
HAL Id: hal-00106232
https://hal.science/hal-00106232v1

Submitted on 13 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-granularity Metrics For The Era Of Strongly
Personalized SOCs

Yannick Le Moullec, Nader Ben Amor, Jean-Philippe Diguet, Mohamed Abid,
Jean-Luc Philippe

To cite this version:
Yannick Le Moullec, Nader Ben Amor, Jean-Philippe Diguet, Mohamed Abid, Jean-Luc Philippe.
Multi-granularity Metrics For The Era Of Strongly Personalized SOCs. Jun 2003, 6 p. �hal-00106232�

https://hal.science/hal-00106232v1
https://hal.archives-ouvertes.fr

Multi-Granularity Metrics for the Era of Strongly Personalized SOCs

Y. Le Moullec
1
, N. Ben Amor

1,2
, J-Ph. Diguet

1
, M. Abid

2
 and J-L. Philippe

1

1
Université de Bretagne Sud, Lorient, France,

2
ENIS engineering school, Sfax, Tunisia

Email: moullec@iuplo.univ-ubs.fr

Abstract
This paper details the first step of the Design Trotter

framework for design space exploration applied to

dedicated SOCs. The aim of this step is to provide metrics

in order to guide the designer and the synthesis tool

towards an efficient application architecture matching.

This work presents a computation of metrics at all levels

of the application graph-based hierarchy. These metrics

are computed through data and control dependency

analysis. They quantify the memory, control and

processing orientations as well as the average of

parallelism for different granularities.

1. Introduction

 The domain of embedded systems is driven by the

requirement of fast design methodologies guarantying

optimized chips in terms of energy, area and real-time

constraints. This matter of fact leads to an increasing use

of CAD tools which enable to set rapidly parameters such

as the selection of instructions, the capabilities of local or

I/O memories, the bandwidth of communication channels,

the parallelism of processing units and the choice of

dedicated hardware. This type of option-based

methodology can be applied to various targets including

IPs, ASIPs, DSPs, processor cores and associated

compilers. Moreover, we observe an evolution of

programmable chips which i) enables a massive use of

parallelism versus relatively low clock frequencies and ii)

permits a tolerable ratio of deficient gates while insuring

reliability. So, regarding this trend towards

personalization of chips, it arises that the frontier between

software and hardware modules is gradually disappearing.

Consequently, the design issue is no more software or

hardware selection but turns into the selection of the

amount, the nature (spatial, pipeline, …) and the

granularity of parallelism for processing and bandwidth

resources that fit with the application constraints.

