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Introduction

The aim of this article, in the vein of [1], is to study abstractly the
properties of categories of pure motives and to make clear(er) which of
them are formal and which are of a more arithmetic-geometric nature.

We work with a rigid tensor category A such that K = End(1) is
a field of characteristic 0. Our main tool, which was the motivation
for this work, is the multiplicities of an object M ∈ A when A is
semi-simple: they are a collection of central scalars which relates the
categorical trace with the ring-theoretic trace (Proposition 1.2). It
turns out that the proprety for these multiplicities to be integers or,
better, to be so after extending scalars from K to its algebraic closure,
is very well-behaved and is satisfied in many important cases. Namely:

• The full subcategory Aint of A formed by such objects is thick,
tensor, rigid, contains the finite-dimensional objects in the sense
of Kimura-O’Sullivan and is preserved under tensor functors to
another semi-simple rigid category (Corollary 2.5).
• Aint = A if A is of “homological origin” (Theorem 4.5). The

category of pure motives over a field modulo numerical equiv-
alence is semi-simple thanks to Jannsen’s theorem [4], and of
homological origin.

Date: September 29, 2006.
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2 BRUNO KAHN

When the multiplicities are integers, we prove that the zeta function
of an endomorphism f of M is rational (with an explicit formula) and
satisfies a functional equation when f is invertible (Theorem 3.2): in
the case of motives over a finite field, this shows that these depend
on less than the existence of a Weil cohomology theory. We also get
some elementary cases where homological equivalence equals numeri-
cal equivalence for formal reasons in Proposition 4.6: of course, this
remains far from leading to a proof of this famous standard conjecture!

In Section 5, we set out to formulate a version of the Tate conjecture
for motives over a finite field in an abstract set-up. Surprisingly, most
of the known equivalent versions of this conjecture carry out in this
abstract context: see Theorem 5.4 and Corollary 5.10.

1. Multiplicities in semi-simple rigid tensor categories

Let A be a rigid K-linear tensor category, where K is a field of
characteristic 0; we also assume that End(1) = K. In the sequel of this
article, we shall abbreviate this by saying that A is a rigid K-category.

Let M ∈ A. The trace of an endomorphism f ∈ End(M) is the
element tr(f) ∈ End(1) = K defined by the composition

1
η

−−−→ M∗ ⊗M
1⊗f
−−−→ M∗ ⊗M

R
−−−→ M ⊗M∗ ε

−−−→ 1

where R is the switch and η, ε are the duality structures of M . The
trace is K-linear and has the following properties:

(1.1) tr(fg) = tr(gf), tr(f ⊗ g) = tr(f) tr(g), tr(tf) = tr(f).

Suppose that A is semi-simple. Then EndA(M) is a semi-simple
K-algebra, hence has its own trace, and we want to compare the cat-
egorical trace with the ring-theoretic trace. We normalise conventions
as follows:

1.1. Definition. a) Let A be a finite-dimensional simple K-algebra.
We write:

• Z(A) for the centre of A;
• δ(A) = [Z(A) : K];
• d(A) = [A : Z(A)]1/2.

We define the reduced trace of A as

TrdA = TrZ(A)/K ◦TrdA/Z(A) .

If A =
∏

Ai is semi-simple, with simple components Ai, we define
TrdA :=

∑

i TrdAi
.

b) If A = EndA(M), we set

• Zi(M) = Z(Ai);
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• δi(M) = δ(Ai);
• di(M) = d(Ai);
• TrdM = TrdA.

1.2. Proposition. There exists a unique element µ(M) ∈ End(M)
such that

tr(f) = TrdM(µ(M)f)

for any f ∈ End(M). Moreover, µ(M) is central and invertible. Hence,
if (ei) denotes the set of central idempotents of A = End(M) corre-
sponding to its simple factors Ai, we may write

µ(M) =
∑

i

µi(M)ei

with µi(M) ∈ Zi(M).

Proof. Since End(M) is semi-simple, (f, g) 7→ TrdM(fg) is nondegen-
erate, which proves the existence and uniqueness of µ(M). Moreover,

TrdM(µ(M)fg) = tr(fg) = tr(gf) = TrdM(µ(M)gf) = TrdM(fµ(M)g)

and the non-degeneracy also yields the centrality of µ(M). This ele-
ment is invertible because the ideal N is 0 for A [1, 7.1.7]. The last
assertion is obvious. �

1.3. Lemma. a) We have µ(M∗) = tµ(M).
b) Suppose K algebraically closed and M simple. Then µ(M) = dim(M).

Proof. a) follows easily from (1.1) and the fact that the transposition
induces an anti-isomorphism from End(M) onto End(M∗). b) is ob-
vious, since then End(M) = K (recall that, by definition, dim(M) =
tr(1M)). �

