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Nonuniform transformation �eld analysis ofelasti-visoplasti ompositesS. Roussette a,b, J.C. Mihel b,∗, P. Suquet b

aCEA Cadarahe, LLCC, Bât. 151, 13108 St Paul lez Durane Cedex, Frane
bLaboratoire de Méanique et d'Aoustique, CNRS, 31 Chemin Joseph Aiguier,13402 Marseille Cedex 20, FraneAbstratTo exatly desribe the marosopi behaviour of omposites with non linear dis-sipative onstituents, it is neessary to take an in�nitely large number of internalvariables into aount. Simplifying assumptions are usually adopted to redue thisnumber. A new method has been proposed [5℄, based on the transformation �eldsapproah [1℄, but not taking transformation �elds to be neessarily uniform. Theinterest of this new method has been shown in the ase of omposites with elasti-plasti onstituents. Here we deal with omposites having elasti-visoplasti andporous elasti-visoplasti onstituents. In the latter ase, the visoplasti strain hasa dilatational part.Key words: B. Mehanial properties, Modelling, Non-linear behaviour, Plastideformation, Porosity.

1 IntrodutionTo exatly desribe the marosopi behaviour of omposites with non lineardissipative onstituents, it is neessary to take an in�nitely large number ofinternal variables into aount. Simplifying assumptions are usually adoptedto redue this number. The transformation �eld analysis (TFA) method ini-tially proposed by [1℄ for elasti-plasti omposites and subsequently extendedby other authors (e.g. [2�4℄) to omposites with more omplex behaviour, in-luding damage, provides an elegant means of reduing the number of internalvariables by assuming uniform �elds of internal variables in individual phases
∗ Corresponding author. Tel: +33 4 9116 4478; fax: +33 4 9116 4481.Email address: mihel�lma.nrs-mrs.fr (J.C. Mihel).Preprint submitted to Composites Siene and Tehnology 7 Marh 2006



or sub-domains. Appliations of this method to two-phase omposites haveshown, however, that it is neessary to subdivide the phases into many sub-domains to obtain a satisfatory desription of the overall behaviour. Thissubdivision is neessary beause of the strong nonlinearity of the onstitu-tive laws involved, whih an generate highly heterogeneous mehanial �eldswithin a single phase. In view of these �ndings, a new method was thereforeproposed [5℄, whih onsists in deomposing the �elds of internal variables intoa small number of not neessarily uniform shape funtions. Comparisons withthe lassial transformation �eld analysis approah have shown the interest ofthis method in the ase of elasti-plasti omposite strutures [6℄. The presentstudy fouses on the ase of elasti-visoplasti and porous elasti-visoplastiomposites. In the latter ase, the visoplasti strain has a dilatational part.2 Constitutive relations for the individual onstituentsThe onstituents on whih we fous in the present study are of the elasti-visoplasti and porous elasti-visoplasti type. These onstituents show gen-eralised standard behaviour, de�ned by the free energy w and the fore po-tential ψ. In what follows, only the dissipative mehanisms desribed by thevisoplasti strain εvp will be taken into aount:
w(ε, εvp) =

1

2
(ε − εvp) : L : (ε − εvp),σ =

∂w

∂ε
(ε, εvp), ε̇vp =

∂ψ

∂σ
(σ). (1)In addition, we will assume the onstituents to be isotropi. In this framework,the elasti tensor L is haraterised by a bulk modulus k and a shear modulus

G, and the fore potential ψ depends on the stress σ only through its seondinvariant σeq in the ase of lassial visoplasti materials. In the ase of porousvisoplasti materials, the fore potential also depends on the �rst invariant
σm. Equation (1) an therefore be written as follows:

ε̇vp =
3

2

∂ψ

∂σeq (σeq, σm)
σdev
σeq +

1

3

∂ψ

∂σm (σeq, σm) δ, (2)where δ denotes Kroneker's symbol, σdev the deviatori part of σ, σeq =
(3

