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MODIFIED RAYLEIGH CONJECTURE FOR SCATTERING BY
PERIODIC STRUCTURES

ALEXANDER G. RAMM AND SEMION GUTMAN

Abstract. This paper contains a self-contained brief presentation of the scattering the-

ory for periodic structures. Its main result is a theorem (the Modified Rayleigh Conjec-
ture, or MRC), which gives a rigorous foundation for a numerical method for solving the

direct scattering problem for periodic structures. A numerical example illustrating the

procedure is presented.

1. Introduction

For simplicity we consider a 2-D setting, but our arguments can be as easily applied to
n-dimensional problems, n ≥ 2. Let f : R → R, f(x+L) = f(x) be an L-periodic Lipschitz
continuous function, and let D be the domain

D = {(x, y) : y ≥ f(x), x ∈ R}.
Without loss of generality we assume that f ≥ 0. If it is not, one can choose the origin

so that this assumption is satisfied, because M := sup0≤x≤L |f(x)| <∞.
Let x = (x, y) and u(x) be the total field satisfying

(1.1) (∆ + k2)u = 0, x ∈ D, k = const > 0

(1.2) u = 0 on S : = ∂D,

(1.3) u = u0 + v, u0 : = eikα·x,

where the unit vector α = (cos θ,− sin θ), 0 < θ < π/2, and v(x) is the scattered field,
whose asymptotic behavior as y →∞ will be specified below, and

(1.4) u(x+ L, y) = νu(x, y), ux(x+ L, y) = νux(x, y) in D, ν : = eikL cos θ .

Conditions (1.4) are the qp (quasiperiodicity) conditions. To find the proper radiation
condition for the scattered field v(x) consider the spectral problem

(1.5) ϕ′′ + λ2ϕ = 0, 0 < x < L,

(1.6) ϕ(L) = νϕ(0), ϕ′(L) = νϕ′(0)

arising from the separation of variables in (1.1)-(1.4). This problem has a discrete spectrum,
and its eigenfunctions form a basis in L2(0, L). One has

ϕ = Aeiλx +Be−iλx, A,B = const,

AeiλL +Be−iλL = ν(A+B), iλAeiλL − iλBe−iλL = iλν(A−B).
Thus ∣∣∣∣ eiλL − ν e−iλL − ν

iλ(eiλL − ν) −iλ(e−iλL − ν)

∣∣∣∣ = 0.
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So, iλ(eiλL− ν)(e−iλL− ν) = 0. If λ = 0, then ϕ = A+Bx, A+BL = νA, B = νB. Since
ν = eikL cos θ, one has no eigenvalue λ = 0 unless kL sin θ = 2πm, m > 0 is an integer. Let
us assume that kL cos θ 6= 2πm. Then

eiλL = eikL cos θ or e−iλL = eikL cos θ ,

that is
λ+

j = k cos θ +
2πj
L
, or λ−j = −k cos θ +

2πj
L
, j = 0,±1,±2, . . .

The corresponding eigenfunctions are eiλ+
j x and e−iλ−j x. We will use the system eiλ+

j x, which
forms an orthogonal bais in L2(0, L). One has:∫ L

0

eiλ+
j xe−iλ+

mx dx =
∫ L

0

e
2πi
L (j−m) dx = 0, j 6= m.

The normalized eigenfunctions are

ϕj(x) =
eiλ+

j x

√
L
, j = 0,±1,±2, . . .

These functions form an orthonormal basis of L2(0, L). Let us look for v(x) = v(x, y) of the
form

(1.7) v(x, y) =
∞∑

j=−∞
cjvj(y)ϕj(x), y > M, cj = const.

For y > M , equation (1.1) implies

(1.8) v′′j + (k2 − λ2
j )vj = 0.

Let us assume that λ2
j 6= k2 for all j. Then

(1.9) vj(y) = eiµjy,

where, for finitely many j, the set of which is denoted by J , one has:

(1.10) µj = (k2 − λ2
j )

1/2 > 0, if λ2
j < k2, j ∈ J,

and

(1.11) µj = i(λ2
j − k2)1/2, if λ2

j > k2, j /∈ J.

