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Abstract. We propose a general procedure for reducing the three-dimensional
Schrödinger equation for atoms moving along a strongly confining atomic
waveguide to an effective one-dimensional equation. This procedure is applied to
the case of a rotating closed-loop waveguide. The possibility of including mean-
field atomic interactions is presented. Finally, application of the general theory
to characterize a new concept of atomic waveguide based on optical tweezers is
discussed.
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1. Introduction

A very promising and challenging experiment to be performed in the near future using coherent
matter waves is the observation of a rotation-induced supercurrent around a closed loop. This
will not only attract a broad interest from the point of view of fundamental physics as a
direct manifestation of superfluidity [1], but may also open the way to new kinds of high-
precision rotation sensors based on matter-wave [2], rather than light-wave [3] interferometry.
The irrotationality constraint of superfluids is in fact softened in the multiply connected geometry
of a closed loop waveguide, which then appears as an ideal playground for the study of quantized
vorticity and the effect of rotation and/or twisted boundary conditions on exotic quantum
states [4].

As has been originally pointed out by Bloch [5], and then developed in more detail by Saito
and Ueda [6], an appropriately tailored rotating potential can be used to transfer vorticity into
a Bose–Einstein condensate (BEC) trapped in a closed loop geometry. The two-dimensional
(2D) numerical simulations reported in [6], which fully include the effect of interactions, have
demonstrated a close qualitative analogy between the physics of rotating condensates and the
physics of condensates in 1D optical lattices, an analogy that can be made quantitative by correctly
taking into account the modifications to the trapping potential due to rotation. Metastability
appears for a rotating flux as a consequence of flux quantization: points of vanishing density
have in fact to be introduced in the wavefunction if quantized vortices are to penetrate or exit
the cloud [1]. When the velocity of the superfluid flow exceeds the velocity of sound, the system
becomes energetically unstable according to the Landau criterion of superfluidity. In this regime,
the interaction of the flowing fluid with a stationary defect is able to create excitations in the
fluid, which can eventually lead to dissipation of the supercurrent by means of phase slippage
processes [7, 8].

In order to simplify the theoretical study of the generation and dynamics of supercurrents
in realistic loop configurations (e.g. a toroidal trap), it is very convenient to be able to isolate the
longitudinal dynamics along the, possibly rotating, waveguide so to reduce the full 3D problem
to 1D. This is one of the central points of the present paper.
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Once the 3D problem is reduced to a 1D one, the formal connection between annular rotating
BECs and BECs in optical lattices becomes apparent, and one can start taking full advantage of
the large amount of literature that has appeared on the latter subject. A remarkable example of
this connection are the so-called swallow tails (unstable parts of the band structure at the edge and
in the centre of the Brillouin zone) shown by the band structure of a BEC flowing in an optical
lattice [9, 10]: as it has been pointed out in [6], they play an important role in the nucleation
of vortices and supercurrents in rotating BECs. Further very interesting issues that have been
studied in the context of BECs in optical lattices are dynamical instabilities [11]–[14] and gap
solitons [15], which are expected to have interesting counterparts in the physics of rotating BECs.

First observations8 of BECs trapped in toroidal traps have been recently reported in [17, 18].
These experimental setups were based on magnetic potential, which introduces some limitations
on the geometries that can be obtained and, more specifically, on the flexibility of the setup with
respect to time and space modulations of the confining potential.

The other central point of our paper is in fact to discuss a novel realization of 1D atomic
waveguide, that makes use of the attractive optical potential of a red-detuned laser beam as an
optical tweezer [19]. If the laser beam is rapidly moved in space, the atoms only see a time-
averaged potential. It has recently been shown [20] that different shapes of the potential, ranging
from two-wells to toroidal ones, can be obtained by suitably choosing the size and the law of
motion of the laser spot. Here, we shall show that a 1D waveguide with a strong transverse
confinement can be obtained by rapidly moving the focus point of the laser along the waveguide
axis. By playing with the trajectory and the speed of motion of the focus point, not only any shape
can be obtained for the 1D waveguide, but an arbitrary longitudinal potential can also be applied
on to the atoms in addition to the transverse confinement. With respect to recent proposals [21],
the use of an optical tweezer has the significant advantage of a wider flexibility in the geometrical
design of the trap, as well as the possibility of dynamically changing it in time, so to obtain, e.g.,
rotating waveguide traps.

