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We study an ultracold Bose gas in the presence of 1D disoodeepulsive inter-atomic interactions, ranging
from zero to the Thomas-Fermi regime. We show that for verglkimteractions, the Bose gas populates a finite
number of localized single particle Lifshits states, wifidelarge interactions, it forms a delocalized disordered
Bose-Einstein condensate. We discuss the phase diagraooammite the equations of state in various phases.

PACS numbers: 05.30.Jp,03.75.Hh,64.60.Cn,79.60.Ht

Disorder is present in nearly all condensed matter systemgero to the Thomas-Fermi (TF) regime. Our theoretical treat
due to unavoidable defects of the sustaining media. This isent provides us with a novel, physically clear, pictureisf d
known, not only to strongly alter quantum flows, but alsoordered weakly interacting ultracold Bose gases. Thisas th
to lead to spectacular effects, such as, for instance, Andemain result of this work. We stress that the solution that we
son localization [[1[]2[]3[] 4]. In contrast to condensed matfind is very different from that of non-interacting fermigns
ter, controlled disorder (or pseudo-disorder) can be zedli which at zero temperature, formFermi glass and occupy a
with ultracold gases[[S], opening possibilities for quemti  large number of localized single particle Ieveﬂs [7]. In €on
tive investigations of localization effecﬁ [6] (for arew, see trast, many bosons may occupy the same state, and thus the
[Ij]). Recently, several groups have initiated the expemime bosons populate only a finite number of LSs, forming, what
tal study of localization in Bose-Einstein condensates@BE we term alLifshits glass We discuss the possible quantum
[B @, [Z9.[Z]L], and of strongly correlated Bose gagek [12] irphases of the system versus the strength of interactiortsiand
controlled disorder. amplitude and correlation length of the disorder, and we de-

One of the most fundamental issues in this respect corrve the corresponding schematic phase diagram (seﬂ Fig. 1)
cerns the interplay between localization and interactions In the limit of very weak interactions, the Bose gas is in the
many body quantum systems at zero temperature. In the ahifshits glasgphase, whereas for stronger interactions, the gas
sence of interactions, a quantum gas populates localiagsbst condenses, forming a (possibly screened) delocaliligot-

[, either a single one (case of bosons), or a collection ofiered BEC[fLg]. Analytic results for the phase boundaries
these (fermions). Weak repulsive interactions delocabe¢  and for the equations of state in the various regimes are de-
strong ones in confining traps lead to Wigner-Mott-like leca rived. We illustrate our results in the case of a speckleosand
ization [13]. This competition may lead to the appearance opotential, similar to that used in Reff] [§, 9].

new metallic or superfluid phasd$ [7]. Surprisingly, even fo  Consider ad-dimensional ultracold Bose gas with repul-
weakly interacting Bose gases, where the mean field Hartregive atom-atom interactions in the weak coupling regime
Fock-Gross-Pitaevskii-Bogolyubov-de Gennes (HFGPBAG),1-2/d h?/mg, wherem is the atomic massy is the
description is expected to be valid, there exists no cledu@  density andy is the coupling constant in dimensiadn Here,

of the localization-delocalization scenario. The experits  the gas is assumed to be axially confined in a box of length
and theory of [[70] point towards stronger localization ef
fects in the transport of the BEC. The results [of| [11] clearly
indicate that the BEC wavefunction at low densities mimics
a superposition of localized, and practically non-ovearlag
states. The natural consequence of this observation i®to se
after the true ground state of the system in the form of gen-
eralized HFGPBAG states, consisting of coexisting BECs in
various single atom orbitals from the low energy tail of the
spectrum. In the presence of a random potential, this corre-
sponds to the so-callddfshits stategLS) [E].

In this Letter, we address this question, and considér a
dimensional Bose gas, placed in a 1D random potential at m
zero temperature with repulsive interactions. &lpriori re-  Figure 1: (color online) Schematic phase diagram of an cdlch
striction is imposed either on the amplitude or on the correBose gas in a 1D random potential. The dashed lines représent
lation length of the random potential. We show that generalboundaries (corresponding ¢essoversidentified in this work and
ized HFGPBJG states indeed provide a very good descriptiofre controlled by the parametar = 1”/2moy Vk (see text). The
of the many body ground state for interactions ranging fromf*@tched part corresponds to a forbiden zqne:(Vimin).




