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Abbreviations:  

CoA : Coenzyme A 
DAG : Diacylglycerol 
DGD : DGDG synthase 
DGDG : Digalactosyldiacylglycerol 
DPG : Diphosphatidylglycerol 
ER : Endoplasmic reticulum 
MGD : MGDG synthase 
MGDG : Monogalactosyldiacylglycerol 
LTP : Lipid transfer protein 
LysoPC : Lysophosphatidylcholine 
PA : Phosphatidate 
PAP : Phosphatidate phosphatase 
PC : Phosphatidylcholine 
PE : Phosphatidylethanolamine 
PG : Phosphatidylglycerol 
PI : Phosphatidylinositol 
PI-TP: Phosphatidylinositol transfer protein 
PS : Phosphatidylserine 
SQD : SQDG synthase 
SQDG : Sulfoquinovosyldiacylglycerol 



 

 

 

3

Abstract 

Membranes of plant organelles have specific glycerolipid compositions. Selective distribution 

of lipids at the levels of subcellular organelles, membrane leaflets and membrane domains 

reflects a complex and finely tuned lipid homeostasis. Glycerolipid neosynthesis occurs 

mainly in plastid envelope and endoplasmic reticulum membranes. Since most lipids are not 

only present in the membranes where they are synthesised, one cannot explain membrane 

specific lipid distribution by metabolic processes confined in each membrane compartment. In 

this review, we present our current understanding of glycerolipid trafficking in plant cells. We 

examine the potential mechanisms involved in lipid transport inside bilayers and from one 

membrane to another. We survey lipid transfers going through vesicular membrane flow and 

those dependent on lipid transfer proteins at membrane contact sites. By introducing recently 

described membrane lipid reorganisation during phosphate deprivation and recent 

developments issued from mutant analyses, we detail the specific lipid transfers towards or 

outwards the chloroplast envelope. 
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1. Introduction 

Plant cell membranes contain a wide range of glycerolipids which are not randomly allocated. 

A selective distribution at the levels of subcellular organelles, membrane leaflets and 

membrane domains indicates a complex and finely tuned lipid homeostasis. Additionally, the 

distribution remains relatively well conserved among tissues and plants species (Table 1). In 

standard plant culture conditions, on one hand, glycolipids, i.e. sulfolipid and galactolipids, 

are restricted to plastid membranes and, on the other hand, phospholipids are the main 

components of extraplastidic membranes. PE is excluded from plastidic membranes, PC is 

absent from the inner membranes of chloroplasts and DPG is restricted to mitochondria inner 

membrane. Sterols and glycosphingolipids are present in plant membranes although in much 

lower amounts than glycerolipids [for reviews see 1, 2]. Like in mammalian cells, sterols and 

glycosphingolipids are not homogenously distributed among membranes and are notably 

present in the plasma membrane where they are likely involved in membrane domain 

organisation.  

In plants, phosphate deprivation has been reported to decrease the phospholipid content, 

consistent with a mobilization of the phosphate reserve, and conversely to increase non-

phosphorous membrane lipids such as DGDG and SQDG [3, 4]. Moreover a form of DGDG 

with specific fatty acids: 16:0 at glycerol sn1 position and 18:2 at sn2 position is especially 

enhanced [5, 6]. Correlated to the lipid composition changes there is also a strong 

modification of the lipid distribution between membranes. Upon phosphate deprivation, 

DGDG, a specific plastid lipid in standard conditions, was found in the plasma membrane [7, 

8], a membranous compartment disconnected from plastid membranes, but dynamically 

connected to the overall endomembrane system. Moreover, several lines of evidence have 
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shown that large amounts of DGDG are also present in mitochondria upon phosphate 

deprivation [9].  

One cannot explain the membrane specific lipid distribution only by metabolic processes 

confined in each membrane compartment simply because most lipids are not just present in 

membranes where they were synthesised. The lipid distribution is usually stable despite the 

extensive membrane trafficking that occurs between organelles. The maintained specific lipid 

distribution relies therefore on molecular mechanisms of lipid transport. These mechanisms 

have been studied mostly in yeast and in mammalian cells [for a review 10] and very few data 

have been collected in plant models. Besides information from genetics and proteomics 

analyses, we believe that disturbance of lipid distribution during phosphate deprivation 

represents a promising tool to unravel these molecular mechanisms in plants. In this review, 

we discuss recent data describing the potential mechanisms involved in glycerolipid 

trafficking in plant cells, including recently described membrane lipid reorganization during 

phosphate deprivation. 

2. Membrane glycerolipid diffusion  

Membrane lipids are subjected to three kinds of dispersive forces: lateral diffusion, diffusion 

across membranes (flip-flop) and movement outside the source membrane, possibly reaching 

other membranes through aqueous phase. Based on the very rapid spontaneous lateral 

diffusion of lipids within membrane lateral surfaces (0.1 to 1 µm2.s-1; [11]), the lipid 

distribution in vesicular connected organelles should be homogenous. The fact that this is 

clearly not the case indicates that very dynamic homeostatic mechanisms are involved to 

maintain the lipid composition of each organelle.  

In comparison with lateral diffusion, lipid diffusion between the two leaflets of a membrane 

bilayer or from one membrane to another is very slow (Figure 1). The spontaneous flip-flop 
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movement through a lipid bilayer takes less than one second for DAG but it takes hours for 

lipids with larger polar heads [12]. 

Lipid diffusion between different membranes is fast for single fatty acid chain lipids that 

easily partition into the aqueous phase, like lysoPC, or lipids containing two short fatty acid 

chain (4 to 6 carbons) [12, 13]. By contrast, there is almost no spontaneous transfer of regular 

diacyl lipids although this trafficking is essential for organelle functioning and cell survival. 

Vesicular and non-vesicular transport systems have been reported in plants as in other 

eukaryotic cells. The vesicular pathway supports a complex membrane flow which couples 

lipid and protein movements while non-vesicular pathways require monomeric exchange of 

single lipid molecules. Unlike the vesicular pathway, non-vesicular pathways do not involve 

membrane fusions but rather tight contacts between membranes. A number of enzymes are 

required to ensure and regulate lipid movements and it is likely that enzymes are also 

necessary to control lateral and transbilayer movements both at membrane fusion points in 

vesicular processes and at contact sites in non-vesicular processes. 

 

3. Flip-flop movements 

Several types of flip-flop movement exist [for review, see 14]. The spontaneous movement 

across the bilayer is dependent only on the physical and chemical properties of lipids and 

membranes. In vivo, DAG movement seems mostly driven by diffusive forces whereas 

proteins are required for significant rates of phospholipid and glycolipid transbilayer 

movements. Energy-independent flippases catalyse an ATP-independent movement, in which 

lipids probably move along the polar surface created by these proteins [15]. These flippases 

can be specific for some lipid classes but they cannot assist the movement of lipids against a 

physicochemical gradient. They maintain bilayer symmetry by contrast with ATP-dependent 
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translocases that can accumulate specific lipid classes against equilibrated gradients. ATP-

dependent translocases are involved in the preservation of membrane asymmetry [16].  