The radiation condition at infinity requires that the scattered field v(x, y) be repre-
sentable in the form (1.7) with vj(y) defined by (1.9)-(1.11).

The Periodic Scattering Problem consists of finding the solution to (1.1)-(1.4) satis-
fying the radiation condition (1.7), (1.9)-(1.11).

The existence and uniqueness for such a scattering problem is established in Section 2.
Our presentation is essentially self-contained. In [1] the scattering by a periodic structure
was considered earlier, and was based on a uniqueness theorem from [7]. Our proofs differ
from the proofs in [1]. There are many papers on scattering by periodic structures, of
which we mention a few [1], [2], [4], [5], [6], [10],[11], [12], [13], [15], [25]. The Rayleigh
conjecture is discussed in several of the above papers. It was shown (e.g. [15], [3]) that this
conjecture is incorrect, in general. The modified Rayleigh conjecture is a theorem proved in
[18] for scattering by bounded obstacles. A numerical method for solving obstacle scattering
problems, based on the modified Rayleigh conjecture is developed in [8]. The main results of
our paper are: the modified Rayleigh conjecture for periodic structures (Theorem 4.4) and a
rigorous numerical method for solving scattering problems by periodic structures, based on
the modified Rayleigh conjecture (Section 4). The proof of the limiting absorption principle
(LAP) and the rigorous and self-contained development of the plane wave scattering theory
by periodic structures is also of interest for broad audience. This theory is based partly
on the ideas developed in [17], [21], [22], [19]. The proof of the key lemma 2.2 is based on
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a version of Ramm’s identity (2.16). Numerical implementation of the method for solving
scattering problems by periodic structures, based on the modified Rayleigh conjecture, is
constructed using the approach developed in [8] and in [23]. Applications to inverse problems
are discussed in [18] and [24].

2. Periodic Scattering Problem

Existence and uniqueness of solutions of the Periodic Scattering Problem can be proved
easily, if one establishes first the existence and uniqueness of the resolvent kernelG(x, y, ξ, η, k)
of the Dirichlet Laplacian in D:

(2.1) (∆ + k2)G(x, y, ξ, η, k) = −δ(x− ξ)δ(y − η), G = 0 on S,

(2.2) G(x+ L, y, ξ, η, k) = νG(x, y, ξ, η, k), G(x, y, ξ + L, η, k) = νG(x, y, ξ, η, k),

(2.3) Gx(x+ L, y, ξ, η, k) = νGx(x, y, ξ, η, k), Gx(x, y, ξ + L, η, k) = νGx(x, y, ξ, η, k),

and G satisfies the LAP, see (2.5) below. The overbar here and below stands for the complex
conjugation.

Indeed, if such a function G exists, then v can be found by the Green’s formula

(2.4) v(x, y) = −
∫

SL

u0(ξ, η)GN (x, y, ξ, η, k) ds,

where N is the unit normal vector to S pointing into D.
To prove the existence and uniqueness of G(x, y, ξ, η, k) define

`0 = −∆

to be the Laplacian on the set of C2(D) quasiperiodic functions vanishing on the boundary
S, and vanishing near infinity. Let

DL : = {(x, y) : 0 ≤ x ≤ L, (x, y) ∈ D}.
Then DL is a section of D, and `0 is a symmetric operator in L2(DL). This operator is
nonnegative , and therefore [9] there exists its unique selfadjoint Friedrichs’ extension, which
will be denoted by `.

Let Im(k2) > 0. Then there exists a unique resolvent operator (`−k2)−1. Thus its kernel
G(x, y, ξ, η, k) also exists and it is unique. To establish the existence and uniqueness of the
kernel for k > 0 we are going to prove the following

Limiting Absorption Principle (LAP). Let k > 0, ε > 0 and assume that k2 is not
equal to λ2

j . Then the limit

(2.5) lim
ε→0+

G(x, y, ξ, η, k + iε) = G(x, y, ξ, η, k),

exists for all (x, y) ∈ D, x 6= y. The proof is based on the following two lemmas.