The paper is organized as follows. In section 2, we put the problem on a precise mathematical
basis and then in section 3, we introduce our decoupling scheme to reduce the 3D Schrödinger
equation to an effective 1D one. Subsections 3.1 and 3.2 discuss the effect of a longitudinal
dependence of the transverse trapping frequency, and the effect of the interatomic interactions.
The main theoretical results of this paper are given in section 4, where the decoupling scheme is
generalized to the case of a rotating waveguide. In section 5, the theoretical approach is applied
to our proposal of 1D waveguide based on a rapidly moving optical tweezer. Conclusions are
finally drawn in section 6.

2. Quantitative description of the atomic waveguide

Consider an atomic waveguide whose axis follows a regular curve C parametrically defined
by the vector rC(s), s being the arclength coordinate along C. At each point of the curve,
we can define the Frenet frame (t, n, b) as

t = drC

ds
, (1)

8 Trapping of neutral atoms and molecules in toroidal storage rings were also recently reported in [16].
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κ n = dt
ds

, (2)

τ b = dn
ds

+ κt, (3)

db
ds

= −τn, (4)

where κ and τ are respectively known as the curvature and the torsion of C [22]. In the vicinity
of C, a local system (s, u, v) of coordinates can be introduced, such that

r(s, u, v) = rC(s) + uN(s) + vB(s). (5)

The transverse frame (t, N, B) is related to the Frenet frame (t, n, b) by a simple rotation around t(
N
B

)
=

(
cos θ sin θ

− sin θ cos θ

) (
n
b

)

of an angle θ such that

dθ

ds
= −τ . (6)

With this choice of coordinates, the gradient has the following simple form

∇ = th−1∂s + N∂u + B∂v, (7)

where the scale factor

h(s, u, v) = 1 − κ (u cos θ − v sin θ) (8)

depends on the torsion τ only via the angle θ.
The transverse confinement in the (N, B) plane orthogonal to the waveguide axis is assumed

to be harmonic and of the form

V⊥(u, v) = M

2

(
ω2

uu
2 + ω2

vv
2
)
, (9)

where M is the atomic mass and ωu,v are the transverse trapping frequencies in respectively the N
and B directions (which can depend on the longitudinal coordinate s). For the sake of simplicity,
the discussion that follows will be restricted to two most significant cases. In section 3, the curve
is allowed to have a non-vanishing torsion τ, but the transverse trapping is taken as isotropic
ωu = ωv = ω⊥. This condition is enough to rule out additional torsion effects due to the way
in which the transverse potential winds round the curve [8]. In the sections 4 and 5, a different
situation is considered, where the curve is taken to belong to the plane orthogonal to the rotation
axis, while the trapping potential can have different frequencies ωu �= ωv in the two orthogonal
directions respectively in and perpendicular to the plane.
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The key assumption of our treatment is the strong confinement hypothesis, where
the extension

σ =
√

h̄

Mω⊥
(10)

of the transverse ground state is much smaller than all typical length scales of the curve C, namely

κσ � 1 |κ′|σ � |κ| |κ′′|σ � κ2. (11)

Here, and throughout the paper, primed quantities denote derivation with respect to the
longitudinal coordinate s. The reason why conditions (11) involve up to the second derivatives
of the curvature will become clear in the following. These conditions also guarantee that the
coordinate system (5) can be safely used to describe the transverse extension of the wavefunction.

If the waveguide is at rest in a reference frame rotating at an angular speed �, the stationary
Schrödinger equation in the rotating waveguide then has the form [23, 24]

µ�(s, u, v) =
[
− h̄2

2M
∇2 − � · (r × p) + V⊥(u, v) + Vext(s)

]
�(s, u, v), (12)

where the momentum operator is defined as usual as p = −ih̄∇. In the (s, u, v) coordinates, the
gradient has the form (7). The term Vext(s) describes any weak potential acting on the atoms
along the direction of the waveguide in addition to the waveguide trapping.