3.1. Energy-independent flippases  

To our knowledge, no flippase has been characterized in plant cells although some gene 

sequences exhibit homologies with flippases from other organisms. The biosynthesis of ER 

phospholipids is supposed to be localised in the cytosolic leaflet like in other eukaryotic cells 

[17], therefore half of the newly synthesised lipids has to be transferred to the other leaflet. In 

yeast and mammalian cells, the ATP-independent flip-flop movement in the ER membrane is 

ten times faster than in membranes that do not contain proteins. This movement is sensitive to 

proteases [14] but it is unclear whether it involves a dedicated type of enzymes or the mere 

presence of proteins. Interestingly, peptides that mimic the α-helices of transmembrane 

proteins can stimulate phospholipid flip-flop in liposomes [18]. Enhanced flippase-type 

transfers are also necessary at membrane contact sites where lipids should be transferred from 

the cytosolic leaflet of the donor membrane to the cytosolic leaflet of the acceptor membrane 

[19]. It is possible that such flippases are involved in the transfer of DGDG from chloroplasts 

to mitochondria during phosphate deprivation since this transfer seems related to membrane 

contact [9 and see below].  

The first flippases that have been characterized in eukaryotic cells are the RFT1 protein, a 

yeast reticulum pyrophosphoryloligosaccharide-dolichol flippase [20], and the scramblase, a 

red blood cell plasma membrane calcium-dependent flippase [21]. RFT1 transfers dolichol 

from the reticulum cytosolic leaflet, where it is synthesised, to the lumenal leaflet where it is 

eventually located [20]. In Arabidopsis, one RFT1 homologue can be retrieved (At5g07630), 

but is still functionally uncharacterized. In red blood cell membranes, sphingomyelin and 

most of the PC are located in the plasma membrane outer leaflet whereas PS and a part of the 
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PE are in the cytosolic leaflet. An increase of calcium influx activates the scramblase, which 

equilibrates the phospholipid composition between the two plasma membrane leaflets, by 

catalysing bidirectional transfer of each lipid species. Movement of PS to the outer leaflet can 

subsequently induce blood coagulation [21]. In Arabidopsis, a scramblase-related gene has a 

weak but significant similarity (At2g04940) and should be examined in the context of lipid 

transfers. 

3.2.  Energy-dependent translocases 

In plants, many reports highlight asymmetric distributions of lipids in several membranes. 

The plant plasma membrane is asymmetric, like in red blood cells, and PS externalisation can 

induce cell death processes [22]. The above-mentioned scramblase-like plant protein may 

play a role in affecting the plasma membrane asymmetry. The thylakoids show a marked 

asymmetry in the transversal distribution of the lipids with an enrichment of the outer leaflet 

in MGDG and PG while DGDG and SQDG are essentially confined to the inner leaflet [23]. 

Since these lipids are linked to specific structures of the photosystems, the lipid asymmetry of 

the thylakoids is likely to reflect the organisation of the photosynthetic machinery [24]. It has 

also been proposed that the asymmetry is preestablished in the inner envelope membrane due 

to the topography of lipid synthesising proteins and is transferred to thylakoids by membrane 

fusion [25]. In the plastid two-membrane envelope, PC is present only in the cytosolic leaflet 

of the outer membrane [26]. The tonoplast membrane exhibits a slight asymmetry due to a 

higher amount of PE in the cytosolic leaflet [27]. The biological significance of the 

asymmetry of plastid envelope and tonoplast membranes is still unknown but is possibly 

related to signalling or membrane identification mechanism.  

Two translocase families are well documented. The first family includes aminophospholipid 

translocases that belongs to the P-type ATPase superfamily. The first identified enzyme of 
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this family was DRS2, a yeast translocase [28]. The drs2 mutant is cold-sensitive and has no 

asymmetrical accumulation of PS in the inner leaflet of the plasma membrane. Although the 

initial study was controversial, new data supports the proposal that DRS2 plays a role in the 

translocation of lipids in the trans-Golgi and endosomal compartments during budding of 

membrane vesicles [for review, see 14]. In Arabidopsis, eleven genes belong to this family 

(ALA1 to ALA11) (Table 2). ALA1 exhibits the strongest homology to DRS2 and its 

expression in drs2 yeast mutant restores cold resistance and internalisation of the plasma 

membrane PS [29]. However, ALA1 localization and function in planta are not characterized. 

Furthermore, the roles of the other ALA proteins remain speculative.  

The second family belongs to the ABC (ATP-binding cassette) protein superfamily that 

comprises transporters for a whole variety of organic and inorganic compounds. Typically, 

ABC proteins possess two nucleotide-binding domains and two transmembrane domains. 

Multi-drug resistance studies in cancerous cells and in yeast first suggested that some ABC 

transporters participated in the externalisation of plasma membrane lipids and there are now 

many indications for lipid transport mediated by ABC proteins in cellular membranes [for 

reviews, see 30, 31]. Arabidopsis contains 129 genes belonging to this family [32]. Data on 

plant ABC transporters indicate that they play a key role in numerous processes necessary for 

plant development: chlorophyll biosynthesis, iron-sulphur cluster formation, stomata 

movement and possibly ionic fluxes [for review, see 33]. Recent reports have pointed out 

their role in plant lipid transport (Table 2). A potential transporter of plastid fatty acids, 

identified in the Arabidopsis genome (At1g54350), belongs to this family [34]. The major site 

of de novo synthesis of fatty acids in plant cells is the plastid stroma. Fatty acids are produced 

predominantly as C18:1-ACP and C16:0-ACP and are metabolic substrates for numerous 

pathways such as membrane glycerolipid biosyntheses in the plastid envelope as well as in the 



 

 

 

11

ER [for a review see 2]. An acyl-ACP thioesterase, localized in the inner envelope membrane, 

can hydrolyze acyl-ACP and release free fatty acids. Free fatty acids released from the inner 

envelope are channelled to the outer envelope, possibly via the At1g54350 ABC transporter 

and reactivated to acyl-CoA in the outer envelope [35]. 

Xu et al. identified another chloroplastic ABC type protein (TGD1) (At1g19800) that is likely 

dedicated to the import of phosphatidate from the ER to the chloroplast for the synthesis of 

eukaryotic galactoglycerolipids [36, 37]. The so-called prokaryotic and eukaryotic types of 

galactoglycerolipid structures exist in plants [for a review see 2]. Both types are generated in 

the chloroplast envelope by galactosylation of DAG molecular species of distinct origins. 

Whereas prokaryotic DAG is fully synthesized in plastids, eukaryotic DAG originates from 

PC formed in the ER. Studies with labelled lipid precursors indicated that PC provides its 

eukaryotic DAG backbone to plastid glycerolipids [38, 39]. This transfer requires desaturated 

PC since the fad2 Arabidopsis mutant, deficient in the desaturation of C18:1 localised in ER, 

contains a smaller eukaryotic/prokaryotic monogalactosyldiacylglycerol (MGDG) ratio than 

wild type plants [40]. Although PC is present in the outer membrane of the plastid envelope, 

the only known site of PC de novo biosynthesis is localised in the ER. A direct import of PC 

from ER, or an import of intermediates derived from endoplasmic reticulum PC, possibly 

DAG or phosphatidate, is therefore required for the synthesis of eukaryotic galactolipids 

(Figure 2). It is still unclear which lipid is transported. Some clues have been deduced from 

the in-depth examination of lipids of plant cell suspensions after transferring the cells into a 

phosphate-deprived medium [6]. Since phosphate starvation induced a high increase in the 

synthesis of eukaryotic DGDG (notably the above-mentioned 16:0-18:2 molecular species), 

the exposure to phosphate starvation conditions was therefore a way to analyze the passage of 

the DAG-backbone from the ER PC to the plastid galactolipids. Phosphate starvation induced 
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an increase of DAG with an identical fatty acid composition as PC. Since DAG was not 

detected in plastid membranes and a phosphatidate pool was not detected in the cells, Jouhet 

et al. proposed that DAG is the molecule transported from ER to chloroplast. Several 

phospholipases C specifically activated during Pi deprivation are probably involved in the 

formation of this DAG pool [41, 42]. The transferred DAG is presumably galactosylated into 

MGDG and DGDG through the actions of the enzymes MGD2 (or MGD3) and DGD1 (or 

DGD2) induced by phosphate deprivation and present in the outer envelope membrane.   