1.4. Remark. If A is pseudo-abelian (hence abelian), the idempotents
ei of Proposition 1.2 yield the decomposition M =

⊕

Mi of M into its
isotypical components. In particular, if S is simple, then µ(Sn) = µ(S)
for any n ≥ 1.
On the other hand, it is difficult to relate µ(M1), µ(M2) and µ(M1 ⊗
M2) in general because it is difficult to say something of the map
End(M1)⊗K End(M2)→ End(M1⊗M2): it is not even true in general
that such a homomorphism sends the centre into the centre. For the
same reason, it is difficult to state general facts on the behaviour of
the invariant µ under tensor functors. We shall see that this situation
improves considerably in the case of geometrically integral type, treated
in the next section.
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2. Integral multiplicities

In all this section, A is a semi-simple rigid K-category.

2.1. Definition. a) An object M ∈ A is of integral type if the scalars
µi(M) of Proposition 1.2 belong to Z.
b) M is geometrically of integral type if MK̄ ∈ AK̄ is of integral type,
where K̄ is an algebraic closure of K.
c) A is of integral type (resp. geometrically of integral type) if every
M ∈ A if of integral type (resp. geometrically of integral type).

2.2. Proposition. a) If M is of integral type, we have

(2.1) µi(M) =
tr(ei)

δi(M)di(M)

for any i.
b) Direct sums and direct summands of objects of integral type are of
integral type. Similarly for geometrically of integral type. In particular,
A is of integral type (resp. geometrically of integral type) if and only if
its pseudo-abelian envelope is.
c) If M is geometrically of integral type, then it is of integral type.
Moreover, if this is the case, the invariants µi(M) are “geometric” in
the sense that if L/K is any extension, then µi(M) = µi,α(ML) for any
simple factor Ai,α of Ai ⊗K L.

d) M ∈ A is geometrically of integral type if and only if, in A♮
K̄
, the

dimension of every simple summand of MK̄ is an integer.
e) If M is finite-dimensional in the sense of Kimura-O’Sullivan, then
M is geometrically of integral type.
f) If M is geometrically of integral type, so is M∗.

Proof. a) and b) are obvious. For c), we have the decomposition

Zi(M)⊗K K̄
∼
−→

∏

α

K̄

where α runs through the distinct K-embeddings of Zi(M) into K̄.
Correspondingly, Ai ⊗K K̄ decomposes as a direct product

Ai ⊗K K̄ ≃
∏

α

Aα
i

with Aα
i simple over K̄. This gives a decomposition

ei ⊗K 1 =
∑

α

eα
i
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into central idempotents. But clearly, µ(MK̄) = µ(M) ⊗K 1. By hy-
pothesis, the images of µi(M) in K̄ under the embeddings α are ratio-
nal integers, which implies that µi(M) is itself a rational integer. The
additional claim of c) immediately follows from this proof.

d) follows immediately from Lemma 1.3 a). For e), we may assume
that K is algebraically closed, A pseudo-abelian and M simple; then
dim(M) is an integer since M is finite dimensional [1, Th. 9.1.7].
Finally, f) follows from Lemma 1.3 b). �

2.3. Theorem. Let M, N ∈ A be geometrically of integral type, (ei)
the central idempotents of End(M) and (fj) the central idempotents
of End(N). For a pair (i, j), let Aij be the semi-simple algebra (ei ⊗
fj) End(M ⊗N)(ei ⊗ fj). Then one has formulas of the type

µi(M)µj(N) =
∑

k

mkµk(M ⊗N)

where k indexes the simple factors of Aij and the mk are integers ≥ 0.
Moreover, for any k, there is such a formula with mk > 0.
In particular, M ⊗N is geometrically of integral type.

Proof. We proceed in 2 steps:
1) End(M) and End(N) are split. By Proposition 2.2 b), we may

assume that A is pseudo-abelian. This allows us to assume M and N
simple, hence End(M) = End(N) = K and Aij = End(M ⊗N). Using
Formula (2.1) to compute tr(1M ⊗ 1N) in two different ways, we get
the formula

(2.2) µ(M)µ(N) =
∑

mkµk(M ⊗N)

with mk = δk(M ⊗N)dk(M ⊗N).
Coming back to the case where Ā is not necessarily pseudo-abelian,

this gives the formula

mk = δk(Aij)
dk(Aij)

di(M)dj(N)

and the previous argument shows ungrievously that this is an integer.
2) The general case. Extending scalars to K̄ and using Proposition

2.2 c), we are reduced to 1) as follows: for any α : Zi(M) → K̄ and
any β : Zj(M)→ K̄, we have a formula with obvious notation:

µα
i (MK̄)µβ

j (NK̄) =
∑

k

∑

γ

mγ
kµ

γ
k((M ⊗N)K̄)

where, for each k, γ runs through the embeddings of Zk(M ⊗N) into
K̄. By Remark 1.4, this gives a formula as wanted.
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It remains to prove the last assertion: for this, it suffices to show
that, given a simple factor Ak of Aij, there is a pair (α, β) such that

HomK̄(Ak ⊗K K̄, (eα
i ⊗ fβ

j )(Aij ⊗K K̄)(eα
i ⊗ fβ

j )) 6= 0.

