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Ultracold Bose Gases in 1D Random Potentials: From Lifshits Glasses to Bose-Einstein Condensates

P. Lugan,1 D. Clément,1 P. Bouyer,1 A. Aspect,1 M. Lewenstein,2 and L. Sanchez-Palencia1

1Laboratoire Charles Fabry de l’Institut d’Optique, CNRS and Université Paris-Sud XI,
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We study an ultracold Bose gas in the presence of 1D disorder for repulsive inter-atomic interactions, ranging
from zero to the Thomas-Fermi regime. We show that for very small interactions, the Bose gas populates a finite
number of localized single particle Lifshits states, whilefor large interactions, it forms a delocalized disordered
Bose-Einstein condensate. We discuss the phase diagram andcompute the equations of state in various phases.
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Disorder is present in nearly all condensed matter systems,
due to unavoidable defects of the sustaining media. This is
known, not only to strongly alter quantum flows, but also
to lead to spectacular effects, such as, for instance, Ander-
son localization [1, 2, 3, 4]. In contrast to condensed mat-
ter, controlled disorder (or pseudo-disorder) can be realized
with ultracold gases [5], opening possibilities for quantita-
tive investigations of localization effects [6] (for a review, see
[7]). Recently, several groups have initiated the experimen-
tal study of localization in Bose-Einstein condensates (BEC)
[8, 9, 10, 11], and of strongly correlated Bose gases [12] in
controlled disorder.

One of the most fundamental issues in this respect con-
cerns the interplay between localization and interactionsin
many body quantum systems at zero temperature. In the ab-
sence of interactions, a quantum gas populates localized states
[1], either a single one (case of bosons), or a collection of
these (fermions). Weak repulsive interactions delocalize, but
strong ones in confining traps lead to Wigner-Mott-like local-
ization [13]. This competition may lead to the appearance of
new metallic or superfluid phases [7]. Surprisingly, even for
weakly interacting Bose gases, where the mean field Hartree-
Fock-Gross-Pitaevskii-Bogolyubov-de Gennes (HFGPBdG)
description is expected to be valid, there exists no clear picture
of the localization-delocalization scenario. The experiments
and theory of [9, 10] point towards stronger localization ef-
fects in the transport of the BEC. The results of [11] clearly
indicate that the BEC wavefunction at low densities mimics
a superposition of localized, and practically non-overlapping
states. The natural consequence of this observation is to seek
after the true ground state of the system in the form of gen-
eralized HFGPBdG states, consisting of coexisting BECs in
various single atom orbitals from the low energy tail of the
spectrum. In the presence of a random potential, this corre-
sponds to the so-calledLifshits states(LS) [14].

In this Letter, we address this question, and consider ad-
dimensional Bose gas, placed in a 1D random potential at
zero temperature with repulsive interactions. Noa priori re-
striction is imposed either on the amplitude or on the corre-
lation length of the random potential. We show that general-
ized HFGPBdG states indeed provide a very good description
of the many body ground state for interactions ranging from

zero to the Thomas-Fermi (TF) regime. Our theoretical treat-
ment provides us with a novel, physically clear, picture of dis-
ordered weakly interacting ultracold Bose gases. This is the
main result of this work. We stress that the solution that we
find is very different from that of non-interacting fermions,
which at zero temperature, form aFermi glass, and occupy a
large number of localized single particle levels [7]. In con-
trast, many bosons may occupy the same state, and thus the
bosons populate only a finite number of LSs, forming, what
we term aLifshits glass. We discuss the possible quantum
phases of the system versus the strength of interactions andthe
amplitude and correlation length of the disorder, and we de-
rive the corresponding schematic phase diagram (see Fig. 1).
In the limit of very weak interactions, the Bose gas is in the
Lifshits glassphase, whereas for stronger interactions, the gas
condenses, forming a (possibly screened) delocalizeddisor-
dered BEC[18]. Analytic results for the phase boundaries
and for the equations of state in the various regimes are de-
rived. We illustrate our results in the case of a speckle random
potential, similar to that used in Refs. [8, 9].