However, the existence of a phospholipase D (PLDζ2) activated by phosphate deprivation 

[42, 43], the accumulation of phosphatidate in the tgd1 mutant and the localization of TGD1 

in the chloroplast inner envelope membrane [37] suggest that the transported molecule could 

be phosphatidate. To understand this latter scheme, the precise localization of the 

phosphatidic acid phosphatase (PAP) involved in the transformation of eukaryotic 

phosphatidate into DAG is crucial since part of the eukaryotic DAG is galactosylated by 

MGD1, the constitutive MGDG synthase that is present in the inner envelope membrane. In 

some plants such as spinach, PAP has been detected in the inner envelope membrane and this 

was considered to be dedicated to the formation of prokaryotic DAG [for a review see 2]. 

Therefore, either this PAP is also involved in the formation of eukaryotic DAG or a 

complementary transport of eukaryotic DAG is necessary. Moreover, in some other plants 

such as pea, even though MGDG synthase is present in the inner envelope membrane, PAP 

activity has never been detected in the envelope, possibly related to the fact that no 

prokaryotic DAG is formed in these plants. Therefore, at least in plants such as pea, transport 

of eukaryotic DAG up to the inner envelope membrane is necessary to ensure MGDG 

synthesis and thylakoid development. Altogether, it is likely that in all plants eukaryotic DAG 

is transported from the ER to the inner envelope membrane. Recent findings from the tgd1 
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mutant analysis indicate that eukaryotic phosphatidate is also transported to the inner 

envelope membrane where it plays a role in enhancing of MGDG synthesis (Figure 2).  

4. Vesicular lipid transfer 

4.1.  Secretory pathway 

Since most phospholipids, sterol, sphingolipid and many proteins are synthesized in the ER, 

this compartment can be considered as a cell central metabolic organelle in relation with other 

compartments. During interphase, the ER is in direct connection with the nucleus. On electron 

micrographs, the ER and nucleus membranes appear as connected, although a lumen 

constriction is observed at the junction area [44]. With or without Golgi participation, the ER 

is involved in protein and lipid supply for the vacuolar and plasma membranes by vesicles 

moving along actin filaments [45]. 

The general mechanism of vesicular transfer is carried out in several steps [for reviews see, 

46, 47]. Briefly, small type Ras GTPases, coupled to GTP exchange factors, support the 

recruiting of protein complexes and their anchoring to the donor membrane. Coat proteins, 

like adaptatin or clathrin, can participate with these complexes. Then, vesicles extrude from 

the donor membrane (following mechanisms that remain to be fully characterized), and move 

away using the actin cytoskeleton and myosin. Dynamin, a large GTPase is involved in the 

scission of nascent vesicles from the parent membrane. Anchoring and fusion to the target 

membrane are mediated by SNARE (Soluble N-ethylmaleimide-sensitive factor Attachment 

protein REceptors) proteins, located both on the vesicles (v-SNARE) and on the target 

membrane (t-SNARE), and small GTPases.  

This process has been intensively studied at the level of protein trafficking and, although 

vesicles obviously transfer lipid material, very little data on lipids exist. In the following 

paragraphs, we present current information on the molecular machineries involved in 
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vesicular trafficking in plants, specifically in endomembranes (Figure 3) and from chloroplast 

envelope to thylakoids. This is then developed in relation to specific lipid transfers.  

4.1.1. Reticulum and Golgi exchanges  

These exchanges are mediated by transport vesicles that bud from the donor membrane due to 

the assembly of a cytosolic coat protein known as coatomer protein I or II. Vesicles 

containing these proteins are called respectively COPI and COPII. The ER to Golgi pathway 

transfers phospholipids, sterols, sphingolipids and proteins. In mammalian and yeast, this 

transfer is mediated by COPII-type coated vesicles. In plants, the Golgi apparatus is close to 

the ER but, although proteins exhibiting substantial homology with partners of the COPII 

complex are known, it was never possible to visualize any COPII-type vesicles. The ER to 

Golgi transfer does not seem to imply a vesicular stage [48]. It probably works with the 

COPII machinery but a COPII independent pathway is also possible [49]. Surprisingly, the 

transfer from ER to Golgi is independent of actin or microtubules [50]. The long-standing 

contact between the reticulum and the Golgi is apparently sufficient to support the transfer.  

Several studies have shown the existence of a Golgi to ER pathway in plants presumably 

working through COPI vesicles [48]. There is no doubt that the COPI machinery exists in 

plants and it is likely that COPI and COPII pathways are interdependent due to the necessity 

for recycling the regulatory machinery of the secretory pathway. The exact role of COPI 

vesicles in the Golgi to ER transfer has been a matter of controversy mostly because much of 

the information comes from use of the secretory pathway inhibitor BFA, which affects also 

the ER to Golgi pathway. No data is available about the importance of this COPI and COPII 

trafficking on the lipid distribution in the cell.  

4.1.2. Transfer to the vacuoles 

In plants, two types of vacuoles exist. On one hand, the storage vacuole is present in the 

storage tissues, like cotyledons and endosperm. It is characterised by a neutral pH and by the 
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presence of α-TIP (tonoplast integral protein) and storage proteins, like prolamins and 

globulins. On the other hand, the lytic vacuole of vegetative tissues is characterised by an 

acidic pH and presence of γ-TIP and lumenal proteins. Theses two vacuoles have different 

protein-sorting mechanisms [44], and little is  known about their lipid sorting. 

Although the storage vacuole lipid composition is not yet characterised, different mechanisms 

of transfers are identified depending on tissues and plant species. Two types of vesicles are 

possibly present: the first type originating from the ER, corresponds to the so-called 

“precursor-accumulating compartment” that contains prolamins; the other type (deriving from 

the Golgi), corresponds to dense vesicles that contain globulins [51]. Altogether, proteins 

destined for the storage vacuole have an addressing domain in their C-terminal and their 

transfer involves the activation by PI-4P phosphoinositide since this trafficking is sensitive to 

Wortmaninn, a PI-kinase inhibitor [52].  