This is obvious, since HomK(Ak, Aij) 6= 0 and Aij⊗K K̄ =
∏

α,β(eα
i ⊗

fβ
j )(Aij ⊗K K̄)(eα

i ⊗ fβ
j )). �

2.4. Corollary. Assume that M and N are simple and that, in The-
orem 2.3, all terms µk(M ⊗ N) have the same sign. Then we have
|µk(M ⊗ N)| ≤ |µ(M)µ(N)| for all k. If |µ(M)| = |µ(N)| = 1, then
A = End(M ⊗N) is “geometrically simple” in the sense that A⊗K K̄
is a matrix algebra over Z(M ⊗ N) ⊗K K̄ (otherwise said, A is an
Azumaya algebra over its centre). Moreover, µ(M ⊗N) = µ(M)µ(N).

Proof. This follows from the last statement of Theorem 2.3. In the case
where |µ(M)| = |µ(N)| = 1, Formula (2.2) gives the conclusion. �

2.5. Corollary. a) The full subcategory Aint of A consisting of ge-
ometrically integral objects is a thick rigid tensor subcategory of A,
containing the finite dimensional objects.
b) Let F : A → B be a ⊗-functor to another rigid semi-simple K-
category. Then F (Aint) ⊆ Bint.

Proof. a) follows from Proposition 2.2 and Theorem 2.3; b) follows from
Proposition 2.2 d). �

3. Application: the zeta function of an endomorphism

3.1. Definition. Let A be a rigid K-category, M ∈ A and f ∈
End(M). The zeta function of f is

Z(f, t) = exp

(

∑

k≥1

tr(fn)
tn

n

)

∈ K[[t]].

3.2. Theorem. Suppose that A is semi-simple and that M ∈ A is of
integral type. Then,
a) For any f ∈ End(M), Z(f, t) ∈ K(t). More precisely, one has with
the notation of Definition 1.1

Z(f, t) =
∏

i

NrdAi
(ei − eift)−µi(M)

where, for all i, NrdAi
(ei − eift) := NZi(M)/F NrdAi/Zi(M)(ei − eift)

denotes the inverse reduced characteristic polynomial of the element
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eif if Ai.
b) If f is invertible, one has the functional equation

Z(f−1, t−1) = (−t)χ(M) det(f)Z(f, t)

where χ(M) = tr(1M) and det(f) =
∏

i NrdAi
(eif)µi(M).

Proof. a) Applying the formula of Proposition 1.2, we get

Z(f, t) = exp

(

∑

k≥1

TrdM(µ(M)fn)
tn

n

)

= exp

(

∑

k≥1

∑

i

TrdM(µi(M)eif
n)

tn

n

)

=
∏

i

exp

(

∑

k≥1

TrdAi
((eif)n)

tn

n

)µi(M)

and the conclusion follows from the well-known linear algebra identity

exp

(

∑

k≥1

TrdAi
((eif)n)

tn

n

)

= NrdAi
(ei − eift)−1.

For b), we write

NrdAi
(ei − eif

−1t−1) = NrdAi
(−eif

−1t−1) NrdA1
(ei − eift)

hence

Z(f−1, t−1) =
∏

i

NrdAi
(ei − eif

−1t−1)−µi(M)

=
∏

i

NrdAi
(−eif

−1t−1)−µi(M) NrdA1
(ei − eift)−µi(M)

=
∏

i

NrdAi
(−eif

−1t−1)−µi(M)Z(f, t)

and
∏

i

NrdAi
(−eif

−1t−1)−µi(M) =

(−t)
∑

i
µi(M)di(M)δi(M)

∏

i

NrdAi
(eif)µi(M) = (−t)χ(M) det(f).

�

3.3. Remark. The definition of det shows that

det(1− ft) = Z(f, t)−1
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if the left hand side is computed in AK(t).

4. Multiplicities in rigid tensor categories of

homological type

4.1. Definition. a) A rigid K-category A is of homological type if there
exists a tensor functor

H : A → Vec±L
where L is an extension of K and Vec±L is the tensor category of Z/2-
graded finite-dimensional L-vector spaces, provided with the Koszul
rule for the commutativity constraint. We say that H is a realisation
of A.
We say thatA is neutrally of homological type if one may choose L = K.
b) A semi-simple rigid K-category Ā is of homological origin (resp.
neutrally of homological origin) if it is ⊗-equivalent toA/N , where A is
a rigid K-category of homological type (resp. neutrally of homological
type) and N = N (A) is the ideal of morphisms universally of trace 0.