Lemma 2.1. Let 0 < ε < 1, and a > 2. Then

(2.6)
∫

DL

|G(x, y, ξ, η, k + iε)|2

(1 + ξ2 + η2)a/2
dξdη ≤ c,

where c = const > 0 does not depend on ε, and (x, y) is running on compact sets.

Proof of Lemma 2.1. It is sufficient to prove that the solution to the problem

(2.7) (∆ + k2 + iε)wε = F, in DL, wε ∈ L2(DL), wε = 0 on SL

(2.8) wε(x+ L, y) = νwε(x, y), wεx(x+ L, y) = νwεx(x, y),

satisfies the estimate

(2.9) N2
ε : = sup

0<ε<1

∫
DL

|wε(x, y)|2

(1 + x2 + y2)a/2
dxdy : = N2(wε) ≤ c,
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where F ∈ C∞0 (DL) is arbitrary, and c = const > 0 is independent of ε > 0.
If (2.9) fails, then Nεn → ∞, εn → 0. Define ψε : = wε/Nε, where ε : = εn. Then

N(ψε) = 1, ψε solves (2.7) (with F replaced by Fε : = F/Nε), and satisfies (2.8). From
N(ψε) = 1 it follows that ψε ⇀ ψ as ε → 0, where ⇀ denotes the weak convergence in
L2(DL, 1/(1+x2 + y2)a/2) := L2

a. By elliptic estimates, ψε ⇀ ψ in H2
loc(DL), and therefore

ψε → ψ in L2
loc(DL). This and (2.7)-(2.8) imply ψε → ψ in H2

loc(DL). Thus ψ solves
the homogeneous (F = 0) problem (2.7)-(2.8). If we prove that ψ = 0, then we get a
contradiction, which shows that (2.9) holds. The contradiction comes from the relationship
0 = N(ψ) = limε→0N(ψε) = 1. One proves that

(2.10) lim
ε→0

N(ψε) = N(ψ)

as follows. If

(x, y) ∈ DR : = {(x, y) : f(x) ≤ y ≤ R, 0 ≤ x ≤ L},

where R > M is an arbitrary large fixed number, then limε→0N(ψεηR) = N(ψηR), where

ηR : =

{
1, f(x) < y < R,

0, y > R.

In the region D′
R = {(x, y) : y > R, 0 ≤ x ≤ L}, one has |ψε(x, y)| ≤ c, (x, y) ∈ D′

R. Thus

sup
0<ε<1

N(ψε(χL − ηR)) ≤ O

(
1
Rγ

)
, 0 < γ < a− 2.

The desired result (2.10) follows.
To complete the proof let us show that the problem (2.7)-(2.8), with F = 0, and ε = 0,

has only the trivial solution w, provided that w is ”outgoing” in the sense

wjy − iµjwj = o(1), as y →∞, wj : =
∫ L

0

wϕj dx.

One has

(2.11) lim
R→∞

∫
SR

(wwy − wyw) ds = 0,

where SR : = {(x, y) : y = R, 0 ≤ x ≤ L}, ds = dx is the element of the arclength of SR,
and the overbar stands for the complex conjugate.

Let us outline the steps of the further argument.
Step 1: we prove that (2.11) implies

(2.12) w ∈ L2(DL), |w|+ |∇w| ≤ ce−γ|y| , γ = const > 0,

if w is outgoing.
Step 2: we prove that if w ∈ L2(DL) solves (2.7)-(2.8), with F = ε = 0, then w = 0.