The lytic vacuole can be compared to animal lysosomes. Lipids from clathrin-coated vesicles 

are transferred from the Golgi to a prevacuolar compartment, with the intervention of the actin 

cytoskeleton and dynamin [45]. Transfer between the prevacuolar compartment and the lytic 

vacuole is not yet characterised. PI-3P is involved in the vesicular transfer from the Golgi to 

the lytic vacuole. In animals and yeast, a protein called EEA (Early Endosome Antigen) binds 

PI-3P with the participation of RabF GTPase and drives to the endosome fusion. The 

overexpression of the EEA PI-3P binding domain in Arabidopsis showed that this domain 

was sorted gradually from the Golgi to the lytic vacuole via the prevacuolar compartment. By 

competition mechanism, this overexpression inhibited the trafficking of vacuole proteins 

while trapping free PI-3P [53]. The plant ADL6 dynamin, that binds adaptatin and actin, has a 

PI-3P specific PH domain (phosphoinositide recognition domain) and its mutation abolished 

the trafficking of vacuole proteins. ADL6 is therefore an important protein that connects PI-
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3P local concentration and sorting to the vacuole [54]. However, nothing is known about the 

lipid composition and the lipid selectivity of all these vesicles. 

4.1.3. Transfer to the plasma membrane 

The plant cell plasma membrane is not homogenous and domains are detected. A domain is a 

membrane area, organised or not, whose lipid and/or protein composition differs from the 

bulk membrane composition. For example, rafts are membrane domains that resist detergent 

solubilization due to a special lipid/protein local composition. Lipid rafts were recently 

characterised in Tobacco and Arabidopsis [55, 56]. Rafts are enriched in sterols and 

sphingolipids and recruit a pool of specific proteins. Some other plant plasma membrane 

domains have been characterized by their divergent protein composition and their position in 

the cell: for example, in vascular cells, the auxin efflux transporter, PIN1, is localised in the 

basal pole whereas the auxin influx transporter is found at the apical pole [46].  

The plasma membrane derives from uncharacterized Golgi vesicles. Lipid trafficking from the 

Golgi to the plasma membrane occurs partly through these transport vesicles. The nature of 

the vesicles is not yet identified although the following data support their existence. It has 

been recently shown by live imaging of animal cells that transport vesicles from the Golgi 

directly fuse with the plasma membrane [57]. Consistently, in plant, monensin, a secretory 

pathway inhibitor, was shown to cause accumulation of part of the plasma membrane lipids in 

the Golgi [1]. This pathway is actin dependent [45]. The addressing of proteins to the plasma 

membrane seems to be controlled by the size and number of their hydrophobic domains [58]. 

Thus, preferential interactions between lipids and transmembrane proteins were proposed to 

manage protein sorting in the Golgi. In the future, it will be important to define the precise 

origins and fusion sites of vesicles in order to understand the general formation of the plasma 

membrane and the genesis of particular microdomains. Concerning rafts, one can suggest that, 
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according to animal cell data, domains may be organized in the Golgi and subsequently 

exported to the plasma membrane [59].  

PIP2 plays a role in the transport to the plasma membrane [60]. A PI transfer protein (PI-TP) 

was identified in Arabidopsis and was shown to be a SEC14 homolog allowing the 

complementation of a yeast sec14 mutant. In yeast, the inactivation of SEC14 impedes protein 

secretion at the Golgi level. Interestingly, mutations in genes involved in the nucleotidic 

pathway for PC biosynthesis abolish the effect of the sec14 mutation. In fact, SEC14 binds 

both PC and PI and is a phosphocholine:CTP cytidylyltransferase inhibitor. It has been 

proposed that SEC14 was a “sensor” of the plasma membrane lipid composition and could 

inhibit PC biosynthesis when PC is abundant. This hypothetical role has not been confirmed 

in planta [61]. Another PI-TP, AtSfh1p, belonging to the SEC14-nodulin family, was 

identified in Arabidopsis. AtSfh1p is likely a regulator of the intracellular trafficking in root 

hair by moving PIP2 to the areas of the plasma membrane where vesicles fuse [62]. 

By using monensin, Moreau et al. [1] tried to determine which lipid classes were transferred 

to plant plasma membrane via the vesicular pathway. When monensin was added, these 

authors observed in the plasma membrane the absence of PS, whereas the PI content was not 

affected, and PE and PC amounts were half reduced. Based on these results, they concluded 

that PS was exclusively transferred to the plasma membrane by vesicular pathway, PE and PC 

were partly transferred by the vesicular pathway and PI was transferred by another process. 

However Vincent et al. [63] observed that PS could also be synthesised directly in the plasma 

membrane by polar head exchange. The balance between PS from Golgi vesicles and PS 

generated by plasma membrane polar head exchange is unknown. 

4.1.4. Endocytosis and exocytosis 

Plant endocytosis was questioned for long due to the turgid pressure and cell wall rigidity that 

were supposed to prevent its existence. It is now well established that brefeldin A, an 
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exocytosis inhibitor, induces the internalisation of plasma membrane proteins, like the auxin-

carrier proteins AUX1 and PIN1, in a compartment called the endosome [45]. The distinction 

between the endosome and prevacuolar compartments is not clear [64] because the fate of 

internalised proteins divides in two parts: a part is recycled to the plasma membrane and the 

other destined for the lytic vacuole.  

Plant endocytosis implies at least two pathways: one is catalysed by clathrin-coated vesicles 

that are transported by the actin cytoskeleton and moved by myosin VIII [45]; another one, 

like the PIN endocytosis, depends on presence of sterols and of rafts [65]. In plants, no 

receptor for addressing sequences to clathrin-coated vesicles has been identified despite 

pointed homologies with some yeast receptors in the Arabidopsis genome [64]. However, two 

subunits of the AP2 adaptatin complex, αC-adaptatin and AP180, were characterised in 

Arabidopsis. AP180 catalyses clathrin assembly and αC-adaptatin binds to AP180 and to a 

dynamin like protein, probably ADL1 [66].  

The transfer from endosome/prevacuolar compartment to lytic vacuole is not characterized 

besides a PI-3P control [46]. In contrast, the mechanism of vesicle recycling to plasma 

membrane is partially characterized. The recycling machinery is actin-dependent and involves 

Arf1, GNOM and PIN since brefeldin A, an exocytosis inhibitor, aborts the recycling of the 

PIN auxin efflux facilitators to plasma membrane by inhibiting GNOM activity, i.e. GDP-

GTP exchange on Arf1, a small GTPase. This pathway is involved in the transfer of other 

proteins than PIN such as AUX1 and some ATPases. 

To conclude, very few studies concern glycerolipid trafficking through the secretory pathway. 

Altogether data indicate the following general features: a) ER-Golgi trafficking has no 

glycerolipid specificity whereas b) there is some selectivity concerning trafficking to the 

plasma membrane from the Golgi apparatus. In this case, PS is mainly transported by vesicles, 
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PE and PC are partially transferred by this route and PI is moved by another method 

(independent of the secretory pathway). Moreover, PI has an additional role in the regulation 

of trafficking. Different phosphorylated forms of PI favour sorting of vesicles to distinct 

compartments: PI-4P to storage vacuole, PI-3P to lytic vacuole and PIP2 to plasma membrane. 