4.2. Lemma. If A is of homological type, A/N is semi-simple. If
moreover it is neutrally of homological type and the corresponding real-
ization H is faithful, the functor A → A/N has the idempotent lifting
property.

Proof. The first statement follows from [2, Th. 1 a)]. For the second, let
M ∈ A and M̄ its image in Ā. The hypothesis implies that EndA(M)
is a finite-dimensional K-algebra. Let R be its radical: it is nilpotent
and contained in N (M, M) by [2, Th. 1 a)]. Thus EndĀ(M̄) is a
quotient of the semi-simple algebra EndA(M)/R. Therefore we may
lift orthogonal idempotents of EndĀ(M̄) to orthogonal idempotents of
EndA(M), first in EndA(M)/R and then in EndA(M) itself. �

4.3. Lemma. Let E be an extension of K. If Ā is of homological
origin, then ĀE := Ā ⊗K E is also of homological origin.

Proof. Let A of homological type be such that A/N ≃ Ā, and let
H : A → Vec±L be a realisation of A. Consider the tensor functor

HE : AE → Vec±L⊗KE

given by HE(M) = H(M)⊗K E. Here L⊗K E is not a field in general,
but we can map it to one of its residue fields L′. Then the composite
functor

H ′ : AE → Vec±L′

is a tensor functor. To conclude, it suffices to observe that ĀE ≃
AE/N (AE) by [2, Lemme 1]. �
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4.4. Lemma. Suppose that Ā is neutrally of homological origin. Then
the pseudo-abelian envelope of Ā is also neutrally of homological origin.

Proof. A realization H with coefficients K extends to the pseudo-
abelian envelope A♮ of A, since Vec±K is pseudo-abelian. On the other
hand, Lemma 4.2 implies that A♮/N ♮ is pseudo-abelian, where N ♮ is
the ideal N of A♮; but the obvious functor A/N → A♮/N ♮ is clearly a
pseudo-abelian envelope. �

4.5. Theorem. If Ā is of homological origin, it is geometrically of
integral type.

Proof. By Lemma 4.3, we may assume K algebraically closed. Choose
(A, H : A → Vec±L) such that Ā ≃ A/N . Without loss of generality,
we may also assume that L is algebraically closed. The functor H
canonically extends to a realisation HL : AL → Vec±L . By [2, Lemme 1],
N (AL) = N ⊗K L. Denote the functor of extension of scalars Ā → ĀL

by M 7→ ML. Clearly, µ(ML) = µ(M) ⊗K 1, and the simple factors
of EndĀL

(ML) = EndĀ(M) ⊗K L are the same as those of EndĀ(M).
All this reduces us to the case where K = L is algebraically closed.
Without loss of generality we may further assume H to be faithful.
Finally, Lemma 4.4 reduces us to the case where Ā is pseudo-abelian.
We then have to prove that µ(S) ∈ Z for any simple S ∈ Ā.

Let S̃ be an object of A which maps to S. By hypothesis, EndĀ(S)
= K. Thus µ(S) ∈ K, hence tr(1S) = µ(S). On the other hand,

(4.1) tr(1S) = tr(1S̃) = dimgr H(S̃) ∈ Z.

�

4.6. Proposition. Let Ā be of homological origin; let A be of homo-
logical type with A/N = Ā, and let H : A → Vec±L be a realization
functor. Then
a) For any simple object S ∈ (ĀL)♮, d(S) | µ(S).

b) Suppose L = K, H faithful and let S̃ be a lift of S in A♮. If H(S̃)
is purely even or odd, then the nilpotence level r of N (S̃, S̃) is bounded
by

r ≤ |µ(S)|/d(S).

In particular, if |µ(S)| = 1, then EndA(S̃) is a field.

Proof. a) Since AL/N (AL) = ĀL, ĀL is neutrally of homological ori-
gin; up to quotienting AL and replacing K by L, we may assume L = K
and H faithful. Then A is semi-primary and, as in the proof of Theo-
rem 4.5, we may further assume that A and Ā are pseudo-abelian.
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Let S̃ ∈ A mapping to S. By Wedderburn’s theorem, the map
EndA(S̃)→ EndĀ(S) has a ring-theoretic section σ. This makes H(S̃)

a module over the division ring EndĀ(S). Therefore dimK Hε(S̃) is
divisible by dimK EndĀ(S) = δ(S)d(S)2 for ε = ±1. On the other
hand,

dimK H+(S̃)− dimK H−(S̃) = µ(S)δ(S)d(S)

by Proposition 2.2 a). Therefore, δ(S)d(S)2 divides µ(S)δ(S)d(S),
which means that d(S) divides µ(S), as claimed.

b) Let N = N (S̃, S̃) and consider the filtration (N iH(S̃))0≤i≤r−1.