Then we conclude that (2.9) (and (2.6)) holds, and, therefore, (2.5) holds.
Let us prove (2.12). One has

0 =
∫

DLR

[w̄(∆ + k2)w − w(∆ + k2)w̄] dxdy

= −
∫

SL

(w̄wN − ww̄N ) ds+
∫

SR

(w̄wN − ww̄N ) ds

=
∫

SR

(w̄wN − ww̄N ) ds,

(2.13)
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where the Dirichlet condition (2.7) was used, and the integrals over the lines x = 0 and
x = L are cancelled due to the qp conditions (2.8):∫

x=0

(−w̄wx + ww̄x) dy +
∫

x=L

(w̄wx − ww̄x) dy

=
∫

x=0

(ww̄x − w̄wx) dy −
∫

x=0

νν̄(ww̄x − w̄wx) dy = 0.

Here we have used the relation νν̄ = 1. Thus (2.13) implies

(2.14) 0 =
∫

SR

(w̄wy − ww̄y) dx, ∀R > M.

If w is outgoing, then (2.14) implies wj(y) = 0 for j ∈ J , and |wj(y)| ≤ e−γ|y| , γ = const >
0, so (2.12) holds. �

Lemma 2.2. Assume that w ∈ L2(DL), w solves (2.7) with ε = 0 and F = 0, and w
satisfies (2.8). Then w = 0.

Proof of Lemma 2.2. If w solves equation (2.7) with ε = 0 and F = 0, then w =
∑

j wj(y)ϕj(x).
Since {ϕj(x)} is an orthonormal basis and w ∈ L2(DL), it follows that wj(y) = 0 for all
j ∈ J , and (2.12) holds. Let us use a version of Ramm’s identity ([19], p. 92), which is valid
for any solution w of equation (1.1) which is outgoing in the sense that

(2.15) w =
∑

j

cjvj(y)ϕj(x), cj = const, j 6∈ J.

Note, that vj(y) = vj(y) for j 6∈ J . The identity is:

(2.16) 0 = (x2w̄,2w,j),j +
(k2|w|2x2 − |∇w|2x2),2

2
+
|∇w|2 − k2|w|2

2
− |w,2|2,

where w,j : = ∂w/∂xj , j = 1, 2, x1 = x, x2 = y, over the repeated indices one sums up,
|w|2 : = ww̄. The right-hand side of (2.16) equals to

1
2
[x2(w̄,2jw,j − w,2jw̄,j) + k2x2(w,2w̄ − w̄,2w)] = 0,

because w,2w̄ = w̄,2w for outgoing w.
One has

(2.17) |w|+ |∇w| ≤ ce−γ|y| , γ = const > 0, c = const > 0.

Let R > max f(x). Integrate (2.16) over DLR : = {(x, y) : (x, y) ∈ DL, y ≤ R} and use
Green’s formula to get:

0 = − lim
R→∞

∫
SL∪SR

[x2w̄,2w,jNj +
(k2|w|2x2 − |∇w|2x2)N2

2
] ds

− lim
R→∞

∫
DLR

|w,2|2 dx1dx2,

(2.18)

where N is the normal pointing into DLR, and we have used the relation

(2.19) lim
R→∞

∫
DLR

|∇w|2 dx1dx2 = k2 lim
R→∞

∫
DLR

|w|2 dx1dx2,

which follows from the equation ∆w+ k2w = 0, boundary condition w = 0 on S, quasiperi-
odicity of w, and from (2.17). We have also used the relation w̄,2w,jNj = x2|∇w|2N2, which
follows from the condition u = 0 on S. From (2.18) one gets:

(2.20) lim
R→∞

∫
DLR

|w,2|2 dx1dx2 = −1
2

∫
SL

x2N2|∇w|2 ds.
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Since f(x) is a graph, one has N2x2 ≥ 0, and it follows from (2.20) that w,2 = 0, so
w = const, and const = 0 because w|S = 0. Lemma 2.2 is proved. �

Remark 2.3. Condition of the type

(2.21) N2x2 ≥ 0 on SL

was also used in [19].
The proof of Lemma 2.2 is not valid if the Neumann boundary condition is imposed on

S.