4.2. Transfer from the plastid envelope to the thylakoids 

Glycerolipids i.e. MGDG, DGDG, PG and sulfolipid, synthesised in the plastid envelope [for 

review see 2] are selectively transported from the envelope inner membrane to the thylakoids 

[67, 25]. Our knowledge about this lipid transfer mechanism is very imprecise but there are 

some indications supporting vesicular trafficking. Vesicle budding from the plastid envelope 

inner membrane was observed by electronic microscopy [68, 69]. An Arabidopsis thaliana 

thylakoid formation 1 (Thf 1) gene product was shown to control a step required for the 

organization of vesicles derived from the envelope inner membrane into mature thylakoid 

stacks [70]. Bioinformatic studies suggest that a system similar to the COPII vesicular 

pathway is present in plastids [71]. The plastid vesicular pathway is dependent on ATP and 

stromal proteins [72, 73]. Some stromal proteins involved in this trafficking have been 

identified: a NSF homolog protein [74], a dynamin-like protein [75] and a vesicle inducing 

protein (VIPP1) [76]. In vipp1 (a VIPP -Vesicle Inducing Protein in Plastid 1-deleted mutant), 

thylakoid membrane formation and chloroplast vesicle transport are abolished, indicating that 

VIPP1 is essential for thylakoid maintenance by a vesicular pathway. Recent data demonstrate 

that VIPP1 organizes in a high molecular mass complex closely associated with the inner 

envelope membrane and suggest that the C-terminus of the protein protrudes from the 

complex  into the stroma of chloroplasts possibly for interaction with some other proteins 

[77]. Accordingly, soluble VIPP1 interacts with a HSP70B/CDJ2 chaperone pair [78]. By 

analogy with the action of the auxilin/Hsc70 chaperone pair with clathrin on clathrin-coated 
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vesicles, HSP70B/CDJ2 might disassemble and/or assemble VIPP1 oligomers to recycle the 

system for another turn of vesicle formation/transport [78].  

5. Transfer by membrane contact 

Whereas vesicular pathways are involved in the lipid provisioning for thylakoids and 

organelles of the secretory pathway, this process does not provide every necessary lipid for 

the plasma membrane. In addition, the secretory pathway is apparently not involved in the 

important lipid transfer from ER to plastids and from ER to mitochondria since no isolated 

vesicle has been clearly detected between ER and these semi autonomous organelles. Another 

type of lipid transfer has been proposed involving membrane contact between two organelles 

[79]. By contrast with vesicular trafficking, transfer by contact does not involve a transfer of a 

portion of a bilayer as such but a selective transfer of some components of the membrane. In 

plants, some indications of a lipid transfer by membrane contact between plastid envelope and 

mitochondria were recently reported [9].  

5.1.  Membrane contact sites 

In a topological plan at the cell scale, ER has many specialised sub domains that interact with 

other organelles such as mitochondria, vacuole, plasma membrane or plastids [44] (Figure 4). 

At a membrane contact site, membranes are typically separated by less than 10 nm [10]. The 

best-characterized membrane contact site was described in yeast between ER and 

mitochondria [19] during a study of the mechanisms for PE biosynthesis in mitochondria [80]. 

PE biosynthesis in mitochondria occurs by decarboxylation of PS and is dependent on PS 

supply by ER [79]. Specific ER domains called MAM (Mitochondria Associated Membranes) 

are enriched in PS synthase, supporting PS supply to mitochondria. The PS transfer from ER 

to the mitochondria outer membrane is not completely characterized. Data indicate ATP 

dependence of PS transfer, Ca2+ and Mg2+ stimulation, participation of a S100B protein 
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(Ca2+-modulated protein of the EF-hand type) that binds calcium and can interact with 

annexin, and existence of a regulatory system involving a SCF (Skp1/Cul1/F-box protein) 

ubiquitin ligase [19]. PS is finally transported to the mitochondria inner membrane by an 

unknown mechanism, maybe going through contact sites between the inner and outer 

membranes of mitochondria [81]. PS is decarboxylated in the mitochondria inner membrane 

to form PE before a retro-transfer to ER probably going also through MAM [79]. Plants are 

known to synthesize ethanolamine moieties of PE mainly by decarboxylation of free serine, 

but there is also some evidence for PS decarboxylation, with both mitochondrial and 

extramitochondrial PS decarboxylases [82, 83]. It is very likely that, in plants, the same kind 

of PS transfer through MAM occurs for synthesis of some part of the mitochondrial PE. In 

addition, MAM are also possibly involved in transfer of other mitochondrial phospholipids 

synthesized in ER such as PC and PE. 

Concerning transfer from ER to plasma membranes, it is believed, based on yeast studies, that 

PE is transferred by a similar kind of system involving PAM (Plasma membrane Associated 

Membrane) domains [10]. In plant, PAM-plasma membrane interactions contain actin 

cytoskeleton elements and are sensitive to cell wall digestion [84].  

Finally, similar interactions by membrane contacts were observed between ER and vacuoles. 

The ER anchoring to vacuole or to plasma membrane may serve as semi-immobile platforms 

to which actin filaments attach to drive endoplasmic streaming [44]. These contact sites 

possibly participate in the monensin insensitive transfer of PE, PC and PI, previously 

described, with the involvement of LTPs (see below). 

By analogy with MAM, PLAM (PLastid Associated Membrane) are supposed to be present at 

the periphery of the chloroplast [85]. PLAM could contribute to the transfer of eukaryotic 

DAG backbone from ER to plastids as described above. They could also facilitate the transfer 
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of PC from the ER to the outer membrane of the chloroplast envelope (Figure 2). Actually, 

partial hydrolysis of PC to LysoPC in the ER was proposed to favour PC transfer between ER 

and chloroplast since amphiphilic lysoPC can move easily through the cytosol [86]. In support 

to this hypothesis, a lysoPC acyltransferase activity was detected in the chloroplast envelope 

[86].  

Plant organelles are mobile inside the cell. Therefore, they can create membrane contact sites 

adapted to physiological need. Each organelle has its own mechanism for location within the 

cell and all organelle positions are coordinated in order to let each organelle fulfil its function 

[87]. These movements are mainly actin-dependent in vegetative cells and this mobility 

supports formation of organelle contact sites.  

Plastids produce also very dynamic tubular structures called stromules that are able to interact 

with other plastids and even with other type of organelles (Figure 4). Stromules are highly 

dynamic structures involving both membranes of the plastid envelope and containing stroma 

[for review, see 88]. In different tissues of tobacco and Arabidopsis, stromules interact with 

the nucleus, the plasma membrane and mitochondria. They possibly support transfers such as 

DAG, PC or DGDG transfers, although this role of stromules has never been demonstrated 

[89, 90]. Other plastid envelope structures have been visualised to resemble myelin. These 

structures were proposed to favour transfer of substances from plastid to vacuoles [91].  

5.2.  Lipid transfer protein or LTP 

Lipid-transfer proteins that shuttle across cytosolic gaps mediate the trafficking of particular 

lipids between organelles [10]. These proteins have to target both donor and acceptor 

membranes and, indeed, some LTP have been localized at membrane contact sites where two 

membranes were in close proximity [92]. For instance, LTPs of the Osh multigenic family 

(Osh1, 2 and 3) were localised at reticulum contact sites in yeast. Osh LTPs belong to the 
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oxysterol binding protein (OSBP) family and are presumably involved in the movement of 

sterol among cellular compartments, as was recently demonstrated for Osh4p [93]. In 

Arabidopsis, twelve homologs of OSBP were identified but none has been studied yet (Table 

2). Some LTPs have two targeting domains, one for the lipid donor membrane and the other 

for the lipid receptor membrane. Consequently, LTPs can either move from one membrane to 

another or bind to both membranes at the same time [10]. Holthuis and Levine pointed that 

simultaneous binding to both membranes should promote lipid transport. Since the absence of 

membrane fusion is a characteristic of membrane contact sites, one can question which 

proteins are involved for the stabilisation of the membrane contact sites and whether LTP may 

contribute to such stabilization. 