Note that the normalization of the wavefunction � has to take into account the new metric
associated to the (s, u, v) coordinates∫∫∫

ds du dv h(s, u, v)|�(s, u, v)|2 = 1. (13)

As h(s, u, v), defined in (8), is not factorizable as a product of functions of respectively the
longitudinal s and transverse (u, v) coordinates, this condition is not convenient for decoupling
the transverse and the longitudinal dynamics. It is then useful to introduce a rescaled wavefunction
� = √

h� whose normalization is the usual one∫∫∫
ds du dv|�(s, u, v)|2 = 1. (14)

The Hamiltonian operator acting on the wavefunction �(s, u, v) then has the form

Ĥ = − h̄2

2M

[
∂s(h

−2(s, u, v)∂s) + ∂2
uu + ∂2

vv +
κ2(s)

4h2(s, u, v)
+

5[h′(s, u, v)]2

4h4(s, u, v)
− h′′(s, u, v)

2h3(s, u, v)

]

−
√

h(s, u, v)� · (r × p)
1√

h(s, u, v)
+ V⊥(u, v) + Vext(s), (15)

which is the generalization to the rotating case of the expression given in the appendix of [8].
In the next sections, we shall proceed with the decoupling of the transverse and the

longitudinal dynamics under the strong confinement hypothesis.
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3. Decoupling procedure in the non-rotating case

In this section, we shall start by considering the simplest case of a non-rotating waveguide (� = 0)
with a spatially constant trapping frequency (ω′

⊥ = 0). It is useful to rewrite the wavefunction
� as the product �(s, u, v) = fs(u, v) g(s) of a longitudinal wavefunction g(s) and a transverse
wavefunction fs(u, v) in general dependent on the longitudinal coordinate s. The normalization
conditions can then be written as



∫∫
du dv|fs(u, v)|2 = 1,

∫
ds|g(s)|2 = 1.

(16)

We now proceed in the spirit of the Born–Oppenheimer approximation [25] where the fast
electronic degrees of freedom are eliminated and summarized as an effective potential acting
on the nuclei.

For any longitudinal wavefunction g(s), we define a transverse Hamiltonian ĥ at the position
s such that

ĥfs ≡ Ĥ(fsg). (17)

The key assumption of our approach is to assume the transverse motion to be frozen in the ground
state f 0

s of ĥ. Our aim is to reduce the 3D problem to a 1D one, by integrating over the transverse
degrees of freedom

µg(s) =
∫∫

du dv f 0∗
s (u, v)Ĥf 0

s (u, v)g(s) ≡ Ĥgg(s), (18)

hence eliminating adiabatically the transverse motion. An explicit form of Ĥg can be obtained
by means of a perturbative expansion by separating in ĥ the different contributions due to the
transverse and longitudinal degrees of freedom, namely

ĥ = H0 + W, (19)

with

H0 = g(s)

[
− h̄2

2M
(∂2

uu + ∂2
vv) + V⊥(u, v)

]
, (20)

and

W = − h̄2

2M

[
h−2(s, u, v)[g(s)∂2

ss + 2g′(s)∂s + g′′(s)] − 2h′(s, u, v)

h3(s, u, v)
[g(s)∂s + g′(s)]

+
g(s)κ2(s)

4h2(s, u, v)
+

5g(s)[h′(s, u, v)]2

4h4(s, u, v)
− g(s)h′′(s, u, v)

2h3(s, u, v)

]
+ g(s)Vext(s). (21)
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We treat perturbatively the Hamiltonian W with respect to H0, which apart from the multiplying
factor g, corresponds to an harmonic oscillator with energy h̄ω⊥.All terms of W are much smaller
than |g|h̄ω⊥ provided

|g′′| � |g|/σ2 and |g′| � |g|/σ, (22)

conditions which will be self-consistently verified at the end of the procedure, thanks to
conditions (11).

Perturbation theory at first order (in the small parameter κ2σ2) allows us to replace
f 0

s in equation (18) with the ground state wavefunction f0 of the harmonic oscillator of frequency
ω⊥, given by

f0(u, v) = 1√
πσ

e−(u2+v2)/(2σ2), (23)

leading to the following effective 1D Schrödinger equation for the longitudinal wavefunction
g(s) [8]

µg = − h̄2

2M

d2g

ds2
+

[
h̄ω⊥ + Vext(s) − h̄2κ2(s)

8M

]
g. (24)

We easily recognize the usual kinetic energy term, the zero-point energy of the 2D transverse
trapping potential, and the weak external potential Vext. The last term of equation (24) gives an
effective potential proportional to the square of the curvature as discussed in [8]. The smoothness
of the waveguide, as quantified by conditions (11), guarantees that conditions (22) are satisfied
and hence the self-consistency of the approach.