2L in the presence of a 1D random potenti#l(z), and
trapped radially in a 2D harmonic trap with a trapping fre- . B
quencyw . We assume that the random potential is bounded gof  checke (Va0 Boior=2 10 L)
below [Vinin = min(V')] and we use the scaling forii(z) = oo L stretched exponentil fi
Vrou(z/0w), wherev(u) is a random function with both typi-
cal amplitude and correlation length equal to ur@ [15]isTh
form is suitable for scaling arguments, which will turn oat t
be fruitful in the following. ;
. . . : -5000 0O 5000
For numerical purposes, we will consider a 1D speckle po- 0000 s ‘0 030 102)00 15600 20000
tential [19, [1p] similar to that used if][§] §,]10]. In brief, eIE,
v(u) is random, with an exponential probability distribution
P(v) = Q(v + l)exp[.—(v + 1)], where® is the Heavi- ol ® ] Xo Xe
side function. Thusyp is bounded below bymn = —1, ;
and we have(v) = 0 and (v?) = 1. In addition, for a foF i
square aperture, the correlation function reads)v(u’)) = 0 AT LS S L WS
2 -1 -075 -05 -025 0 025 05 075 1
sinc[\/3/2(u7u’)} . zZIL

Depending on the competition between interactions an
disorder, the Bose gas will enter various regimes that we dISparticles in a speckle random potential. Inset: Partigypatatio. b)

cuss below. _ _ Low-energy Lifshits eigenstates. Heli = 7 /2mL>.
BEC regime -For large interactions, the Bose gas enters a

BEC regime [P[18] (possibly quasi-BEC in 1P ]17]) where
the local density is given by the meanfield Gross-Pitaevskiiith 5, = o/£(p). In the centerp = 0, (or strictly in 1D),
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q—'igure 2: (color online) a) Cumulative density of states iofjke-

equation (GPE), the validity condition of the BEC regime thus reduces to
3202 2 2
w= h2V\;\_/ﬁ) + mw;p +V(z)+gn(), (@) p>> Vey/E0(0r/€) (4)
ma/Nn

with p, the radial coordinate and, the chemical potential of with & = £(0). In the limit{ < o, €. for

the Bose gas. This regime has been investigated in details in
the pure 1D case in Reﬂ18]. Here, we focus on the case of
a shallow radial trap/iw, < p) such that the radial profile
of the Bose gas is a TF inverted parabola. Proceeding as in
Ref [18], we find that the first-order perturbative solutidn o
Eq. (1) is a generalized TF profile withszreened random

potentiat

p> h?/2mo? (5)

e random potential is hardly screenétz) ~ V(z).
If condition @) is not fulfilled, the BEC will fragment at the
positions of some local maxima of the random potential and
thus form an insulator. In each fragment, the Bose gas will be
in the BEC regime and will thus be compressible. T%refore,
~ the fragmented BEC can be identified witBase glas§{lL3].
Vnlp,2) = V/ulp) /g [1 ~Vip, Z)/Qﬂ(p)} (2) Non-interacting regime -Consider now the non interacting
0 - ) case. Here, we are left with the eigenproblem of the single-
wherey(p) = u[1 — (p/R1)?] is the local chemical poten- particle Hamiltonianp, = —h292/2m + V(z). In the pres-
tial, andR | = /2u/mw? is the radial TF half-siz [19]. In  ence of disorder, the eigenstates aseallyall localized [p].
Eq. 3).V(p,2) = [ dz" G(p,z")V(z — 2') is thescreened  Usual characteristics of localized states are (i) a finitaliza-
i i _ 1 _ =] tion length, (ii) a dense pure point density of sta®s;,, and
potential (L8] with G(p’_z) VZe(p) eXp_( é(p)/\/?)' and (iii) a Ia?ge if\\/)erse partigipatign ratid?; ! i [dz |xu(2)"
&(p) = N/~/2mp(p) being the local healing length. The So- |t the random potential is bounded below, so is the spectrum
lution (@) corresponds to a delocalizeisordered BEC (€2 > Vmin) and the low-lying energy states belong to the so-
The validity of the perturbative approach requires thegyeq jtshits tail of the spectrum which is characterized by

last term in Eq. |]2) to be much smaller than yn_it;e. a stretched exponential cumulative density of states (gDOS
u(p) > AV (p), whereAV (p) is the standard deviation of

the screened random potential at the radial positiofrrom Nap(€) = [ de’ Dyp(€) ~ exp (*C\/ e—‘@mm)' in 1D [24].