2
σdev : σdev)1/2 and σm = tr(σ)/3. Let us now onsider a representativevolume element V of a omposite material omposed of N onstituents. Thegeneralised standard struture of the laws in question is known to be preservedin the hange of sales. In other words, the omposite itself shows generalised2



standard behaviour, but there is an in�nitely large number of internal vari-ables involved in its desription. The state variables of the system are themarosopi strain E and the visoplasti strains εvp(x) ourring at all thepoints x of V . Beause of the linearity of the loal problem (under presribedstate variables), the strain �eld ε(x) an be deomposed into the followingsum:
ε(x) = A(x) : E+

1

|V |

∫

V
D(x,x′) : εvp(x′)dx′ = A(x) : E+D∗εvp(x), (3)where A(x) is the elasti strain-loalisation tensor and D(x,x′) the non loaloperator giving the strain at point x resulting from a transformation strain

εvp(x′) at point x′ when the average strain is zero.3 Inompressible visoplastiity3.1 Non uniform transformation �eldsTo redue the number of internal variables and improve the lassial transfor-mation �eld analysis, Mihel and Suquet [5℄ have desribed a method fousingon the non uniformity of the loal �elds of internal variables, taking the trans-formation �elds to be non uniform. The visoplasti strain �eld is deomposedinto a set of �elds alled plasti modes, µk:
εvp(x, t) =

M∑

k=1

εvpk (t) µk(x). (4)By ontrast with what ours with the lassial transformation �eld analysis,the modes µk are taken here to be non uniform and tensorial, whih meansthat εvpk is salar. The total number of modes M an di�er from the number
N of onstituents. Other assumptions are adopted to simplify the theory: (i)The support of eah mode is entirely ontained in a single phase. (ii) Under in-ompressible visoplasti onditions, the modes are traeless tensor �elds. (iii)The modes are orthogonal. This prerequisite is met when the modes have theirsupport in di�erent phases, but it has to be imposed when they involve a sin-gle phase. (iv) Lastly, to make the redued internal variables εvpk homogeneouswith a strain, the modes are normalised : 〈µk

eq〉 = 1, where µk
eq = (2

3
µk : µk)1/2.3



3.2 Redued variables and in�uene fatorsUpon multiplying (3) by µk and averaging over V , given (4), we obtain:
ek = ak : E +

M∑

ℓ=1

Dkℓε
vp
ℓ , (5)where the redued strain ek, the redued strain-loalisation tensor ak and thein�uene fators Dkℓ are de�ned by:

ek = 〈µk : ε〉, ak = 〈µk : A〉, Dkℓ = 〈µk : (D ∗ µℓ)〉. (6)By analogy with the equation for the redued strain ek in (6), we de�ne theredued visoplasti strain evpk and the redued stress τk as follows:
evpk = 〈µk : εvp〉, τk = 〈µk : σ〉. (7)Note that the whole set of εvpk an be replaed by the whole set of evpk , sine:

evpk = 〈µk : µk〉 εvpk . (8)3.3 Constitutive relations for the redued variablesSine the phase elastiity is isotropi and the modes are traeless �elds sup-ported in a single phase, the redued stress τk an be written:
τk = 2Gr(ek − evpk ), (9)where Gr is the shear modulus of the phase r involved in mode k. The evolutionof the redued visoplasti strain evpk still remains to be desribed. Using (1)and the de�nition (7a) of evpk , we obtain:

ėvpk = 〈µk : ε̇vp〉 =
3

2
〈
∂ψ

∂σeq (σeq) µk : σ

σeq 〉. (10)At this stage, an approximation is required to obtain a relation between the
ėvpk 's and the τk's. This is done in [5℄ by substituting τ req = [

∑M(r)
k=1 (τk)

2]1/2 for
σeq in (10), taking M(r) to denote the number of modes involved in phase r:4



ėvpk =
3

2

∂ψr

∂σeq (τ req) τkτ req , τ req =




M(r)∑

k=1

(τk)
2




1/2

. (11)The system of equations (5), (8), (9), (11) provides the set of redued on-stitutive relations for the omposite. This system is solved along a presribedloading path, in either the spae of marosopi stresses or that of marosopistrains [7℄, where the marosopi stress is obtained by averaging the stress�eld whih results from (1b), (3) and (4):
Σ = 〈L : A〉 : E +