3. Integral equations method

In this Section we present another proof of the existence and uniqueness of the resol-
vent kernel G. We want to construct a scattering theory quite similar to the one for the
exterior of a bounded obstacle [17]. The first step is to construct an analog to the half-
space Dirichlet Green’s function. The function g = g(x, ξ, k) can be constructed analytically
(x = (x1, x2), ξ = (ξ1, ξ2)):

(3.1) g(x, ξ) =
∑

j

ϕj(x1)ϕj(ξ1)gj(x2, ξ2, k),

gj := gj(x2, ξ2, k) =

{
vj(x2)ψj(ξ2), x2 > ξ2

vj(ξ2)ψj(x2), x2 < ξ2

ψj = (µj)−1eiµjb sin[µj(ξ2 + b)], µj = [k2 − λ2
j ]

1/2, vj(x2) = eiµjx2 ,

where

ψ′′j + (k2 − λ2
j )ψj = 0, ψj(−b) = 0, W [vj , ψj ] = 1, λj = k cos(θ) +

2πj
L
,

and W [v, ψ] is the Wronskian.
The function g is analytic with respect to k on the complex plain with cuts along the

rays λj − iτ, 0 ≤ τ <∞, j = 0,±1,±2, ..., in particular, in the region =k > 0, up to the real
positive half-axis except for the set {λj}j=0,±1,±2,...

Choose b > 0 such that k2 > 0 is not an eigenvalue of the problem:

(3.2) (∆ + k2)ψ = 0, in D−b : = {(x, y) : −b ≤ y ≤ f(x), 0 ≤ x ≤ L}.

ψ|y=−b = 0, ψN = 0 on S,

ψ(x+ L, y) = νψ(x, y), ψx(x+ L, y) = νψx(x, y).
(3.3)

One has

(∆ + k2)g = −δ(x− ξ), x = (x1, x2), ξ = (ξ1, ξ2),

x ∈ {(x, y) : −b < y <∞, 0 ≤ x ≤ L},
(3.4)

(3.5) g|y=−b = 0,

and

(3.6) (∆ + k2)G = −δ(x− ξ), G = 0 on S,

G satisfies the qp condition and the radiation condition ( it is outgoing at infinity).
Multiply (3.4) by G, (3.6) by g, subtract from the second equation the first one, integrate

over DLR, and take R→∞, to get

(3.7) G = g +
∫

SL

(GgN −GNg)ds = g −
∫

SL

gµ ds, µ : = GN |SL
.
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The qp condition allows one to cancel the integrals over the lateral boundary (x = 0 and
x = L), and the radiation condition allows one to have

lim
R→∞

∫
SR

(GgN −GNg)ds = 0.

Differentiate (3.7) to get

(3.8) µ = −Aµ+ 2
∂g

∂N
on SL, Aµ : = 2

∫
SL

∂g(s, σ)
∂Ns

µ(σ) dσ.

This is a Fredholm equation for µ in L2(SL), if SL is C1,m, m > 0. The homogeneous
equation (3.8) has only the trivial solution: if µ+Aµ = 0, then the function ψ : =

∫
SL
gµ ds

satisfies ψ+
N |SL

= 0, where +
N (ψ−N ) is the normal derivative of ψ from D−b(DL), and we use

the known formula for the normal derivative of the single layer potential at the boundary.
The ψ satisfies also (3.2) and (3.3), and, by the choice of b, one has ψ = 0 in D−b. Also
ψ = 0 in DL, because (∆ + k2)ψ = 0 in DL, ψ|SL

= 0 (by the continuity of the single layer
potential), ψ satisfies the qp condition (because g satisfies it), and ψ is outgoing (because g
is).

Since ψ = 0 in D−b and in DL, one concludes that µ = ψ+
N − ψ−N , where ψ+

N (ψ−N ) is
the normal derivative of ψ from D−b(DL), and we use the jump relation for the normal
derivative of the single layer potential.

Thus, we have proved the existence and uniqueness of µ, and, therefore, of G, and got a
representation formula

(3.9) G = g −
∫

SL

gµ ds.

This representation shows that the rate of decay of G as y → ∞ is essentially the same as
that of g.