This result can be illustrated on the specific example of an elliptical waveguide, whose axes
are respectively equal to R cosh η0 and R sinh η0. The parameter η0 characterizes its eccentricity
(the larger η0, the closer to a circle) and R gives the overall scale. The strong confinement
hypothesis is then σ � R sinh η0. The 1D equation is

µg(s) =
(

− h̄2

2M

d2

ds2
+ h̄ω⊥ − h̄2κ2(s)

8M

)
g(s). (25)

The curvature κ has the simple expression

κ = cosh η0 sinh η0

R(sinh2 η0 + sin2 w)3/2
, (26)

where w is the parametric angle along the ellipse, related to the arclength coordinate s by the
differential relation

ds = R

√
sinh2 η0 + sin2 w dw. (27)

The curvature κ has its maxima on the great axis of the ellipse. The curvature-induced effective
potential is thus minimum at these points. Its effect is illustrated in figure 1, where the results
of a numerical integration of the 2D Schrödinger equation in Cartesian coordinates are shown
(the third dimension was neglected for the sake of simplicity). Due to the curvature-induced
potential, the atomic density is maximum on the great axis of the ellipse.

A more quantitative comparison between the full 2D Schrödinger equation in cartesian
coordinates and the effective 1D Schrödinger equation (24) is shown in figure 2 for the case of
an elliptical waveguide with strong confinement. The agreement is remarkable.
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Figure 1. Result of the numerical integration of the 2D Schrödinger equation
in the case of an elliptical waveguide with strong transverse confinement.
Parameters: semiaxis b/σ 	 34.5; a/σ 	 15.6.
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Figure 2. Result of the numerical integration of the Schrödinger equation in the
case of an elliptical waveguide with strong transverse confinement. The graph
shows the ratio between the density at the extrema of the two orthogonal axes
of the ellipse, as a function of the ratio between the length of these axes b/a.
The points come from the simulation of the 2D Schrödinger equation in cartesian
coordinates, while the full line comes from the 1D simulation of equation (24).

3.1. Effect of a longitudinal variation of ω⊥

The case of a transverse trapping frequency ω⊥(s) with a non-trivial dependence on the
longitudinal coordinate s is addressed in the present section. This induces a longitudinal variation
of the transverse wavefunction f0s and introduces new terms in Ĥg due to the non-vanishing
longitudinal derivatives of f0s. Applying the same procedure as in the previous section, and
limiting ourselves to the first order in κ2σ2, we get the following 1D effective equation for g(s)

µ g = − h̄2

2M

d2g

ds2
+

[
h̄ω⊥ + Vext − h̄2κ2

8M
+

h̄2

16M

ω′2
⊥

ω2
⊥

]
g. (28)
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Figure 3. (a) Result of the numerical integration of the 2D Schrödinger equation
in the case of a straight waveguide with a strong confinement of spatially
dependent transverse frequency ω⊥(x) = ω⊥

√
1 + 4(δω⊥/ω⊥) cos(πx/λ). The

colour code is the same as in figure 1. Parameters: δω⊥/ω⊥ = 0.1, λ/σ 	
22.4. An external potential such that Vext + V⊥ = Mω2

⊥(x)y2/2 − h̄ω⊥(x)/2
has been introduced in order to compensate the spatial modulation of the zero-
point trapping energy. (b) Comparison between the 2D density integrated along
direction y (red dots) and the solution if the effective 1D Schrödinger equation
(full line).

The dependence of ω⊥ on s not only gives an s-dependent potential energy equal to zero-point
energy h̄ω⊥(s), but also adds a further contribution proportional to ω′2

⊥/ω2
⊥. Consistency with

our decoupling procedure requires that |ω′
⊥| � κ ω⊥ and |ω′′

⊥| � κ2ω⊥. This implies in particular
that the term proportional to ω′2

⊥/ω2
⊥ is much smaller than the zero-point energy term.

In order to check the effect of the new potential term proportional to ω′2
⊥/ω2

⊥, we have
numerically solved the 2D Schrödinger equation in cartesian coordinates for the case of a straight
waveguide with a modulated ω⊥(s). In order to put the effect of the ω′2

⊥/ω2
⊥ in better evidence, the

external potential Vext has been chosen in such a way to compensate the modulation of the zero-
point energy of the transverse harmonic trapping h̄ω⊥(s)/2 + Vext(s) = 0. As shown in figure 3,
the density modulation has indeed the same periodicity as ω′2

⊥/ω2
⊥ and is in quantitatively good

agreement with the numerical solution of the 1D equation (28).