Note that N iH(S̃) = N i+1H(S̃) ⇐⇒ N i = 0 since N is a nilpotent

set of endomorphisms of H(S̃). The associated graded (griH(S̃))0≤i≤r−1

is a graded EndĀ(S)-module, and griH(S̃) 6= 0 for all i < r. Hence
r ≤ dim H(S)/ dimEndĀ(S) ≤ |µ(S)|/d(S). �

4.7. Remark. Coming back to the zeta function of an endomorphism,
suppose that A is of homological type; let M ∈ A and f ∈ EndA(M).
If H is a realization of A, we have by the usual computation

Z(f, t) = det(1−H(f)t)−1 =
det(1− ft | H−(M))

det(1− ft | H+(M))
.

Let M̄ be the image of M in Ā = A/N and f̄ be the image of f
in EndĀ(M̄). Since Z(f, t) = Z(f̄ , t), we get from Theorem 4.5 and
Theorem 3.2 a) the identity

det(1− ft | H+(M))

det(1− ft | H−(M))
=
∏

i

NrdAi
(ei − eif̄ t)µi(M).

Suppose for example that M̄ is simple; the identity reduces to

det(1− ft | H+(M))

det(1− ft | H−(M))
= NrdA(1− f̄ t)µ(M)

where A = EndĀ(M̄).
Supposing further that µ(M) > 0 to fix ideas, we find that the inverse

characteristic polynomial of f acting on H−(M) (with coefficients in
L) divides the one for H+(M), and the quotient has coefficients in K.
This does not imply, however, that H−(M) = 0.

5. An abstract version of the Tate conjecture

5.A. Automorphisms of the identity functor. Let A be a rigid
K-category, and let F be an ⊗-endomorphism of the identity functor
of A. By [6, I.5.2.2], F is then an isomorphism. Concretely, F is given
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by an automorphism FM ∈ End(M) for every object M ∈ A; FM is
natural in M , and further:

FM⊕N = FM ⊕ FN

FM⊗N = FM ⊗ FN

FM∗ = tF−1
M (cf. [6, I, (3.2.3.6)]).

5.1. Definition. The zeta function (relative to F ) of an object M ∈ A;
it is:

ZF (M, t) = Z(FM , t).

5.2. Lemma. The zeta function is additive in M :

ZF (M ⊕N, t) = ZF (M, t)ZF (N, t).

It is multiplicative in M in the following sense:

ZF (M ⊗N, t) = ZF (M, t) ∗ ZF (N, t)

where ∗ is the unique law on 1+tK[[t]] such that, identically, f ∗(gh) =
(f ∗ g)(f ∗ h) and

(1− at)−1 ∗ (1− bt)−1 = (1− abt)−1.

(Explicitly: if f(t) = exp
(
∑

n≥1 an
tn

n

)

and g(t) = exp
(
∑

n≥1 bn
tn

n

)

,

then f ∗ g(t) = exp
(
∑

n≥1 anbn
tn

n

)

.)
If moreover A is semi-simple of integral type, then

(1) ZF (M, t) ∈ K(t) for any M ∈ A;
(2) ZF (M∗, t−1) = (−t)χ(M) det(FM )ZF (M, t);
(3) for S simple,

ZF (S, t) = PS(t)−χ(S)/ deg(FS)

where PS(t) is the inverse minimum polynomial of FS over K
and deg(FS) = deg(PS) = [K[FS] : K].

Proof. The additivity is obvious; the multiplicativity follows from the
identities

tr(F n
M⊗N) = tr(F n

M ⊗ F n
N) = tr(F n

M) tr(F n
N).

(1), (2) and (3) follow from Theorem 3.2: (1) from part a), (2) from
part b) by noting that Z(tF−1

S , t−1) = Z(F−1
S , t−1), and (3) from part

a) again by noting that FS is in the centre of EndA(S) (use Proposition
2.2 a)). �
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5.B. The semi-simple case.

5.3. Definition. In the above, suppose A semi-simple of integral type.
We say that (A, F ) verifies the Tate conjecture if, for any M ∈ A,
K[FM ] is the centre of EndA(M).

5.4. Theorem (cf. [3, Th. 2.7]). Let A be a semi-simple rigid pseudo-
abelian K-category of integral type, and let F ∈ Aut⊗(IdA). Then the
following conditions are equivalent:

(i) Given a simple object S ∈ A, FS = 1S implies S = 1.
(ii) For any M ∈ A, ordt=1ZF (M, t) = − dimK A(1, M).
(iii) For S, T ∈ A simple, PS = PT ⇒ S ≃ T .
(iv) For M, N ∈ A, ZF (M, t) = ZF (N, t) ⇒ M ≃ N .
(v) (A, F ) verifies the Tate conjecture.