Consider ad-dimensional ultracold Bose gas with repul-
sive atom-atom interactions in the weak coupling regime
n1−2/d ≪ ~

2/mg, wherem is the atomic mass,n is the
density andg is the coupling constant in dimensiond. Here,
the gas is assumed to be axially confined in a box of length
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Figure 1: (color online) Schematic phase diagram of an ultracold
Bose gas in a 1D random potential. The dashed lines representthe
boundaries (corresponding tocrossovers) identified in this work and
are controlled by the parameterαR = ~

2/2mσ2

RVR (see text). The
hatched part corresponds to a forbiden zone (µ < Vmin).
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2L in the presence of a 1D random potential,V (z), and
trapped radially in a 2D harmonic trap with a trapping fre-
quencyω⊥. We assume that the random potential is bounded
below [Vmin = min(V )] and we use the scaling formV (z) =
VRv(z/σR), wherev(u) is a random function with both typi-
cal amplitude and correlation length equal to unity [15]. This
form is suitable for scaling arguments, which will turn out to
be fruitful in the following.

For numerical purposes, we will consider a 1D speckle po-
tential [10, 16] similar to that used in [8, 9, 10]. In brief,
v(u) is random, with an exponential probability distribution
P(v) = Θ(v + 1) exp[−(v + 1)], whereΘ is the Heavi-
side function. Thus,v is bounded below byvmin = −1,
and we have〈v〉 = 0 and 〈v2〉 = 1. In addition, for a
square aperture, the correlation function reads〈v(u)v(u′)〉 =

sinc
[√

3/2 (u − u′)
]2

.

Depending on the competition between interactions and
disorder, the Bose gas will enter various regimes that we dis-
cuss below.

BEC regime -For large interactions, the Bose gas enters a
BEC regime [9, 18] (possibly quasi-BEC in 1D [17]) where
the local density is given by the meanfield Gross-Pitaevskii
equation (GPE),

µ =
−~

2∇2(
√

n)

2m
√

n
+

mω2
⊥ρ2

2
+ V (z) + gn(r) , (1)

with ρ, the radial coordinate andµ, the chemical potential of
the Bose gas. This regime has been investigated in details in
the pure 1D case in Ref. [18]. Here, we focus on the case of
a shallow radial trap (~ω⊥ ≪ µ) such that the radial profile
of the Bose gas is a TF inverted parabola. Proceeding as in
Ref [18], we find that the first-order perturbative solution of
Eq. (1) is a generalized TF profile with ascreened random
potential:

√
n(ρ, z) ≃

√
µ(ρ)/g

[
1 − Ṽ (ρ, z)/2µ(ρ)

]
(2)

whereµ(ρ) = µ
[
1 − (ρ/R⊥)2

]
is the local chemical poten-

tial, andR⊥ =
√

2µ/mω2
⊥ is the radial TF half-size [19]. In

Eq. (2), Ṽ (ρ, z) =
∫

dz′ G(ρ, z′)V (z − z′) is thescreened

potential [18] with G(ρ, z) = 1√
2ξ(ρ)

exp
(
− |z|

ξ(ρ)/
√

2

)
, and

ξ(ρ) = ~/
√

2mµ(ρ) being the local healing length. The so-
lution (2) corresponds to a delocalizeddisordered BEC.