The G is analytic with respect to k on the complex plain with cuts along the rays λj −
iτ, 0 ≤ τ <∞, j = 0,±1,±2, ..., in particular, in the region =k > 0, up to the real positive
half-axis except for the set {λj}j=0,±1,±2,... This follows from (3.8), (3.9), and the general
result [17], p. 57, [20], concerning analyticity of the solution to a Fredholm equation with
respect to a parameter.

Suppose a bounded obstacle D0 is placed inside DL, u = 0 on S0 = ∂D0, S0 is a
Lipschitz boundary. If qp condition is imposed, then Green’s function G0 in the presence of
the obstacle satisfies equations similar to (3.9) and (3.8):

(3.10) G0(x, y) = G(x, y)−
∫

S0

G(x, s)µ0(s, y) ds, µ0 = G0N ,

where N is the unit normal to S0 pointing into DL, and

(3.11) µ0 = −A0µ0 + 2
∂G

∂N
on S0, A0µ0 : = 2

∫
S0

∂G(s, σ)
∂Ns

µ0(σ) dσ.

This is a Fredholm equation (with index zero). If k2 is not an eigenvalue of the Neumann
Laplacian in D0 (=not exceptional), then equation (3.11) is uniqueley solvable and, by
(3.10), G0 exists and is unique for this k > 0. It is not known what are nontrivial sufficient
conditions for k > 0 to be not exceptional. The exceptional k form a discrete countable
set on the positive semi-axis k > 0. If the Neumann boundary condition is imposed on SL,
then, even in the absence of the obstacle D0, it is not known if LAP holds, because the proof
of Lemma 2.2 is not valid for the Neumann boundary condition on SL.
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4. Modified Rayleigh Conjecture (MRC)

Rayleigh conjectured [25] (”Rayleigh hypothesis”) that the series (1.7) converges up to the
boundary SL. This conjecture is wrong ([15]) for some f(x). Since the Rayleigh hypothesis
has been widely used for numerical solution of the scattering problem by physicists and
engineers, and because these practitioners reported high instability of the numerical solution,
and there are no error estimates, we propose a modification of the Rayleigh conjecture,
which is a Theorem. This MRC (Modified Rayleigh Conjecture) can be used for a numerical
solution of the scattering problem, and it gives an error estimate for this solution. Our
arguments are very similar to the ones in [18].

Rewrite the scattering problem (1.1)-(1.4) as

(4.1) (∆ + k2)v = 0 in D, v = −u0 on SL,

where v satisfies (1.4), and v has representation (1.7), that is, v is ”outgoing”, it satisfies
the radiation condition. Fix an arbitrarily small ε > 0, and assume that

(4.2) ‖u0 +
∑

|j|≤j(ε)

cj(ε)vj(y)ϕj(x)‖ ≤ ε, 0 ≤ x ≤ L, y = f(x),

where ‖ · ‖ = ‖ · ‖L2(SL).

Lemma 4.1. For any ε > 0, however small, and for any u0 ∈ L2(SL), there exists j(ε) and
cj(ε) such that (4.2) holds.

Proof. Lemma 4.1 follows from the completeness of the system {ϕj(x)vj(f(x))}j=0,±1,±2,....

in L2(SL). Let us prove this completeness. Assume that there is an h ∈ L2(SL), h 6≡ 0 such
that

(4.3)
∫

SL

hϕj(x)vj(f(x)) ds = 0

for any j. From (4.3) one derives (cf. [17], p.162-163)

(4.4) ψ(x) :=
∫

SL

hg(x, ξ)dξ = 0, x ∈ D−b.

Thus ψ = 0 in DL, and h = ψ+
N − ψ−N = 0. Lemma 4.1 is proved. �

Lemma 4.2. If (4.2) holds, then

‖|v(x)−
∑

|j|≤j(ε)

cj(ε)vj(y)ϕj(x)‖| ≤ cε, ∀x, y ∈ DL, 0 ≤ x ≤ L, y ≥ f(x),

where c = const > 0 does not depend on ε, x, y, and R; R > M is an arbitrary fixed number,
and ‖|w‖| = supx∈D\DLR

|w(x)|+ ||w||H1/2(DLR).

