteristic of our approach is its con-
vergence rate. Tests were thus performed in order to vali-
date ability of our approach at adapting to the node behav-
iors. Experiments were conducted on the two real datasets.
These files were chosen since they are from very different
thematic. The main idea was the following: we would like
to analyze what is the behavior of our approach whenx%
sequences from the original database Pumsb are replaced
by x% sequences from AccessLog the destination database.
Of course this process is repeated until Pumsb is entirely
replaced by AccessLog. Our experiment then consist in es-
timating the quality of the results compared to those ob-
tained by the traditional level-wise algorithm, as soon as



the replacement is achieved. In order to simulate a realis-
tic unstructured P2P behavior, we considered a range value
of 1-3% of sequences progressively, i.e. at each generation,
replaced. The results for this test is reported in Figure 3.
For instance, when Pumsb is replaced at the rythm of 1%
per generation, results quality at the end of the replacement
process is 100%. Of course the faster the initial database is
replaced by the final database, the worst the results get. In
other words, when the replacement is less progressive the
quality decreases (e.g. we have tested 10% of modifications
and we have noticed that the quality decreased to 55%).

50 60 70 80 90 100

1

2

3

%
S

e
q

u
e
n

c
e
s

% Quality

Figure 3. Results quality after a complete re-
placement of Pumsb by AccessLog

5 Conclusion

In this paper, we addressed the problem of improving
resource location in unstructured P2P systems. This
approach is based on data mining techniques and more
precisely on sequential patterns mining. Even if efficient
approaches for mining are proposed we have shown that
they are inadequate in such a very large distributed database
than a unstructured P2P system since: (i) they consider that
we are provided with the whole database; (ii) they do not
consider the dynamic nature of such a system, i.e. nodes act
independently of one another; (iii) they are usually based
on a join operation for candidate generation.
We proposed a new approach inspired by genetic algo-
rithms in order to efficiently retrieve frequent sequences.
Experiments conducted have shown that our approach is
efficient.

Our approach can also be used in order to define clus-
ters of P2P, i.e. nodes having quite similar behaviors. We
can consider thatDistributedSP stands for a special node
for mining in a P2P system and that nodes included in the
cluster will be used in order to find sequential patterns. Our
future work consist in generalizing such an approach to a set

of clusters in a way similar to the Superpeer concept [11].
The main idea is the following. We can consider that we
are thus provided with a set ofDistributedSP nodes. Each
node can receive a set of sequential patterns from an other
DistributedSP node and thus can consider these patterns
against its own clustered nodes.

References

[1] X. Cheng, X. Yan, and J. Han. Incspan: Incremental
mining of sequential patterns in large database. InPro-
ceedings of the International Conference on Knowl-
edge Discovery and Data Mining (KDD 04), Seattle,
WA, 2004.

[2] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.In-
troduction to Algorithms. MIT Press, 2001.

[3] Gnutella. http://www.gnutella.com.

[4] F. Masseglia, P. Poncelet, and M. Teisseire. Incre-
mental mining of sequential patterns in large data-
bases.Data and Knowledge Engineering, 46(1):97–
121, 2003.

[5] F. Masseglia, M. Teisseire, and P. Poncelet. HDM:
A client/server/engine architecture for real time web
usage mining.Knowledge and Information Systems,
5(4):439–465, October 2003.

[6] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Enforc-
ing fair sharing of peer-to-peer resources. InProceed-
ings of the 2nd International Workshop on Peer-to-
Peer Systems (IPTPS 03), Berkeley, California, 2003.

[7] J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.C.
Hsu. Prefixspan: mining sequential patterns efficiently
by prefix projected pattern growth. InProceedings
of the International Conference on Data Engineering
(ICDE 01), Heidelberg, 2001.

[8] FIMI Repository. Workshop on frequent
itemset mining implementations (FIMI 04).
http://fimi.cs.helsinski.fi/fimi04.

[9] R. Agrawal R. Srikant. Mining sequential patterns. In
Proceedings of the 11th International Conference on
Data Engineering (ICDE 95), Tapei, Taiwan, 1995.

[10] R. Wolff and A. Schuster. Association rule mining in
peer-to-peer systems. InProceedings of the 3rd IEEE
International Conference on Data Mining (ICDM 03),
pages 363–370, Melbourne, Florida, 2003.

[11] B. Yang and H. Garcia-Molina. Designing a super-
peer network. InProceedings of the 19th International
Conference on Data Engineering (ICDE 03), 2003.