Moreover, by improving the application-architecture

matching, the system designer also alleviates high clock

frequency requirements and consequently reduces the

design effort at the gate level. So, in a design space

exploration strategy, a first step consisting in a metric-

based analysis can be performed rapidly without any

architectural directive. In a second step the results can be

used to sketch the target architecture in order to perform a

first set of estimations. Then the aim of the metrics is to

stress the proper architecture style for a given function or

task. These features include the wider/deeper trade-off,

namely the ratio of explicit parallelism versus the pipeline

depth, the necessity of complex control instructions, the

requirements in terms of local memories and specific

bandwidth or the need of processing resources for address

generation.
 Previous work have been completed around metrics in

the areas of high-level synthesis [1,2] and hardware

software codesign [3,4,5]. In [1] the metrics provide

algorithm properties regarding a hardware

implementation, the quantified metrics address the

concurrency of arithmetic operations based on uniformed

scheduling probabilities and the regularity that measures

the repetition rate of a given pattern. In [2], some

probability based metrics are proposed to quantify the

communication link between arithmetic operators

(through memory or registers). These metrics focus on a

fine grain analysis and are mainly used to guide the design

of datapaths especially to optimize local connection and

resource reuse. The metrics from [3] are computed at the

functional level to highlight resource, data and

communication channel sharing capabilities in order to

perform a pre-partitioning resulting in functions clustering

to guide the next design step, which is hardware/software

partitioning. The main issue is the placement of close

functions on the same component in order to optimize

communications and resource sharing. An interesting

method for processor selection is presented in [4]. Three

metrics representing the orientation of functions in terms

of control, data transformation and data accesses

orientation of functions are computed by counting specific

instructions from a processor independent code. Then a

distance is calculated, with specific characteristics of

processors regarding their control, bandwidth and

processing capabilities. In this framework a coarse and

fixed granularity level is considered and the target is

limited to predefined processors. Moreover the technique

mailto:moullec@iuplo.univ-ubs.fr

do not take into account instruction dependencies and

there is no detail about the different types of memory

accesses regarding the abstract processor model used.

However we can reuse the concept of distance during the

design steps located at lower levels. Finally, in [5] finer

metrics are defined to characterize the affinity between

functions and three kinds of targets : GPP, DSP and ASIC.

The metrics are the result of the analysis and counting of

C code instructions in order to highlight instruction

sequences which can be DSP-oriented (buffer circularity,

MAC operations inside loops, etc.), ASIC-oriented (bit

level instructions) or GPP-oriented (conditional or I/O

instructions ratio). Then a HW/SW partitioning tool is

driven by the affinity metrics. Like [4] these metrics are

dedicated to HW/SW partitioning, they do not exploit

instruction dependencies and address a fixed (C

procedures) granularity. Moreover, the locality of data

bandwidth is not clearly taken into account.

 This paper deals with the first step of the Design Trotter

Framework, namely the characterization step. This

framework is devoted to the design of strongly

personalized SOCs, therefore we avoid as much as

possible to introduce architectural directives during the

first analysis step. Thus, we propose guidance metrics

based on a hierarchical graph specification of the

application in order to highlight parallelism opportunities

at different levels of granularity. We define metrics

independent from a target architecture in order to drive the

platform specification. Theses metrics focus on

local/global data-transfers, data-processing and control

operations while considering data and control

dependencies.

2. Efficient graph-based specification

2.1 Definitions

 Each C function of the specification is a node at the top

level of the Hierarchical Control and Data Flow Graph

(HCDFG). A function is a HCDFG. A HCDFG is a graph

that contains only HCDFGs and CDFGs. A CDFG

contains only elementary conditional nodes and DFGs. A

DFG contains only elementary memory and processing

nodes. Namely, it represents a sequence of non-

conditional operations. There are three kinds of

elementary (i.e., non-hierarchical) nodes of which the

granularity depends on the architectural model: a

processing node represents an arithmetic or logic

operation, its granularity depends on the architectural

model: (ALU, MAC, +, -, etc.). A memory node

represents a data transfer (memory operation). Its

parameters are the transfer mode (read/write), the data

format and the hierarchy level that can be fixed by the

designer. A conditional node represents a test operation

(if, case, loops, etc.) There are also three types of

dependencies represented by edges: a control dependency

indicates an order dependency between operations without

memory transfers (e.g., index computation before array

access). Control dependency edges can also be used to

impose an order between independent operations or

graphs in order to favor resource usage optimization. A

scalar data dependency between two vertex A and B

indicates that node B uses a scalar issued from B vertex. A

multi-dimensional data dependency is a data dependency

where data produced is not a scalar but an array. Such an

edge is created between a loop CDFG that reads an array

produced by another loop CDFG.

2.2 Graph creation rules

 The graph is traveled with a depth-first search

algorithm. A HCDFG/CDFG is created when a

conditional node is found at the next hierarchy level.