M∑

k=1

( 〈L : D ∗ µk〉 − 〈L : µk〉 ) εvpk . (12)3.4 Choosing the modes � the Karhunen-Loève deompositionThe auray of this method depends largely on the modes involved. In thepresent study, the modes are determined aording to the following proedure.Let θk(x), k = 1, ...,MT (r) be the visoplasti strain �elds in a given phase r.These �elds are determined along ertain spei� loading paths in the spaeof marosopi stresses and at di�erent levels of the marosopi strain bysolving the omplete non linear loal problem numerially. In all the examplesof setion 5, a numerial method based on fast Fourier transforms [8,9℄ wasused to determine these visoplasti strain �elds, but any other numerialmethod as FEM ould have been used. The Karhunen-Loève deomposition(also known in the literature as the proper orthogonal deomposition or as theprinipal omponent analysis) is then used to build a new set of modes µk(x),
k = 1, ...,MT (r):

µk(x) =
MT (r)∑

ℓ=1

vk
ℓ θℓ(x), (13)where vk are the eigenvetors and λk the eigenvalues of the orrelation matrix:

MT (r)∑

j=1

gij v
k
j = λk v

k
i , gij = 〈θi : θj〉. (14)It an be easily on�rmed that the modes µk thus obtained are orthogo-nal: 〈µk : µℓ〉 = λk if k = ℓ, otherwise 0. If we assume the eigenvalues λkto be arranged in dereasing order of size, another advantage of using theKarhunen-Loève deomposition lies in the fat that only the �rstM(r) modes5



orresponding to the largest eigenvalues need to be taken into aount. Inthe ases dealt with here, we hose the M(r) modes µk making it possible tosatisfy the following riterion:



M(r)∑

k=1

λk


 ≥ 0.9999




MT (r)∑

k=1

λk


 . (15)In pratie, this riterion is satis�ed with M(r) = 2 or 3. As an example,Figure 1 shows the quik derease in the eigenvalues alulated in the ase ofa omposite with hexagonally distributed �bres, where the �bres and matrixboth show power-law elasti-visoplasti behaviour.4 Compressible visoplastiity4.1 Non uniform transformation �eldsWhen the visoplastiity is ompressible (as in the ase of omposites withporous visoplasti onstituents), the visoplasti strain �eld an be deom-posed as follows:

εvp(x, t) =
M̃∑

k=1

ε̃vpk (t) µ̃k(x) +
M̂∑

ℓ=1

ε̂vpℓ (t) µ̂ℓ(x) δ, (16)where the modes µ̃k are traeless tensor �elds and the modes µ̂ℓ are salar�elds. With (16), (3) beomes:
ε(x) = A(x) : E +

M̃∑

k=1

(D ∗ µ̃k)(x) ε̃vpk +
M̂∑

ℓ=1

(D ∗ µ̂ℓ δ)(x) ε̂vpℓ . (17)4.2 Redued variables and in�uene fatorsFor further purposes, we now introdue the following redued variables:
ẽk = 〈µ̃k : ε〉, ẽvpk = 〈µ̃k : εvp〉, τ̃k = 〈µ̃k : σ〉, (18)

êk = 〈µ̂kδ : ε〉, êvpk = 〈µ̂kδ : εvp〉, σ̂k = 〈µ̂kδ : σ〉. (19)6



From (17) and the de�nitions (18a) and (19a) for the redued strains ẽk and
êk, the following equations an easily be dedued:

ẽk = ãk : E +
M̃∑

ℓ=1

D̃kℓ ε̃
vp
ℓ +

M̂∑

ℓ=1

F̃kℓ ε̂
vp
ℓ , (20)

êk = âk : E +
M̃∑

ℓ=1

F̂kℓ ε̃
vp
ℓ +

M̂∑

ℓ=1

D̂kℓ ε̂
vp
ℓ , (21)where ãk = 〈µ̃k : A〉, D̃kℓ = 〈µ̃k : (D ∗ µ̃ℓ)〉, F̃kℓ = 〈µ̃k : (D ∗ µ̂ℓδ)〉,