3.2. Effect of interatomic interactions

In a 3D geometry, mean-field interactions are included in the Gross–Pitaevskii equation [26] as
nonlinear terms of the form

Vint = g3DN0

∣∣∣∣fs(u, v)g(s)√
h(s, u, v)

∣∣∣∣
2

, (29)
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being g3D = 4πh̄2a3D/M, a3D the 3D scattering length and N0 the total number of atoms.9 The
Gross–Pitaevskii equation in presence of a periodic potential has been extensively studied in
the context of BECs in optical lattices. The issue of the factorization of the wavefunction in its
transverse and longitudinal part in the presence of interactions is in general a non-trivial one.

In the language of the present paper, the presence of interactions requires that the transverse
wavefunction f0(u, v) is now the ground state solution of the Gross–Pitaevskii equation

[
− h̄2

2m
(∂2

uu + ∂2
vv) + N0g3D|g(s)|2|f0s(u, v)|2 + V⊥(u, v)

]
f0s(u, v) = µ⊥f0s(u, v) (30)

which results from the inclusion of the mean-field interaction term into the transverse Hamiltonian
(20). Here, µ⊥ has the meaning of a transverse chemical potential. In the general case,
equation (30) has to be solved self-consistently with the equation determining the longitudinal
wavefunction g(s), which can be a computationally intensive task unless clever schemes are
adopted, as e.g. in [27].

A very simple formulation can be obtained in the limiting case of very strong radial
confinement, when interactions have a negligible effect on the shape of the transverse ground
state wavefunction f0(u, v). In this limit, interactions only provide a mean-field energy term
proportional to the local density to be included in the longitudinal equation. This then has the
usual form of a 1D Gross–Pitaevskii equation including the curvature term discussed in the
previous section

(µ − h̄ω⊥)g(s) = − h̄2

2M

d2g(s)

ds2
+ Vext(s)g(s) − h̄2κ2(s)

8M
g(s) + g1DN0|g(s)|2g(s), (31)

where the effective 1D coupling constant is defined as

g1D = 4a3Dh̄2

Mσ2
. (32)

4. Case of a rotating waveguide

We now turn to the more general case of a rotating waveguide. For simplicity, we shall from now
on assume that the curve C is included in the plane (x, y), that the rotation vector � is orthogonal
to this plane, and that the origin of rC coincides with the centre of rotation. We shall furthermore
consider in what follows the case of a constant ω⊥ independent of the position on the curve.

Repeating the same steps as in section 3, the transverse Hamiltonian can be decomposed as

ĥ = H̃0 + W̃, (33)

with

H̃0 = h̄2g

2M

(
i∂u − Mrt

h̄

)2

− h̄2g

2M
∂2

vv + gV⊥, (34)

9 The coupling constant g3D should not be confused with the longitudinal wavefunction g(s).
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and

W̃ = W + ih̄

[
grtκ

2h
+

u

h
g′ − guh′

2h2
+ rng

′ − grnh
′

2h2
+

gu

h
∂s +

grt

h
∂s

]
− 1

2M2r2
t g. (35)

In the last expression, the following shorthand notations have been used: rt = rC · t and
rn = rC · n. The ground state of H̃0 is now given by

f̃ 0s(u, v) = f0(u, v)e−iMrtu/h̄. (36)

Assuming a moderate rotation speed || � ω⊥ and M2r2
C � h̄ω⊥, an explicit calculation

of the longitudinal derivatives of f̃ 0s shows that the following inequalities are satisfied∣∣∣∣∣∂f̃ 0s

∂s

∣∣∣∣∣ �
∣∣∣∣∣ f̃ 0s

σ

∣∣∣∣∣ and

∣∣∣∣∣∂
2f̃ 0s

∂s2

∣∣∣∣∣ �
∣∣∣∣∣ f̃ 0s

σ2

∣∣∣∣∣ , (37)

which guarantee that W̃ can be treated as a small perturbation with respect to H̃0. To the first
order in κ2σ2, one then has

Ĥgg(s) =
∫ ∫

du dv f̃ ∗
0s(H̃0 + W̃)f̃ 0s

= − h̄2

2M
g′′ +

[
h̄ω⊥ + Vext − h̄2κ2

8M
− M2

2
r2
t

]
g + ih̄

[rtκ

2
g + rng

′
]