Proof. Let w : = v −
∑
|j|≤j(ε) cj(ε)vj(y)ϕj(x). Then w solves equation (1.1), w satisfies

(1.4), w is outgoing, and ‖w‖L2(SL) ≤ ε. One has (cf. (2.4))

(4.5) w(x) = −
∫

SL

wGN (x, ξ) ds.

Thus (4.2), i.e. ‖w‖ : = ‖w‖L2(SL) ≤ ε, implies

(4.6) |w(x)|y=R ≤ ‖w‖L2(SL)‖GN (x, ξ)‖L2(SL) ≤ cε, c = const > 0,

where c is independent of ε, and R > max f(x) is arbitrary. Now let us use the elliptic
inequality

(4.7) ‖w‖Hm(DLR) ≤ c
(
‖w‖Hm−0.5(SL) + ‖w‖Hm−0.5(SR)

)
,

where we have used the equation ∆w + k2w = 0, and assumed that k2 is not a Dirichlet
eigenvalue of the Laplacian in DLR, which can be done without loss of generality, because
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one can vary R. The integer m ≥ 0 is arbitrary if SL is sufficiently smooth, and m ≤ 1 if
SL is Lipschitz. Taking m = 0.5 and using (4.2) and (4.6) one gets

(4.8) ‖w‖H1/2(DLR) ≤ cε.

Thus, in a neighborhood of SL, we have proved estimate (4.8), and in a complement of this
neighborhood in DL we have proved estimate (4.6). Lemma 4.2 is proved. �

Remark 4.3. In (4.7) there are no terms with boundary norms over the lateral boundary
(lines x = 0 and x = L) because of the quasiperiodicity condition.

From Lemma 4.2 the basic result, Theorem 4.4, follows immediately:

Theorem 4.4. MRC-Modified Rayleigh Conjecture. Fix ε > 0, however small, and
choose a positive integer p. Find

(4.9) min
cj

‖u0 +
∑
|j|≤p

cjϕj(x)vj(y)‖ : = m(p).

Let {cj(p)} be the minimizer of (4.9). If m(p) ≤ ε, then

(4.10) v(p) =
∑
|j|≤p

cj(p)ϕj(x)vj(y)

satisfies the inequality

(4.11) ‖|v − v(p)‖| ≤ cε,

where c = const > 0 does not depend on ε. If m(p) > ε, then there exists j = j(ε) > p such
that m(j(ε)) < ε. Denote cj(j(ε)) := cj(ε) and v(j(ε)) : = vε. Then

(4.12) ‖|v − vε‖| ≤ cε.

5. Numerical solution of the scattering problem

According to the MRC method (Theorem 4.4), if the restriction of the incident field
−u0(x, y) to SL is approximated as in (4.9), then the series (4.10) approximates the scattered
field in the entire region above the profile y = f(x). However, a numerical method that uses
(4.9) does not produce satisfactory results as reported in [15] and elsewhere. Our own
numerical experiments confirm this observation. A way to overcome this difficulty is to
realize that the numerical approximation of the field −u0|SL

can be carried out by using
outgoing solutions described below.

Let ξ = (ξ1, ξ2) ∈ D−b, where b > 0,

D−b : = {(ξ1, ξ2) : −b ≤ ξ2 ≤ f(x), 0 ≤ ξ1 ≤ L},
and g(x, ξ) be defined as in Section 3. Then g(x, ξ) is an outgoing solution satisfying
∆g + k2g = 0 in DL, according to (3.4).

To implement the MRC method numerically one proceeds as follows:
(1) Choose the nodes xi, i = 1, 2, ..., N on the profile SL. These points are used to

approximate L2 norms on SL.
(2) Choose points ξ(1), ξ(2), ..., ξ(M) in D−b, M < N .
(3) Form the vectors b = (u0(xi)), and a(m) = (g(xi, ξ

(m))), i = 1, 2, ..., N, m =
1, 2, ...,M . Let A be the N ×M matrix containing vectors a(m) as its columns.