Moreover, these conditions imply:

(vi) For any simple S, |µ(S)| = 1 and K[FS ] is the centre of EndA(S).

Proof. We shall prove the following implications:
(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i)
(ii) ⇒ (vi)
(iii) + (vi) ⇒ (v) ⇒ (iii).
(i)⇒ (ii): both sides are additive in M so we may assume M simple.

If M = 1, ZF (M, t) = 1/(1 − t) and the formula is true. If M 6= 1,
Lemma 5.2 (3) and the hypothesis show that ordt=1ZF (M, t) = 0 and
the formula is also true.

(ii)⇒ (iii): Consider f(t) = ZT (S∗⊗T, t). By Lemma 5.2, Formulas
(2), (3) and the multiplicativity rule, we see that

f(t) =
∏

i,j

(1− αiα
−1
j t)m

where m = − χ(S)
deg(FS)

χ(T )
deg(FT )

and the αi are the roots of the irreducible

polynomial PS = PT in a suitable extension of K. Note that (ii) implies
that ordt=1ZF (M, t) ≤ 0; the above formula shows that this integer is
< 0. Hence 0 6= A(1, S∗⊗ T ) ≃ A(S, T ) and S ≃ T by Schur’s lemma.

(iii) ⇒ (iv): write M =
⊕

i∈I Smi

i and N =
⊕

i∈I Sni

i , where Si runs
through a set of representatives of the isomorphism classes of simple
objects of A. We then have, by Lemma 5.2 (3):

ZF (M, t) =
∏

i∈I

PSi
(t)−miχ(Si)/ deg(FSi

)

ZF (N, t) =
∏

i∈I

PSi
(t)−niχ(Si)/ deg(FSi

).
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By hypothesis, the PSi
(t) are pairwise distinct irreducible polynomi-

als with constant term 1; then ZF (M, t) = ZF (N, t) implies mi = ni

for all i, hence M ≃ N .
(iv)⇒ (i): by hypothesis and Lemma 5.2 (3), ZF (S, t) = (1−t)−χ(S).

Thus ZF (S, t) = ZF (1, t)χ(S). If χ(S) < 0, this gives S−χ(S) ≃ 1, which
implies χ(S) = −1 and S ≃ 1, which is absurd since χ(1) = 1. Thus
χ(S) ≥ 0, hence S ≃ 1χ(S), hence S ≃ 1 since S is simple.

(ii) ⇒ (vi): the same computation as in the proof of (i)⇒ (iii) gives

δ(S)d(S)2 = dim EndA(S) = −ordt=1Z(S∗ ⊗ S, t)

=

(

χ(S)

deg(FS)

)2

ordt=1

∏

i,j

(1− αiα
−1
j t) =

χ(S)2

deg(FS)
.

Using the identity χ(S) = µ(S)d(S)δ(S) (cf. Proposition 2.2 a)), we
get

deg(FS) = δ(S)µ(S)2.

But deg(FS) | δ(S), hence δ(S) = deg(FS) and µ(S)2 = 1.
(iii) + (vi) ⇒ (v): Let M =

⊕

i S
mi

i with mi > 0 and the Si simple
and pairwise nonisomorphic. Then

EndA(M) =
∏

i

Mmi
(EndA(Si))

hence the centre of EndA(M) is the product of the centres of the
EndA(Si). By (vi), each of these centres is generated by FSi

; by (iii),
the PSi

are pairwise distinct irreducible polynomials, hence the mini-
mum polynomial of FM must be divisible by their product.

(v)⇒ (iii) (compare [3]): if PS = PT but S 6≃ T , then EndA(S⊕T ) =
EndA(S) × EndA(T ), with centre containing L × L for L = K[FS] =
K[FT ]. But FS⊕T is killed by PS = PT , a contradiction. �

5.5. Remark. Condition (vi) is really weaker than the others: take
F = 1 in A the category of linear representations of a finite abelian
group over K algebraically closed.

5.6. Proposition. Let A be semi-simple of integral type and let F ∈
Aut⊗(IdA).
a) The Tate conjecture is true for (A, F ) if and only if it is true for
(A♮, F ), where A♮ is the pseudo-abelian envelope of A and F is ex-
tended to A♮ naturally.
b) If A is geometrically of integral type, the Tate conjecture is invari-
ant under extension of scalars: if L is an extension of K, then (A, F )
verifies the Tate conjecture if and only if (AL, F ) verifies the Tate con-
jecture.
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Proof. a) “If” is obvious. For “only if”, let M = (N, e) ∈ A♮ where
N ∈ A and e is an idempotent of N . Write M =

⊕

i∈I Smi

i and
N =

⊕

i∈I Sni

i as in the proof of Theorem 5.4, (iii) ⇒ (iv). We have

End(M) =
∏

i

Mmi
(End(Si)), End(N) =

∏

i

Mni
(End(Si)).