The validity of the perturbative approach requires the
last term in Eq. (2) to be much smaller than unity,i.e.
µ(ρ) ≫ ∆Ṽ (ρ), where∆Ṽ (ρ) is the standard deviation of
the screened random potential at the radial positionρ. From
the above expression for the screened potential,Ṽ , we can
generally write∆Ṽ (ρ) = VR

√
Σ0(σR/ξ(ρ)). In the case of

the speckle potential, approximating the correlation function
to a Gaussian,V 2

R exp
(
−z2/2σ2

R

)
, we find [18]

Σ0(σ̃R) = σ̃2
R + (1 − 2σ̃2

R )σ̃R ẽσ2

R

∫ ∞

σ̃R

dθ e−θ2

, (3)
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Figure 2: (color online) a) Cumulative density of states of single-
particles in a speckle random potential. Inset: Participation ratio. b)
Low-energy Lifshits eigenstates. HereE0 = ~

2/2mL2.

with σ̃R = σR/ξ(ρ). In the center,ρ = 0, (or strictly in 1D),
the validity condition of the BEC regime thus reduces to

µ ≫ VR

√
Σ0(σR/ξ) , (4)

with ξ = ξ(0). In the limit ξ ≪ σR, i.e. for

µ ≫ ~
2/2mσ2

R , (5)

the random potential is hardly screened:Ṽ (z) ≃ V (z).
If condition (4) is not fulfilled, the BEC will fragment at the

positions of some local maxima of the random potential and
thus form an insulator. In each fragment, the Bose gas will be
in the BEC regime and will thus be compressible. Therefore,
the fragmented BEC can be identified with aBose glass[13].

Non-interacting regime -Consider now the non interacting
case. Here, we are left with the eigenproblem of the single-
particle Hamiltonian,̂h = −~

2∂2
z/2m + V (z). In the pres-

ence of disorder, the eigenstates areusuallyall localized [2].
Usual characteristics of localized states are (i) a finite localiza-
tion length, (ii) a dense pure point density of states,D2L, and
(iii) a large inverse participation ratio,P−1

ν =
∫

dz |χν(z)|4.
If the random potential is bounded below, so is the spectrum
(ǫν > Vmin) and the low-lying energy states belong to the so-
calledLifshits tail of the spectrum which is characterized by
a stretched exponential cumulative density of states (cDOS),

N2L(ǫ) =
∫ ǫ dǫ′ D2L(ǫ′) ∼ exp

(
−c
√

VR
ǫ−Vmin

)
, in 1D [20].

Typical numerical results for the case of the speckle poten-
tial are shown in Fig. 2. As expected, the cDOS follows the
stretched exponential form, the lowest LSs are well spatially
localized, and the participation ratio increases with energy, in-
dicating a decreasing localization. Note, however, thatP (ǫ) is
almost constant at low energy. It is also worth noting that, if
the size of the system (2L) is much larger than the extension
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of the LSs, they hardly overlap. These properties will turn out
to be crucial in the following.

Lifshits regime -We turn now to the regime of weak inter-
actions, where the chemical potential,µ, lies in the Lifshits
tail of the spectrum. In this regime, owing to the fact that
the lowest single particle LSs hardly overlap, it is useful to
work in the basis of the LSs,{χν , ν ∈ N}. These can be re-
garded as trapping micro-sites populated withNν Bosons in
the quantum stateφν(ρ)χν(z), where the longitudinal motion
is frozen toχν , andφν accounts for the radial extension in the
micro-siteν. Therefore, the many body wavefunction reads:

Ψ(r1, ..., rN ) = S
N−1∏

ν=0

[
Mν+Nν−1∏

l=Mν

φν(ρl)χν(zl)

]
(6)

where l labels the particles,Mν =
∑

0≤l<ν Nl, andS is
the bosonic symmetrization operator, accounting for permu-
tations of couples(ρl, zl). The meanfield energy functional of
the interacting Bose gas then reads

E[Ψ] =
∑

ν

Nν

∫
dρ φ∗

ν

(−~
2∇2

⊥
2m

+
mω2

⊥ρ2

2
+ ǫν

)
φν

+
∑

ν

N2
ν

2

∫
dρ Uν |φν |4, (7)

whereUν = g
∫

dz |χν(z)|4 is the local interaction energy
in the Lifshits state (LS),χν . Interestingly, the interaction
energy is directly proportional to the participation ratioin the
ν-th LS: Uν = gP−1