(38)

and the 1D equation for the rotating waveguide can finally be written as

µ g = 1

2M

[
ih̄

d

ds
+ Mt · (rC × �)

]2

g +

[
h̄ω⊥ + Vext − h̄2κ2

8M
− 1

2M2r2
C

]
g, (39)

where we have used the identity drn/ds = κrt. As compared to the non-rotating case of (24),
additional terms appear here due to the rotation. The first one is the 1D form of the gauge term
appearing in the kinetic energy term in the rotating frame and mostly affects the phase of the
wavefunction. The second rotation-induced term is the classical centrifugal energy term. This
term, along with the curvature-induced term, the external potential term, and the zero-point
energy term, can be used to transfer angular momentum from the trap to the atoms and then
establish a finite phase circulation in the condensate.

4.1. Analogy with optical lattices

Consider for simplicity a circular waveguide of radius R in the presence of a rotating periodic
potential of period 2π/� (� is integer) in the angular coordinate θ

V(θ, t) = V0 cos [�(θ − t)]. (40)
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Once mean-field interactions are included in the same way as done in (31), equation (39) can be
cast in the simple form[

− ∂2

∂θ2
+ i

∂

∂θ
+ V0 cos(�θ) + g̃|ϕ|2

]
ϕ(θ) = µ̃ϕ(θ) (41)

which shows a strong formal analogy with the problem of a BEC in a 1D optical lattice with
periodic boundary conditions [6]. Here, ϕ(θ) is the longitudinal wavefunction, g̃ is the coupling
constant due to interatomic interactions, µ̃ is the chemical potential shifted by constant potential
terms and all energies have been expressed in units of h̄2/(2MR2). The quantity /2 plays the
role of the quasi-momentum for a Bloch wave in the periodic potential of the lattice, with a subtle
difference arising from the different periodic boundary conditions: in the periodic potential of
the lattice, the allowed values of quasi-momentum are integer multiples of h̄2π/Nd, d being the
lattice spacing and N being the number of lattice wells present in the system. On the other hand,
all values of  are allowed in the present case of a rotating waveguide, the single-valuedness of
the wavefunction ϕ(θ) being ensured by the Bloch theorem on the whole length of the ring, i.e.
ϕ(θ + 2π/�) = exp [i2nπ/�]ϕ(θ) with n integer. The complete band structure is generated by the
set of values n = 0, 1, 2, . . . � − 1, giving rise to � independent sub-bands periodic in  with
period 2�.

The circulation of the different states is a function of n and  (for instance the lowest energy
states at 2n − 1 <  < 2n + 1 have circulation n). The �-fold modulation of the potential along
the waveguide allows only mixing of states at circulation n with states at circulation n ± �, in
correspondence of the sub-band gaps. Hence, following adiabatically a given sub-band by very
slowly increasing (or decreasing) the rotation frequency, one can transform a state at a given
circulation n into a state at circulation n ± �.

5. Experimental issues

A possible way of achieving experimentally an annular condensate with strong transverse
confinement is to use a magnetic toroidal trap, as reported in [17, 18]. In this section, a completely
different experimental configuration based on rapidly moving optical tweezers [19] is analysed,
and its principal advantages pointed out. For the sake of simplicity, we shall concentrate our
attention on the most relevant case of a planar waveguide whose axis lays on the horizontal xy

plane. A strong confinement in the vertical z-direction can be obtained using a horizontal light
sheet which provides a potential Vz(z). Generalizing the idea of a time-averaged potential studied
e.g. in [20], the curvilinear waveguide profile can be created by rapidly moving the focus point
of a red-detuned laser beam along the waveguide axis C at a possibly time-dependent speed v(t).
This can be obtained e.g. by reflecting the laser light on to vibrating mirrors or using acousto-
optic modulators. If the movement of the focus point is much faster than the transverse trapping
frequency, then the atoms will see the following averaged potential

V(x, y, z) = Vz(z) +
∫ T

0

dt

T
Vtw[x − xC(t), y − yC(t)], (42)

where Vz(z) is the trapping potential due to the light sheet and Vtw(x, y) the trapping potential
due to the optical tweezer. The pair (xC(t), yC(t)) defines the position of the laser focus on the xy
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plane at time t, which spans the curve C in the period T (x and y here are cartesian coordinates).
The tweezer potential is attractive, and can be taken as having a Gaussian shape of waist w and
peak value V 0

tw < 0

Vtw(x, y) = V 0
tw exp [ − (x2 + y2)/w2]. (43)