Letting Zi denote the centre of End(Si), we get

Z(End(M)) =
∏

mi>0

Zi, Z(End(N)) =
∏

ni>0

Zi.

By hypothesis, Z(End(N)) is generated by FN as a K-algebra; this
implies that Zi is generated by FSi

for all i and that the PSi
are pairwise

distinct. Hence FM generates Z(End(M)) as well.
b) This is obvious since the centre of a semi-simple algebra behaves

well under extension of scalars. �

5.7. Corollary. If (A, F ) verifies the Tate conjecture, then the condi-
tions of Theorem 5.4 hold in A even if A is not pseudo-abelian.

Proof. This is obvious except for (ii) and (iv); but by Proposition 5.6 a),
(A♮, F ) verifies the Tate conjecture; by Theorem 5.4, A♮ also verifies
conditions (ii) and (iv), which a fortiori hold in its full subcategory
A. �

5.8. Proposition. Suppose that (A, F ) verifies the Tate conjecture.
Let S ∈ A be a simple object.
a) If χ(S) ≥ 0, then Λχ(M)+1(M) = 0; if χ(S) < 0, then S−χ(M)+1(M)
= 0.
b) A is finite-dimensional in the sense of Kimura-O’Sullivan; more
precisely, there exists a unique ⊗-Z/2-grading of A such that S simple
is positive (resp. negative) if and only if χ(S) > 0 (resp. < 0).

Proof. a) By Theorem 5.4 (iv), it suffices to see that ZF (N, t) = 1 for
N = Λχ(M)+1(M) (resp. N = S−χ(M)+1(M)): this follows (somehow...)
from the computations of [1, 7.2.4]. b) is an immediate consequence
(see also [1, 9.2.1]). �

5.C. The homological case.

5.9. Theorem. Let A be of homological type, provided with a faithful
realization functor H : A → Vec±L . Let F ∈ Aut⊗(IdA), and let us
still denote by F its image in Aut⊗(IdĀ), where Ā = A/N . Note that
F acts on H by functoriality. Consider the following conditions on an
object M ∈ A:

(i) M̄ ∈ Ā verifies Condition (ii) of Theorem 5.4.
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(ii) The map A(1, M)⊗K L→ H(M)F is surjective and the compo-
sition H(M)F → H(M) → H(M)F is an isomorphism (semi-
simplicity at 1).

(iii) The map A(1, M)⊗KL→ H(M)F is surjective and N (1, M) =
0.

(iv) The sign conjecture holds for M .
(v) H−(M)F = 0.

Then

(1) (i) + (v) ⇐⇒ (ii) + (iii).
(2) (i) + (iv) ⇒ (v) ⇒ (iv).
(3) (ii) for M and M∗ ⇐⇒ (iii) for M and M∗.

Proof. These are classical arguments that only need to be put straight
in this abstract context.

Note that H−(1) = 0, so that A(1, M) ⊗K L → H(M)F actually
lands into H+(M)F ; denote its image by A(1, M)L. By definition of
N , the projection A(1, M) ⊗K L → Ā(1, M) ⊗K L factors through
A(1, M)L. The diagram

A(1, M)L →֒H+(M)F

surj





y

Ā(1, M̄)⊗K L

gives the inequalities

dimL H+(M)F ≥ dimLA(1, M)L ≥ dimK Ā(1, M̄).

On the other hand,

ordt=1ZF (M, t) =

ordt=1 det(1− FM t | H−(M))− ordt=1 det(1− FM t | H+(M))

= dimL H−(M)F∞

− dimL H+(M)F∞

where H±(M)F∞

denotes the characteristic subspace of H±(M) for the
eigenvalue 1 under the action of F .

(1) Suppose that H−(M)F = 0. Then H−(M)F∞

= 0 and, under
(i), we have

dimL H+(M)F ≥ dimLA(1, M)L ≥ dimK Ā(1, M̄)

= dimL H+(M)F∞

≥ dimL H+(M)F

hence we have equality everywhere, and (ii) and (iii) are true. Con-

versely, (ii) + (iii) gives isomorphisms Ā(1, M)L
∼
−→ H(M)F ∼

−→
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H(M)F∞

. In particular, H−(M)F = 0 and we have dimK Ā(1, M) =
dimL H+(M)F∞

, hence (i) and (v). Thus, (i) + (v) ⇐⇒ (ii) + (iii).
(2) Under (iv), we may write M = M+ ⊕M−, with H(M+) purely

even and H(M−) purely odd. To prove that H−(M)F = 0, we may
therefore consider separately the cases where M is even and odd.