ν . Minimizing E[Ψ] for a fixed number
of particles (E[Ψ] − µ

∑
ν Nν → min), we end up with the

equation

(µ−ǫν)φν =

[−~
2∇2

⊥
2m

+
mω2

⊥ρ2

2
+ NνUν |φν |2

]
φν . (8)

Solving Eq. (8) for each micro-siteν, one can unambigu-
ously determine the atom numbers,Nν , and the corresponding
wavefunctions,φν . Since Eq. (8) is a 2D GPE,|φν |2 will con-
tinuously turn from a Gaussian (for~ω⊥ ≫ µ) to an inverted
parabola (for~ω⊥ ≪ µ) asµ increases (see below).

Let us determine the validity condition of the Lifshits
regime. We callνmax, the index of the highest LS such that
all lower LSs hardly overlap. The above Lifshits description
is correct if the chemical potential,µ, is small enough so that
the number of populated LSs is smaller thanνmax, i.e. if

N2L(µ) ≤ νmax . (9)

Obviously, bothN2L andνmax depend on the model of dis-
order,v, and on both parametersVR andσR, and are difficult
to compute in a general fashion. General properties can nev-
ertheless be obtained using scaling arguments. To do so, we
rewrite the single-particle eigenproblem as

ǫν

VR
ϕν(u) = −αR∂

2
uϕν(u) + v(u)ϕν(u) , (10)

whereu = z/σR, ϕν(u) =
√

σRχν(z) andαR = ~
2/2mσ2

R VR.
It is then clear that, upon renormalization of energies and
lengths, all characteristics of the spectrum depend only onthe
parameterαR (and on the model of disorder,v).

Scaling arguments show that, in the Lifshits tail,

N2L(ǫ) =
L

σR

ζ

(
αR,

ǫ

VR

)
and νmax =

L

σR

η(αR) , (11)

whereζ andη arev-dependent functions. Finally, inserting
these expressions into Eq. (9) and solving formally, we obtain
the validity condition of the Lifshits regime:

µ ≤ VRF (αR), (12)

whereF is the solution ofζ
(
αR, F (αR)

)
= η(αR), which can

be numerically computed for any model of disorderv.
We are now in the position to draw the schematic phase di-

agram of the zero temperature Bose gas versusµ andVR (see
Fig. 1). From the discussion above, it appears useful to fix the
parameterαR = ~

2/2mσ2
R VR, while varyingVR. The bound-

aries between the various regimes (Lifshits, fragmented, BEC
and screened BEC) result from the competition between the
interactions and the disorder and are given by Eqs. (4-5-12).
We stress that these are smooth crossovers rather than phase
transitions. Interestingly enough, it can be shown easily that
all these boundaries are straight lines with slopes depending
on the parameterαR. This is clear from Eq. (12) for the bound-
ary between the Lifshits and the fragmented regimes. In ad-
dition, sinceVR = (~2/2mσ2

R )/αR, the non-screening condi-
tion (5) reduces toµ ≫ αRVR. Finally, sinceµ = ~

2/2mξ2,
and thusσR/ξ = 1√

αR

√
µ/VR, the non-fragmented BEC con-

dition (4) also corresponds to a straight line in the phase dia-
gram of Fig. 1 with a slope depending onαR.

Concretely, the chemical potential,µ, and thus the tran-
sitions between the various regimes, will be determined by
the mean atomic density,n, and the coupling constant,g.
Both can be accurately controlled in experiments with ultra-
cold atoms. It is thus useful to compute the equation of state,
µ = µ(n, g), of the Bose gas in all the identified regimes.