It is then easy to obtain expressions for the potential terms V⊥ and Vext appearing in the
Hamiltonian (12)

ω2
⊥(s) =

√
πw

Tv(s)
ω2

tw with ω2
tw = 2|V 0

tw(s)|
Mw2

, (44)

Vext(s) =
√

πw

Tv(s)
V 0

tw(s). (45)

A remarkable fact has to be noted: both ω2
⊥(s) and Vext(s) are inversely proportional to the speed

of the laser focus when passing in the neighbourhood of the point s under examination, and to its
overall orbital period. A possible way of adding a spatially modulated external potential along
the waveguide is therefore to simply modulate the speed of motion of the focus along the curve.

Plugging in (44) typical values of intensity I = 100 W and detuning δ = 300 nm for optical
tweezers with w = 30 µm, one can see that transverse extensions as low as 1.2 µm could be
achieved on a 150 µm radius torus with such a device, ensuring the validity of the strong
confinement hypothesis. The main advantage of this method over the magnetic traps studied
e.g. in [17] is that any shape of the curve C can be obtained without any additional difficulty,
and this can also be modified in the course of the experiment in order to obtain e.g. a rotating
waveguide.

Another important requirement for the study of supercurrent to be possible is that the
longitudinal potentials are not strong enough to fragment the condensate. As an example, it is
interesting to estimate the effect of a tilting of the light sheet that is used to vertically confine
the atoms. For a tilting angle α from the horizontal plane, the potential energy difference at the
extrema of the waveguide due to gravity is equal to 2MgGR sin α, where gG is the gravity field
acceleration and 2R is the horizontal distance between opposite points of the waveguide. Within
the Thomas–Fermi approximation, fragmentation occurs if the gravitational energy difference is
larger than the mean-field interaction energy, that is if

2MgGR sin α >
g1DN0

2πR
. (46)

For a system of N0 = 106 atoms of 87Rb with scattering length a = 5.77 nm in a waveguide of
radius R = 150 µm and σ = 1.16 µm, the system remains connected provided α < 0.15◦, which
is a rather stringent but not unreachable experimental requirement. Note that the gravitational
potential does not rotate with the waveguide when this is set into rotation, so that it might possibly
act as a defect moving through the 1D fluid [7, 8].

In the case of very tight confinement and frozen transverse dynamics, the issue of phase
fluctuations in the 1D condensate comes into play. We believe that the rotational properties of
the condensate should not however be disturbed at least in the meanfield regime at low enough
temperature.
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Another issue of great importance from the experimental point of view is the possibility
of measuring the number of vorticity quanta present around the annular condensate. A
measurement after expansion has been recently predicted to be able to provide a clear answer
[28], but a non-destructive measurement would be preferable in view of applications as a rotation
sensor. In the case of a rotating non-circular (e.g., elliptical) waveguide, the periodic density
modulation due to the centrifugal potential should in principle provide a way of measuring the
supercurrent. If this signal is too weak to be detected, one could still resort to other techniques,
e.g. the analysis of collective modes [29] or the measurement of the momentum distribution by
means of Bragg spectroscopy [30] or slow-light imaging [31].

6. Conclusion

In this paper, we have developed a formalism which is able to reduce the 3D problem of atomic
propagation along an atomic waveguide to 1D equations. Under a strong transverse confinement
hypothesis, the transverse extension of the wavefunction is much smaller than the curvature radius
of the waveguide and the wavefunction can be factorized into the product of its longitudinal and
transverse parts. Our formalism is then applied to a novel concept of optical waveguide which
combines the possibility of having a strong confinement with a great flexibility in the design
of the, possibly rotating, waveguide shape.

Such a description provides a simple yet accurate starting point for analytical studies and
numerical simulations, as well as for the design of experimental setups. Our framework is in fact
able to considerably simplify the theoretical analysis, while still keeping track of the relevant
degrees of freedom in a quantitative way. Possible applications range from the determination of
the best experimental sequence to nucleate a supercurrent along a ring-shaped BEC, to the study
of the response to a global rotation in a sort of matter-wave gyroscope.
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