the above expreésion for the screened potentialye can Typical numerical results for the case of the speckle poten-
generally writeAV (p) = Vey/S%(0/(p)). In the case of tial are shown in Fig[|2. As expected, the cDOS follows the
the speckle potential, approximating the correlation fiomc ~ stretched exponential form, the lowest LSs are well spgtial
to a Gaussiark exp (_22/203), we find ] localized, and the participation ratio increases with gnén-
dicating a decreasing localization. Note, however, fh@?) is
almost constant at low energy. It is also worth noting tHat, i
the size of the systen2 () is much larger than the extension

S0(G) = 52 + (1 — 252)5, &8 / we”, (3



of the LSs, they hardly overlap. These properties will tuuh o
to be crucial in the following.

Lifshits regime -We turn now to the regime of weak inter-
actions, where the chemical potential, lies in the Lifshits

tail of the spectrum. In this regime, owing to the fact that

the lowest single particle LSs hardly overlap, it is usetul t
work in the basis of the LSq,x,,» € N}. These can be re-
garded as trapping micro-sites populated with Bosons in

the quantum staté, (p)x. (z), where the longitudinal motion

is frozen toy,,, and¢,, accounts for the radial extension in the

micro-siterv. Therefore, the many body wavefunction reads:

N-1 [h[,,+NV1

U(ry,..,ry) = S H H ¢y(pl)XV(Zl)‘| (6)

v=0 =M,

where! labels the particles), = >, ,_, N, andS is

3

whereu = z/ox, ., (u) = \/gax, () andag = h?/2moi V.
It is then clear that, upon renormalization of energies and
lengths, all characteristics of the spectrum depend onthen
parameteny (and on the model of disorder).

Scaling arguments show that, in the Lifshits tail,

and /" = Uin(aR) , (11)

L €

Nap(e) = U—RC (Oém VR) -
where( andn arev-dependent functions. Finally, inserting
these expressions into Eﬁl (9) and solving formally, weiabta
the validity condition of the Lifshits regime:

1< VRE(aw), (12)
whereF is the solution of, (o, F(ax)) = n(ax), which can
be numerically computed for any model of disorder

the bosonic symmetrization operator, accounting for permu We are now in the position to draw the schematic phase di-

tations of couple$p;, z;). The meanfield energy functional of
the interacting Bose gas then reads

L —12V2 mw? p?
) = S faner (Tt 4 2]
Ny
+ 35 [ v,

whereU, = g [dz |x.(z)|* is the local interaction energy
in the Lifshits state (LS)),. Interestingly, the interaction
energy is directly proportional to the participation ratiche
v-th LS: U, = ¢gP,!. Minimizing E[¥] for a fixed number
of particles V] — 1>~ N, — min), we end up with the
equation

+ €u> o

(7)

—h*v2% + mw? p?

NDUD 1/2 [
L T N6 | 6

(n—e)dy = (8)
Solving Eq. [B) for each micro-site, one can unambigu-
ously determine the atom numbel§,, and the corresponding
wavefunctionsg,. Since Eq.[(8) is a 2D GPHyp, |2 will con-
tinuously turn from a Gaussian (fétw, > u) to an inverted
parabola (foriw, < p) asu increases (see below).