If M is even, this is obvious. If M is odd, we get, under (i):

H+(M)F = A(1, M) = Ā(1, M̄) = 0

since A(1, M) →֒ H+(M)F , and

− dim H−(M)F∞

= dim Ā(1, M̄) = 0

which shows that (i) + (iv) ⇒ (v). For (v) ⇒ (iv), we reason as in
[5, Proof of Th. 2]: there exists a polynomial Π ∈ K[t] such that Π is
divisible by P− and Π−1 is divisible by P+, where P ε(t) = det(t−F |
Hε(M)); then Π(F ) ∈ End(M) is such that H(Π(M)) is the identity
on H+(M) and is 0 on H−(M).

(3) The counit map M ⊗M∗ → 1 gives compatible pairings

A(1, M)L×A(1, M∗)L→ L

Ā(1, M̄)×A(1, M̄∗)→ K

H(M)×H(M∗)→ L.

The first and last are perfect pairings: for the first, check it on simple
objects thanks to Schur’s lemma1 and for the last, this follows from the
structure of the tensor category Vec±K . Consider now the commutative
diagram

Ā(1, M̄)L
a

←−−−
surj

A(1, M)L
b

−−−→
inj

H(M)F

≀





y

c





y
d





y

(Ā(1, M̄∗)L)∗
a∗

−−−→
inj

(A(1, M∗)L)∗
b∗
←−−−

surj
(H(M∗)F )∗≃ H(M)F .

Notice that the right vertical map coincides with the one of (ii).
Now assume that b and b∗ are isomorphisms. The diagram shows

immediately that a, a∗ isomorphisms ⇒ d isomorphism. Conversely, if
d is an isomorphism, so is c; but then, a and a∗ must be isomorphisms.
Finally, a is an isomorphism ⇒ A(1, M)→ Ā(1, M)⊗K L is injective
⇒ N (1, M) = 0, as desired. �

5.10. Corollary. Let A, H, F be as in Theorem 5.9, and suppose that
A is pseudo-abelian. Consider the following conditions:

(i) The Tate conjecture holds for (Ā, F ).

1Or use the definition of the ideal N .
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(ii) A → Ā is an equivalence of categories and H induces a fully
faithful functor

H̃ : ĀL → RepL(F )±ss

where the right hand side denotes the ⊗-category of Z/2-graded
L-vector spaces provided with the action of an automorphism
F , this action being semi-simple.

(iii) The sign conjecture holds for any M ∈ A (equivalently [1, 9.2.1
c)], A is a Kimura-O’Sullivan category).

(iv) For any M ∈ A, H−(M)F = 0.

Then (iv) ⇒ (iii); moreover (ii) ⇐⇒ (i) + (iii) ⇐⇒ (i) + (iv).

If these conditions are verified, then for any simple object S ∈ A♮
L,

End(S) is commutative.

Proof. First, (iv) ⇒ (iii) by Point 2 of Theorem 5.9. If now (ii) holds,
then Conditions (ii) and (iii) of Theorem 5.9 hold for any M , hence so
do its conditions (i) and (v) by Point 1 of this theorem. Point 2 also
shows that M verifies Condition (iv) of this theorem. This shows that
(ii) ⇒ (i) + (iii) + (iv) in Corollary 5.10.

Suppose that (i) holds. Then Condition (ii) of Theorem 5.4 holds
for any M̄ ∈ Ā. If moreover H−(M)F = 0 for any M ∈ A, Conditions
(ii) and (iii) of Theorem 5.9 are verified for any M ∈ A by Point 1 of
this theorem. Applying this to M = P ∗ ⊗ Q for some P, Q ∈ A, the
adjunction isomorphisms

A(P, Q) ≃ A(1, P ∗ ⊗Q)

show that N (P, Q) = 0, hence a bijection

Ā(M, N)⊗K L→ HomF (H(M), H(N)).

Moreover, since Ā is semi-simple, H(FM) is a semi-simple endomor-
phism of H(M) for any M ∈ A. This shows that (i) + (iv) ⇒ (ii).

Suppose that (i) and (iii) hold. Then Point 2 of Theorem 5.9 shows
that H−(M)F = 0 for any M ∈ A, thus (i) + (iii) ⇒ (iv).

It remains to justify the last claim: it follows from Proposition 4.6
and Condition (vi) of Theorem 5.4. �

5.11. Remark. In the classical case of motives over a finite field, Con-
ditions (iii) and (iv) hold provided the Weil cohomology H verifies the
Weak Lefschetz theorem, by Katz-Messing [5]. It is a little annoying
not to be able to dispense of them in this abstract setting, especially
in view of Proposition 2.2 b).
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