âk = 〈µ̂kδ : A〉, F̂kℓ = 〈µ̂kδ : (D ∗ µ̃ℓ)〉 and D̂kℓ = 〈µ̂kδ : (D ∗ µ̂ℓδ)〉.4.3 Constitutive relations for the redued variablesSine the elastiity of the phases is isotropi and the modes supported in asingle phase, we have:
τ̃k = 2Gr (ẽk − ẽvpk ), σ̂k = 3kr (êk − êvpk ), (22)where kr and Gr denote the bulk and shear moduli of the phase r with whihthe mode k is assoiated. Using (2) and the de�nitions (18b) and (19b) forthe redued visoplasti strains ẽvpk and êvpk , we obtain:

˙̃e
vp
k = 〈

3

2

∂ψ

∂σeq (σeq, σm)
µ̃k : σ

σeq 〉, ˙̂e
vp
k = 〈

1

3

∂ψ

∂σm (σeq, σm)
µ̂kδ : σ

σm 〉. (23)Here again, it is not possible in the non linear ontext to simply alulatethe average of these produts, and simplifying assumptions have to be used.In (23), σeq is replaed by τ̃ req = [
∑M̃(r)

k=1 (τ̃k)
2]1/2 and σm is replaed by σ̂rm =

[
∑M̂(r)

k=1 (σ̂k)
2]1/2, so that the evolution of the redued internal variables is givenby:
˙̃e
vp
k =

3

2

∂ψr

∂σeq (τ̃ req, σ̂rm)
τ̃k
τ̃ req , ˙̂e

vp
k =

1

3

∂ψr

∂σm (τ̃ req, σ̂rm)
σ̂k

σ̂rm ,
τ̃ req =




M̃(r)∑

k=1

(τ̃k)
2




1/2

, σ̂rm =




M̂(r)∑

k=1

(σ̂k)
2




1/2

, (24)7



where M̃(r) (resp. M̂(r)) denotes the number of modes µ̃k (resp. µ̂k) havingtheir support in phase r. The marosopi stress is obtained by averaging thestress �eld resulting from (1b), (16) and (17):
Σ = 〈L : A〉 : E +

M̃∑

k=1

ρ̃kε̃
vp
k +

M̂∑

k=1

ρ̂kε̂
vp
k ,

ρ̃k = 〈(L : D ∗ µ̃k) − (L : µ̃k)〉, ρ̂k = 〈(L : D ∗ µ̂kδ) − (L : µ̂kδ)〉. (25)4.4 Choosing the modes � the Karhunen-Loève deompositionIn the ase of ompressible visoplasti onstituents, the visoplasti strain�elds θk(x) are deomposed into a purely deviatori part and a purely spher-ial part,
θk(x) = θ̃

k
(x) + θ̂k(x)δ, (26)and the Karhunen-Loève deomposition is applied separately to eah of theseparts.5 Results and disussion5.1 Con�gurations and material data5.1.1 The ase of inompressible visoplastiityThe results in this ase were obtained on a unidiretional �bre-matrix om-posite with irular �bres whih are regularly distributed at the nodes of ahexagonal array. The volume fration of the �bres is 0.25. The �bres and thematrix are assumed to have a power-law elasti-visoplasti behaviour de�nedby a fore potential of the form:

ψ(σeq) =
σ0ε̇0

n+ 1

(
σeq
σ0

)n+1

. (27)Two di�erent visosity exponents, orresponding to a linear visosity and astrongly non-linear visosity, are onsidered for the matrix: n = 1 and n = 8.The other material properties used with eah of these two visosity exponentsare shown in Table 1. 8



5.1.2 The ase of ompressible visoplastiityThe results obtained in this ase involved �rst the same hexagonal on�gura-tion as that studied above. The �bres are purely elasti and the matrix is aporous elasti-visoplasti matrix de�ned by the elliptial fore potential:
ψ(σeq, σm) =