Let us determine the validity condition of the Lifshits

regime. We calb™® the index of the highest LS such that

all lower LSs hardly overlap. The above Lifshits descriptio
is correct if the chemical potential, is small enough so that
the number of populated LSs is smaller thd#, i.e. if
Nap(p) < v™. (9)
Obviously, both\>;, andv™®* depend on the model of dis-
order,v, and on both parametel& andoy, and are difficult

to compute in a general fashion. General properties can nev-

agram of the zero temperature Bose gas vensaisd Vi (see
Fig.[}). From the discussion above, it appears useful to éx th
parametery, = h%/2mao2Vi, while varyingVz. The bound-
aries between the various regimes (Lifshits, fragment&€; B
and screened BEC) result from the competition between the
interactions and the disorder and are given by Eq§] [45-12)
We stress that these are smooth crossovers rather than phase
transitions. Interestingly enough, it can be shown eahbify t

all these boundaries are straight lines with slopes depgndi
on the parameter;. Thisis clear from Eq.@Z) for the bound-
ary between the Lifshits and the fragmented regimes. In ad-
dition, sinceVk = (h?/2mo?2)/ag, the non-screening condi-
tion () reduces tgi > o, Vk. Finally, sincen = h?/2mé?,

and thusr /€ = ﬁ\/ﬂ/VR, the non-fragmented BEC con-
dition @) also corresponds to a straight line in the phaae di
gram of Fig[]L with a slope depending og.

Concretely, the chemical potential, and thus the tran-
sitions between the various regimes, will be determined by
the mean atomic density;, and the coupling constany,
Both can be accurately controlled in experiments with ultra
cold atoms. It is thus useful to compute the equation of state
w = (7, g), of the Bose gas in all the identified regimes.

Tight radial confinement Let us first assume a tight radial
confinement:;y/’ — ¢, < hw, wherey' = p — hw,. The
radial wavefunctions are then frozen to zero point osailie,
by (p) = exp(—p?/213)/+/wlL wherel, = \/h/mw, is the
width of the ground state of the 2D-radial harmonic osailtat

In the BEC regimey’ > AV, it follows from Eq. (}) that

p' =g (13)

up to first order of the perturbation series.
In the Lifshits regime, we find

N, = [ —¢€]/U, ifu >e

ertheless be obtained using scaling arguments. To do so, we

rewrite the single-particle eigenproblem as

€

oo (1) = —axdupy (u) + o(wey (u) - (10)
R

N, 0 otherwise, (14)
by inserting the above expression {gr(p) into Eq. GS). Turn-

ing to a continuous formulation and using the normalization



conditionN = [ de Dy (e)N(¢), we deduce the equation of Proceeding as in the 1D case, we finally find

state of the Bose gas in the Lifshits regime:
s

Ng = /_H de Dop(€) (n—€)* Pe) . (18)

W 2
Ng = / de Dar(e) (1 —€) P(e) . (15) M@l
- Applying this formula to the considered model of disorder al
Upon computing the integral in EJ. {15), one can unambigulows us to compute the populations,,, of the various LSs,
ously determine a relation between the chemical potential, ., and the corresponding radial extensiops,
and the interaction parameter, This relation is in general In summary, we have presented a complete picture of the
non-universali(e. it depends on the model of disorde), guantum phases of a Bose gas in a 1D random potential, in-
In the case of a speckle random potential, we have found thajuding the novel description of the weakly interactinfghits
Noz(e) = Alag) (L) exp (,C(QR)/ [T Va + 1)’ and as- 9lassphase[[31]. We have provided analytical formulae for
) CT\OR . : the frontiers between the various phases and we have shown
suming a participation ratid?, = oxp, (), independent of . .
. e : . that the corresponding crossovers are controlled by tlee-int
the energy in the Lifshits tail (see the Inset of Fﬂg. 2a), \wd fi . . . .
action parameter. Since this can be controlled in cold gases
future experiments should be able to probe the whole diagram
) We thank G. Shlyapnikov, L. Santos, D. Gangardt and
, (16)

(o)

Vi /[ Ve+1

with " being the incomplete gamma function, and witts ),
¢(ar) andpg (ag) determined numerically.

Using a numerical minimization of the energy func-
tional (7) in the Gross-Pitaevskii formulatioh J11], we com
pute the chemical potential of the Bose gas in a wide range
of interactions. The result presented in Ab. 3 shows a clear
crossoverfrom the Lifshits to the BEC regimes, while the in-  « yr_: Rt p: /7 wwv. at onopti c. 1]
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