To date, only one protein “bridge” between two organelles has been characterized between 

the nucleus and the vacuole in yeast [94]. This “bridge” contains one nuclear envelope outer 

membrane protein (Nvj1p) that docks to a vacuole surface protein (Vac8p). This binding 

supports the formation of membrane contact sites between these two organelles without 

membrane fusion.  

Other LTP families were characterised without any information concerning their possible 

localization to membrane contact sites. StART (Steroidogenic-Acute-Response protein related 

lipid Transfer protein) proteins have a conserved domain around 200 amino acids involved in 

lipid or sterol binding. A protein of the StART family, CERT (CEramide Related Transfer 

protein), was recently characterised in mammalian cells [95]. CERT has a reticulum and a 

Golgi binding domain and transfers ceramide from the reticulum to the Golgi.  

Thirty-five proteins containing StART domains were identified in Arabidopsis. No CERT 

close homolog was found in plants, but six proteins are homologues to StARD2, a PC-binding 

protein [96]. The in silico studies of StARD2 homolog genes suggest that their products are 
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addressed either to mitochondria, or to plastids or to the secretory pathway (Table 2). These 

proteins are possible candidates for the vesicular independent trafficking of PC, the eukaryotic 

DAG backbone or of the minus Pi-induced mitochondrial DGDG.  

The GLTP (GLycolipid Transfer Protein) family includes proteins involved mainly in 

glycosphingolipid transfer; this family contains four genes in the Arabidopsis genome (Table 

2). The Arabidopsis ACD11 protein is involved in the cell death mechanism and, by contrast 

with the mammalian protein, it transfers only sphingosine [97]. No evidence was found of the 

GLTP involvement in galactolipid transfer in plants but because of some similarities of 

galactocerebroside to the glycosylglycerides, this hypothesis remains possible.  

In plants, some PI-TPs are also present. SEC14 and AtSfh1, previously described, are some 

examples. There are probably other PI-TP types although not yet known [62] (Table 2).  

Finally, a SCP2 (Sterol Carrier Protein 2) was identified in Arabidopsis, transferring sterols as 

well as phospholipids (Table 2). SCP2 is involved in the lipid transfer to the peroxysome for 

the lipid catabolism [98]. 

In plants, a large family of small soluble LTPs has been very well characterised genetically 

and structurally [for reviews, see 99, 100]. The proteins transfer lipids in vitro between two 

membranes and have no specificity for their lipid substrate. Sixty-seven genes were identified 

in Arabidopsis (Table 2), among which most of them have a secretory peptide, indicating that 

these proteins are excreted. The biological role of these proteins is unknown. They seem to be 

involved in embryogenesis, cell wall formation and pathogen resistance [101]. 

6. Conclusion 

Although requiring fatty acid delivery from the chloroplast, the plant ER is considered as a 

lipid autonomous organelle because most of the phospholipid biosynthesis occurs there. The 

nucleus and the Golgi are connected to the reticulum without any glycerolipid selection either 
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by membrane continuity or by dynamic vesicle exchanges. Vacuoles have vesicular 

connection to the ER and the plasma membrane via the prevacuolar compartment but nothing 

is known about the lipid delivery. More information is available concerning the lipids in the 

plasma membrane. In particular, PS and a part of PE and PC are known to derive from the 

Golgi by vesicular pathway. PI and part of PE and PC may come from the ER through PAM 

and the plasma membrane DGDG, induced upon phosphate deprivation, could derive from 

plastids either via direct contact with plastids possibly involving stromules, or via the ER.  

Semi-autonomous organelles such as mitochondria and plastids are not connected to the ER 

via vesicles. Lipid supply to mitochondria seems to occur exclusively through membrane 

contact sites. Besides the DPG that is synthesised de novo in mitochondria, phospholipids are 

transported from ER via MAM and, under phosphate deprivation, DGDG arrives through the 

plastid envelope-mitochondria contact sites. Plastids are relatively independent for their lipid 

synthesis due to the several lipid synthetic activities present in the envelope, but they need a 

supply of a diacylglycerol source from the ER for formation of their eukaryotic glycerolipids. 

This transfer is likely achieved via PLAM through a direct transfer of DAG molecules. 

However phosphatidate derived from reticulum PC plays also some role in plastid envelope 

galactolipid synthesis and the ABC protein TGD1 contributes to its transport to the inner 

envelope membrane. Contact sites between the two envelope membranes may be involved in 

the transfer since there is an intricate contribution of enzymatic activities of either the outer 

envelope membrane or the inner envelope membrane (for instance, for the synthesis of 

DGDG). In addition, plastids cannot achieve PC synthesis and need to import PC or LysoPC 

from the ER. Inside chloroplasts, MGDG, DGDG, PG and sulfolipid are transferred from the 

inner envelope membrane to the thylakoids by a vesicular transport that involves the VIPP1 

protein. 
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Altogether, the building of each type of membranes in plant cells requires an intricate 

relationship between lipid synthesis and lipid transfer. Nothing is known whether the final 

organisation of membranes is dependent or not on an original membrane pattern. Recent 

progress concerns lipid transfers but the molecular mechanisms of the transfer are still very 

elusive. Although some proteins have been identified, many candidates for lipid transfer 

proteins remain to be identified. One expects that analysis of gene expression under 

conditions such as phosphate deprivation which can affect lipid distribution should provide 

new candidate proteins for these transfers and their regulation. Since all lipid trafficking 

occurs in highly dynamic cells with mobile organelles, it is likely that cytoskeleton proteins 

and molecular motors are essential and closely related to the transport. An important point 

will be to understand how the lipid to be transferred are selected and when they are selected 

related to the transfer. Organisation of lipid domains in membranes is likely to be important 

but selection is expected to be also dependent on affinity of lipid transfer proteins for specific 

lipids. Finally, dissection of these mechanisms of transfer will be an important challenge for 

the future. 
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Table 1: Lipid composition of plant cell membranes according to [1]. Endomembrane 

analyses are derived from [102], [103], and [104]. Plastid and mitochondria membrane 

analyses were done respectively by [105] and [106].  
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Table 2: Arabidopsis thaliana genes potentially involved in lipid trafficking. Protein 

localization determined by TargetP [107] is indicated by P letter for plastid, M for 

mitochondria and S for secretory peptide presence. Protein localizations reported between 

brackets were obtained by biochemical experiments [62, 98]. TM: transmembrane domain 

number. 