σ0ε̇0

n+ 1

[
9

4
A(f)

(
σm
σ0

)2

+B(f)
(
σeq
σ0

)2
]n+1

2

, (28)where f denotes the porosity and where the expressions of A(f) and B(f)result from [10℄ starting from an analytial self-onsistent sheme and from abounding method, respetively. Here again, the visosity exponents n = 1 and
n = 8 are onsidered for the matrix. The other material properties used hereare shown in Table 2.In a seond step, the results obtained onern a square ell ontaining a largenumber of randomly distributed �bres (Figure 4a). The same fore potential(28), the same �bre volume fration (equal to 0.25) and the same materialproperties (Table 2) are used again here, but only the visosity exponent
n = 1 is onsidered for the matrix.5.2 LoadingThe omposite is subjeted to radial load paths in the spae of the marosopistresses: Σ(t) = λ(t)Σ0, where Σ0 is the presribed stress diretion. Thefollowing four stress diretions are used:

Σ
(1)
0 = e1 ⊗ e1, Σ

(2)
0 = e1 ⊗ e2 + e2 ⊗ e1,

Σ
(3)
0 = e1 ⊗ e1 − e2 ⊗ e2, Σ

(4)
0 = e1 ⊗ e1 + e2 ⊗ e2.

(29)5.3 DisussionFigure 2 gives the preditions obtained with various models (TFA, NTFAwith one mode per phase alulated at a �xed level of marosopi strain
E : Σ

(1)
0 = 5%, and NTFA with two main eigen-modes per phase obtainedusing the Karhunen-Loève deomposition) when the �bres and the matrixhave a power-law elasti-visoplasti behaviour. The urves orrespond to theloading path Σ

(1)
0 . The preditions obtained with the lassial TFA model aretoo rigid. Those obtained with NTFA model with one mode per phase aresatisfatory, but the stress hardening estimate does not math the referene9



alulations. The NTFA model with two main eigen-modes per phase givesexellent results throughout the range of strains under onsideration, whihshows the usefulness of adopting the Karhunen-Loève deomposition, whihmeans that the information will be optimally distributed at various loadingtimes between the two eigen-modes having the highest eigenvalues.Figures 3 and 4b give the preditions obtained with the NTFA model in whihthe modes are determined using the Karhunen-Loève deomposition, in thease of elasti �bres and a porous elasti-visoplasti matrix. The urves inFigures 3a and 4b orrespond to the loading paths Σ
(3)
0 and Σ

(4)
0 , whereas thosein Figure 3b orrespond to the loading paths Σ

(1)
0 and Σ

(2)
0 . As in the ontext ofinompressible visoplastiity, the NTFA method again gives exellent resultshere.6 ConlusionThe nonuniform transformation �elds analysis method was extended here tothe ase of elasti-visoplasti and porous elasti-visoplasti onstituents. Thepreditions obtained were aurate and the number of internal variables in-volved was redued thanks to the use of the Karhunen-Loève deomposition.Aknowledgements. The authors thank Rubens Sampaio for useful disus-sions about the Karhunen-Loève deomposition.Referenes[1℄ Dvorak G. Transformation �eld analysis of inelasti omposite materials. Pro.R. So. Lond. A 1992;437:311�327.[2℄ Kattan P., Voyiadjis G. Overall damage and elastoplasti deformation in �brousmetal matrix omposites. Int. J. Plastiity 1993;9:931�949.[3℄ Fish J., Shek K. Finite deformation plastiity for omposite strutures:Computational models and adaptive strategies. Comput. Methods Appl. Meh.Engrg. 1999;172:145�174.[4℄ Chabohe J.L., Kruh S., Maire J., Pottier T. Towards a miromehanis basedinelasti and damage modeling of omposites. Int. J. Plastiity 2001;17:411�439.[5℄ Mihel J.C., Suquet P. Nonuniform transformation �eld analysis. Int. J. SolidsStrut. 2003;40:6937�6955. 10
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Table 1Material properties. Power-law elasti-visoplasti �bres and matrix.
E (GPa) ν σ0 (MPa) ε̇0 (s−1) nFibres 100 0.3 250 10

−5 1Matrix 180 0.3 50 10
−5 1180 0.3 57.825 10
−5 8
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Table 2Material properties. Elasti �bres and porous elasti-visoplasti matrix.
E (GPa) ν σ0 (MPa) ε̇0 (s−1) n PorosityFibres 400 0.2Matrix 70 0.3 100 10

−2 1 or 8 0.07
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