Tight radial confinement -Let us first assume a tight radial
confinement:µ′ − ǫν ≪ ~ω⊥ whereµ′ = µ − ~ω⊥. The
radial wavefunctions are then frozen to zero point oscillations,
φν(ρ) = exp(−ρ2/2l2⊥)/

√
πl⊥ wherel⊥ =

√
~/mω⊥ is the

width of the ground state of the 2D-radial harmonic oscillator.
In the BEC regime,µ′ ≫ ∆Ṽ , it follows from Eq. (2) that

µ′ = ng (13)

up to first order of the perturbation series.
In the Lifshits regime, we find

Nν = [µ′ − ǫν ]/Uν if µ′ > ǫν

Nν = 0 otherwise, (14)

by inserting the above expression forφν(ρ) into Eq. (8). Turn-
ing to a continuous formulation and using the normalization
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conditionN =
∫

dǫ D2L(ǫ)N(ǫ), we deduce the equation of
state of the Bose gas in the Lifshits regime:

Ng =

∫ µ′

−∞
dǫ D2L(ǫ) (µ′ − ǫ)P (ǫ) . (15)

Upon computing the integral in Eq. (15), one can unambigu-
ously determine a relation between the chemical potential,µ′,
and the interaction parameter,g. This relation is in general
non-universal (i.e. it depends on the model of disorder,v).
In the case of a speckle random potential, we have found that

N2L(ǫ) = A(αR)
(

L
σR

)
exp

(
−c(αR)/

√
ǫ/VR + 1

)
, and as-

suming a participation ratio,Pν = σRpν(αR), independent of
the energy in the Lifshits tail (see the Inset of Fig. 2a), we find

ng = A(αR)c
2(αR)p0(αR)VRΓ

(
−2,

c(αR)√
µ′/VR + 1

)
, (16)

with Γ being the incomplete gamma function, and withA(αR),
c(αR) andp0(αR) determined numerically.

Using a numerical minimization of the energy func-
tional (7) in the Gross-Pitaevskii formulation [11], we com-
pute the chemical potential of the Bose gas in a wide range
of interactions. The result presented in Fig. 3 shows a clear
crossoverfrom the Lifshits to the BEC regimes, while the in-
teraction strength increases. The numerically obtained chem-
ical potential,µ, perfectly agrees with our analytical formulae
in both Lifshits and BEC regimes.

Shallow radial confinement -The equations of state can be
obtained easily also in the case of a shallow radial confinement
(µ − ǫν ≫ ~ω⊥). In the BEC regime,µ ≫ VR, and for

ξ ≪ σR, we easily findµ ≃
√

ngmω2

⊥

π − V 2
R . In the Lifshits

regime, the 2D wavefunctions,φν(ρ), are in the TF regime:

|φν(ρ)|2 =
µ − ǫν

NνUν

(
1 − ρ2/R2

ν

)
, (17)

where Rν =
√

2(µ − ǫν)/mω2
⊥ is the 2D-TF radius and

Nν = π(µ − ǫν)2/mω2
⊥Uν for µ > ǫν , and0 otherwise.
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Figure 3: (color online) Chemical potential of a Bose gas in aspeckle
random potential with the same parameters as in Fig. 2 in the case of
a tight radial confinement (µ′

− ǫν ≪ ~ω⊥). The points correspond
to numerical calculations and the lines to the analytic formulae in
both Lifshits [Eq. (16)] and BEC regimes [Eq. (13)].

Proceeding as in the 1D case, we finally find

Ng =
π

mω2
⊥

∫ µ

−∞
dǫ D2L(ǫ) (µ − ǫ)2 P (ǫ) . (18)

Applying this formula to the considered model of disorder al-
lows us to compute the populations,Nν , of the various LSs,
χν , and the corresponding radial extensions,φν .

In summary, we have presented a complete picture of the
quantum phases of a Bose gas in a 1D random potential, in-
cluding the novel description of the weakly interactingLifshits
glassphase [21]. We have provided analytical formulae for
the frontiers between the various phases and we have shown
that the corresponding crossovers are controlled by the inter-
action parameter. Since this can be controlled in cold gases,
future experiments should be able to probe the whole diagram.
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