 
LTP Bound lipid Arabidopsis locus Protein Evidence TM Localization 

Flippase 
RFT1  ? At5g07630  Sequence similarity 9 - 

scramblase ? At2g04940  Sequence similarity 0 M 
P-type ATPase 

Aminophospholipid translocase PS, PE At5g04930 ALA1 Functional complementation 10 - 
Aminophospholipid translocase ? At5g44240 ALA2 Sequence similarity 9 - 
Aminophospholipid translocase ? At1g59820 ALA3 Sequence similarity 8 M 
Aminophospholipid translocase ? At1g17500 ALA4 Sequence similarity 10 M 
Aminophospholipid translocase ? At1g72700 ALA5 Sequence similarity 10 M 
Aminophospholipid translocase ? At1g54280 ALA6 Sequence similarity 10 M 
Aminophospholipid translocase ? At3g13900 ALA7 Sequence similarity 10 M 
Aminophospholipid translocase ? At3g27870 ALA8 Sequence similarity 10 M 
Aminophospholipid translocase ? At1g68710 ALA9 Sequence similarity 10 M 
Aminophospholipid translocase ? At3g25610 ALA10 Sequence similarity 10 M 
Aminophospholipid translocase ? At1g13210 ALA11 Sequence similarity 10 M 

ABC transporter supposed to be involved in lipid translocation 
 ABC acyl transporter ? At1g54350  Sequence similarity 5 P 

ABC transporter ? At1g19800 TGD1 EMS mutant characterization 6 P  
Oxysterol binding protein 

Oxysterol binding protein ? At1g13170 0sh3 Sequence similarity 0 P 
Oxysterol binding protein ? At2g31020  Sequence similarity 0 P 
Oxysterol binding protein ? At2g31030  Sequence similarity 0 - 
Oxysterol binding protein ? At3g09300  Sequence similarity 0 P 
Oxysterol binding protein ? At4g08180 OSBP Sequence similarity 0 - 
Oxysterol binding protein ? At4g12460 Osh1 Sequence similarity 0 - 
Oxysterol binding protein ? At4g22540 Osh2 Sequence similarity 0 - 
Oxysterol binding protein ? At4g25850  Sequence similarity 0 - 
Oxysterol binding protein ? At4g25860  Sequence similarity 0 - 
Oxysterol binding protein ? At5g02100  Sequence similarity 0 P 
Oxysterol binding protein ? At5g57240 KES1 Sequence similarity 0 - 

Membranes PC PE PG PI PS DPG MGDG DGDG SQDG Sterols Glyco-
sphingolipides 

Endomembranes 
Reticulum 

+Golgi 43-48 23-26 6 6 3     4-15  

Tonoplast 15-28 15-28 2 5-9 2     14-43 12-17 
Plasma 

membrane 8-36 9-32 1-5 1-6 1-10     5-60 6-30 

Chloroplasts 
Outer 

membrane 32  10 5   17 30 6   

Inner 
membrane   9 1   55 30 5   

Thylakoids   7 1   58 27 7   
Mitochondria 

Outer 
membrane 52 22 3 10      13  

Inner 
membrane 37 33 2 4  11    13  
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LTP Bound lipid Arabidopsis locus Protein Evidence TM Localization 
Oxysterol binding protein ? At5g59240  Sequence similarity 0 - 

StARD2 homolog proteins 
PC transfer protein PC At1g55960  Sequence similarity 1 P 
PC transfer protein PC At1g64720 CP5 Sequence similarity 1 S 
PC transfer protein PC At3g13062  Sequence similarity 1 M 
PC transfer protein PC At3g23080  Sequence similarity 1 - 
PC transfer protein PC At4g14500  Sequence similarity 2 - 
PC transfer protein PC At5g54170  Sequence similarity 2 S 

CERT ceramide ?     
Glycolipid transfer protein 

GLTP sphingosine At2g34690 ACD11 
T-DNA mutant characterization, 
functional complementation and 

in vitro expression 
0 - 

GLTP ? At4g39670  Sequence similarity 0 - 
GLTP ? At2g33470  Sequence similarity 0 - 
GLTP ? At3g21260  Sequence similarity 0 - 

PITP 
Type SEC14 PI/PC At1g55840 SEC14 Functional complementation 0 - 

Type SEC14 PI At4g34580 AtSfh1/ 
COW1 

T-DNA mutant characterization 
and functional complementation 1 - (Golgi) 

Sterol carrier protein 
SCP PL, stérol At5g42890 SCP2 In vitro expression 0 - (Perox) 

Non specific lipid transfer protein  
Lipid Transfer Protein type 1 - At2g38540 LTP1 In vitro expression 0 S 
Lipid Transfer Protein type 1 - At2g38530 LTP2 In vitro expression 0 S 
Lipid Transfer Protein type 1 - At5g59320 LTP3 Sequence similarity 0 S 
Lipid Transfer Protein type 1 - At5g59310 LTP4 Sequence similarity 1 S 
Lipid Transfer Protein type 1 - At3g51600 LTP5 Sequence similarity 0 S 
Lipid Transfer Protein type 1 - At3g08770 LTP6 Sequence similarity 0 S 
Lipid Transfer Protein type 1 - At2g18370 LTP7 Sequence similarity 0 S 
Lipid Transfer Protein type 1 - At2g15050 LTP8 Sequence similarity 0 S 
Lipid Transfer Protein type 1 - At2g15325 LTP9 Sequence similarity 1 S 
Lipid Transfer Protein type 1 - At5g01870 LTP10 Sequence similarity 0 S 
Lipid Transfer Protein type 1 - At4g33555 LTP11 Sequence similarity 0 S 
Lipid Transfer Protein type 1 - At3g51590 LTP12 Sequence similarity 0 S 
Lipid Transfer Protein type 1 - At4g08530 LTP15 Sequence similarity 0 - 
Lipid Transfer Protein type 2 - At1g48750  Sequence similarity 1 S 
Lipid Transfer Protein type 2 - At1g66850  Sequence similarity 0 S 
Lipid Transfer Protein type 2 - At1g73780  Sequence similarity 0 S 
Lipid Transfer Protein type 2 - At3g18280  Sequence similarity 1 S 
Lipid Transfer Protein type 2 - At3g57310  Sequence similarity 0 S 
Lipid Transfer Protein type 2 - At5g38160  Sequence similarity 0 S 
Lipid Transfer Protein type 2 - At5g38170  Sequence similarity 1 S 
Lipid Transfer Protein type 2 - At5g38180  Sequence similarity 1 S 
Lipid Transfer Protein type 3 - At1g32280  Sequence similarity 0 S 
Lipid Transfer Protein type 3 - At3g07450  Sequence similarity 0 S 
Lipid Transfer Protein type 3 - At3g52130  Sequence similarity 1 S 
Lipid Transfer Protein type 3 - At4g30880  Sequence similarity 0 S 
Lipid Transfer Protein type 3 - At4g33550  Sequence similarity 0 S 
Lipid Transfer Protein type 3 - At5g07230 A9 Sequence similarity 0 S 
Lipid Transfer Protein type 3 - At5g48485  Sequence similarity 1 S 
Lipid Transfer Protein type 3 - At5g48490  Sequence similarity 0 S 
Lipid Transfer Protein type 3 - At5g52160  Sequence similarity 1 S 
Lipid Transfer Protein type 3 - At5g55410  Sequence similarity 0 S 
Lipid Transfer Protein type 3 - At5g55450  Sequence similarity 0 S 
Lipid Transfer Protein type 3 - At5g55460  Sequence similarity 0 S 
Lipid Transfer Protein type 3 - At5g56480  Sequence similarity 0 S 
Lipid Transfer Protein type 3 - At5g62080  Sequence similarity 0 S 
Lipid Transfer Protein type 4 - At3g53980  Sequence similarity 0 S 
Lipid Transfer Protein type 4 - At5g05960  Sequence similarity 0 S 
Lipid Transfer Protein type 5 - At1g18280  Sequence similarity 0 S 
Lipid Transfer Protein type 5 - At1g27950  Sequence similarity 2 S 
Lipid Transfer Protein type 5 - At1g36150  Sequence similarity 1 S 
Lipid Transfer Protein type 5 - At1g55260  Sequence similarity 0 S 
Lipid Transfer Protein type 5 - At1g62790  Sequence similarity 2 S 
Lipid Transfer Protein type 5 - At1g70240  Sequence similarity 0  
Lipid Transfer Protein type 5 - At1g73550  Sequence similarity 1 S 
Lipid Transfer Protein type 5 - At1g73560  Sequence similarity 0 S 
Lipid Transfer Protein type 5 - At1g73890  Sequence similarity 1 S 
Lipid Transfer Protein type 5 - At2g13820  Sequence similarity 0 S 
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LTP Bound lipid Arabidopsis locus Protein Evidence TM Localization 
Lipid Transfer Protein type 5 - At2g27130  Sequence similarity 1 S 
Lipid Transfer Protein type 5 - At2g37870  Sequence similarity 0 S 
Lipid Transfer Protein type 5 - At2g44290  Sequence similarity 1 S 
Lipid Transfer Protein type 5 - At2g44300  Sequence similarity 2 S 
Lipid Transfer Protein type 5 - At2g48130  Sequence similarity 0 M 
Lipid Transfer Protein type 5 - At2g48140  Sequence similarity 0 _ 
Lipid Transfer Protein type 5 - At3g22570  Sequence similarity 0 S 
Lipid Transfer Protein type 5 - At3g22580  Sequence similarity 1 S 
Lipid Transfer Protein type 5 - At3g22600  Sequence similarity 0 S 
Lipid Transfer Protein type 5 - At3g22620  Sequence similarity 0 S 
Lipid Transfer Protein type 5 - At3g43720  Sequence similarity 2 S 
Lipid Transfer Protein type 5 - At4g08670  Sequence similarity 1 S 
Lipid Transfer Protein type 5 - At4g12360  Sequence similarity 2 S 
Lipid Transfer Protein type 5 - At4g14815  Sequence similarity 1 S 
Lipid Transfer Protein type 5 - At4g22630  Sequence similarity 2 S 
Lipid Transfer Protein type 5 - At4g22640  Sequence similarity 1 S 
Lipid Transfer Protein type 5 - At5g09370  Sequence similarity 0 S 
Lipid Transfer Protein type 5 - At5g13900  Sequence similarity 0 S 
Lipid Transfer Protein type 5 - At5g64080  Sequence similarity 2 S 
Lipid Transfer Protein type 6 - At4g22490  Sequence similarity 0 S 
Lipid Transfer Protein type 6 - At4g22520  Sequence similarity 0 S 
Lipid Transfer Protein type 7 - At3g58550  Sequence similarity 0 S 
Lipid Transfer Protein type 8 - At4g28395 ATA7 Sequence similarity 0 - 
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Figure 1: Lipid diffusion inside and across lipid bilayers. The figure shows the half-times 