(4) Find the Singular Value Decomposition of A . Use a predetermined wmin > 0 to
eliminate its small singular values. Use the decomposition to compute

rmin = min{‖b + Ac‖, c ∈ CM},
where

‖a‖2 =
1
N

N∑
i=1

|ai|2.
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(5) Stopping criterion. Let ε > 0.
(a) If rmin ≤ ε, then stop. Use the coefficients c = {c1, c2, ..., cM} obtained in the

above minimization step to compute the scattered field by

v(x, y) =
M∑

m=1

cmg(x, y, ξ(m)).

(b) If rmin > ε, then increase N,M by the order of 2, readjust the location of
points ξ(m) ∈ D−b as needed, and repeat the procedure.

We have conducted numerical experiments for four different profiles. In each case we
used L = π, k = 1.0 and three values for the angle θ. Table 1 shows the resulting residuals
rmin. Note that ‖b‖ = 1. Thus, in all the considered cases, the MRC method achieved
0.04% to 2% accuracy of the approximation. Other parameters used in the experiments
were chosen as follows: N = 256, M = 64, wmin = 10−8, b = 1.2. The value of b > 0,
used in the definition of g, was chosen experimentally, but the dependency of rmin on b
was slight. The Singular Value Decomposition (SVD) is used in Step 4 since the vectors
a(m), m = 1, 2, ...,M may be nearly linearly dependent, which leads to an instability in
the determination of the minimizer c. According to the SVD method this instability is
eliminated by cutting off small singular values of the matrix A, see e.g. [16] for details. The
cut-off value wmin > 0 was chosen experimentally. We used the truncated series (3.1) with
|j| ≤ 120 to compute functions g(x, y, ξ). A typical run time on a 333 MHz PC was about
40s for each experiment.

The following is a description of the profiles y = f(x), the nodes xi ∈ SL, and the poles
ξ(m) ∈ D−b used in the computation of g(xi, ξ

(m)) in Step 3. For example, in profile I the
x-coordinates of the N nodes xi ∈ SL are uniformly distributed on the interval 0 ≤ x ≤ L.
The poles ξ(m) ∈ D−b were chosen as follows: every fourth node xi was moved by a fixed
amount −0.1 parallel to the y axis, so it would be within the region D−b. The location of
the poles was chosen experimentally to give the smallest value of the residual rmin.

Profile I. f(x) = sin(2x) for 0 ≤ x ≤ L, ti = iL/N, xi = (ti, f(ti)), i = 1, 2, ..., N, ξ(m) =
(x4m, y4m − 0.1), m = 1, 2, ...,M .

Profile II. f(x) = sin(0.2x) for 0 ≤ x ≤ L, ti = iL/N, xi = (ti, f(ti)), i = 1, 2, ..., N, ξ(m) =
(x4m, y4m − 0.1), m = 1, 2, ...,M .

Profile III. f(x) = x for 0 ≤ x ≤ L/2, f(x) = L− x for L/2 ≤ x ≤ L, ti = iL/N, xi =
(ti, f(ti)), i = 1, 2, ..., N, ξ(m) = (x4m, y4m − 0.1), m = 1, 2, ...,M .

Profile IV. f(x) = x for 0 ≤ x ≤ L, ti = 2iL/N, xi = (ti, f(ti), i = 1, ..., N/2, xi =
(L, f(2(i−N/2)L/N)), i = N/2 +1, ..., N, ξ(m) = (x4m− 0.03, y4m− 0.05), m = 1, 2, ...,M .
In this profile N/2 nodes xi are uniformly distributed on its slant part, and N/2 nodes are
uniformly distributed on its vertical portion x = L.

The experiments show that the MRC method provides a competitive alternative to other
methods for the computation of fields scattered from periodic structures. It is fast and
inexpensive. The results depend on the number of the internal points ξ(m) and on their
location. A similar MRC method for the computation of fields scattered by a bounded
obstacle was presented in [8].
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