(T½) for spontaneous interbilayer and transbilayer movement according to [12, 16]. Large 

arrows indicate fast movement and dashed arrows indicate slower movement. P: phosphate, 

Chol: choline, Gal: galactose. 

Figure 2: Lipid transfers towards and outwards the chloroplast envelope. PC is present in 

the outer leaflet of the outer envelope membrane but is synthesized in the ER, not in the 

plastid. It may be transferred from ER to the envelope directly or through its conversion to 

LysoPC. The main lipids of thylakoids i.e. galactolipids, PG and SQDG are formed in the 

envelope. Whereas prokaryotic type galactolipids are issued from phosphatidate (PAP) 

synthesized in the chloroplast, formation of eukaryotic type galactolipids is dependent on the 

supply to the envelope of some PC derivatives formed in the ER: either diacylglycerol 

(DAGE) [6] or phosphatidate (PAE) [37]. PAP converting PA to DAG is present in the 

envelope but only in the inner membrane. Altogether, a number of lipid transfers noted by 

dashed arrows are important to build plastid membranes. Under phosphate deprivation, 

DGDG formation is stimulated corresponding to activation or stimulation of a part of the 

galactolipid synthesis pathway indicated in red [42; 6; 9]. Under these conditions, DGDG is 

transferred through membrane contact between chloroplast and mitochondria [9]. 

Figure 3: Scheme of the plant secretory pathway according to [48]. This scheme 

represents different routes starting from the ER and indicates key proteins involved in vesicle 

trafficking. Phosphorylated forms of PI address vesicles to specific compartments: PI-4P to 

the storage vacuole, PI-3P to the lytic vacuole and PIP2 to the plasma membrane. 1- Transfer 

from ER to Golgi uses COPII type vesicle machinery. Identified proteins involved in this 

transfer are the GTPase Sar1, the GTP exchanging factor Sec12, the coat complexes Sec13 

and Sec23, and the GTPase RabD. 2- Transfer from Golgi to ER uses a COPI type vesicle 
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machinery. Identified proteins involved in this transfer are the GTPase Arf1, interacting with 

a transmembrane protein p23, the GTP exchanging factor Gea, H/KDEL motif receptor 

responsible of protein retrograde traffic ERD2. This transfer is actin dependent. 3- Transfer 

from ER and Golgi to storage vacuole with the intervention of dense vesicles is not yet 

characterised. The only protein identified in this transfer is the storage vacuole addressing 

receptor PV72. 4- Transfer from Golgi to lytic vacuole via prevacuolar compartment uses 

clathrin vesicle machinery. Identified proteins involved in vesicle formation are the GTPase 

Arf1, lytic vacuole addressing motif receptor BP80 able to recruit the adaptatin complex AP1 

and thus clathrin. Vesicle fusion to prevacuolar compartment involves the v-SNARE PEP12 

and VAM3, the t-SNARE SYP25 and VTI11, and the GTPases RabA and RabF. This transfer 

is actin and dynamin ADL6 dependent. 5- Transfer from Golgi to plasma membrane is not yet 

identified. Protein involved in vesicle formation or fusion are not known. Only two PI-TP, 

Sec14 and Sfh1, were characterised. This transfer is actin dependent. 6- Endocytosis uses 

clathrin coated vesicle machinery. Identified proteins involved in vesicle formation are the 

adaptatin complex AP2 and clathrin. This transfer is actin and dynamin ADL1 dependent. 

And 7- Exocytosis utilizes a vesicle machinery not yet characterised. Identified proteins 

involved in vesicle formation are the GTPase Arf1 and the GTP exchanging factor GNOM. 

Vesicle fusion to plasma membrane involves the t-SNARE KNOLLE and the v-SNARE 

SNAP33. 

Figure 4: Lipid transfer at membrane contact sites. A: Electron microscopy observation of 

A. thaliana cells grown in suspension. Cells were grown for 3 days in minus Pi medium.  Bar: 

1 µm. Arrows indicate position of contact between mitochondria and amylochloroplasts. B: 

Schematic representation of membrane contact sites reported in the plant cell. Reticulum 
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forms a network that facilitates lipid transfer between organelles. Plastids create envelope 

extension in the form of stromules or of myelinic structures, marked with a star. 
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