When no more conditional nodes are found, a DFG is

built. In order to facilitate the estimation process, CDFG

patterns have been defined to identify rapidly loop, if etc.

structures. Another important point is that the model

covers the complete application complexity. Thus, index

computation (address computation), conditional tests and

loop index evolution are represented with DFGs. We

distinguish several types of memory nodes:

1. input/ouput nodes (N1)

2. temporary data (produced by computations) (N2)

3. re-usable data (re-used input nodes) (N3)

4. accumulator data (N4)

N1 data are always global, N4 data are always local, N2

and N3 data can initially be local (stored in the register

file) but they can be moved to the global memory if ever

the local memory size becomes too small as compared to

the application’s requirements. The first step of the metric

calculation is located at the highest level of abstraction,

without any architectural assumption. So, the data

accesses considered are the global ones, corresponding to

N1 data nodes. The metrics that we will define are

independent from the type of transfers (synchronous,

asynchronous, buffered) and from the memory hierarchy.

These parameters will be chosen later on, after the

application characterization which is the aim of our

system-level metrics. A HCDFG example is depicted in

Fig. 1.

2.2 Hierarchical Characterization

 The HCDFG representation enables multi-level

granularity specification and characterization. Therefore

the notion of function can correspond to several levels of

granularity. At the lowest level, a function can represent

for example a FIR filter. At an intermediate level, a

function can represent a DWT. At the highest level, a

function can represent a JPEG2K encoder. The scheme

used for characterizing the application specification is

based on a hierarchical bottom-up approach. The

characterization results obtained for a certain level in the

specification are combined together in order to

characterize its upper level. The lower level

characterization is performed with a fine grain granularity.

At that level, the type of operations can be either

processing (shifting, multiplications etc.) or data transfer.

Once the lower levels have been estimated, the higher

levels are estimated through combinations. This step can

be performed rapidly as the information relevant to each

low level function has been saved within its graph.

HCDFG1#0

HCDFG2#0

HCDFGFOR1#0

HCDFG3#0 HCDFG6#0

HCDFG4#0

HCDFG7#0

DFGFOR1#0

EFor

For

*

+

arrayA#0

data1#1

data4#0

data3#0

data4#0 data3#0

data4#0

data4#1

data1#0 data2#0

arrayC#1

data3#0

arrayB#0

arrayB#1

arrayB#2

arrayC#0

arrayA#0

arrayA#0

DFGind#0

Ind#0

data5#0

HCDFG

CDFG

DFG

DFG
(Index graph)

Processing
Vertex

Memory Vertex
(array)

Memory Vertex
(Index)

Memory Vertex
(scalar)

Fig. 1. a HCDFG specification example

3. Metrics Computation

 In this section we define 3 metrics: γ (Average

Parallelism Metric), MOM (Memory Orientation Metric)

and COM (Control Orientation Metric). We explain how

they are computed in the leaf graphs and how they are

combined to characterise CDFGs and HCDFGs.

3.1 γ metric

 For a DFG graph γ is defined as :

 PathCritical

operationsprocessingandaccessesmemoryglobalofNb
γ =

 (1)

The critical path, noted CP, in a DFG graph, is the number

of cycles of the longest sequential chain of operations

(processing, control, memory). The CP is computed for

each hierarchical level with a data and control

dependencies analysis. Our analysis method is not

exclusively statistical contrary to [4, 5] metrics. As

defined, γ indicates the average spatial parallelism

available at a given hierarchy level. For instance, if a

HCDFG contains five parallel DFGs where each DFG is

fully sequential, then γ equals one for each DFG and five

at the HCDFG level. γ enables the classification of

application functions according to their criticality, namely

their capability to exploit the available parallelism. In the

following design steps functions with highest γ can be

first considered since they have the most important

optimization potential regarding the acceleration and

consequently energy savings. Note that it is also used to

distribute cycle budgets to functions during the estimation

and synthesis design steps of DesignTrotter framework.

 Functions with high γ values can then be considered as

appropriate to architectures with large explicit

parallelisms. Functions that have a low γ value (circa 1)

are rather sequential, so the acceleration can only be

reached by exploiting temporal parallelism (i.e. deep

pipeline). The parallelism is fully exploited during the

next estimation step of our framework based on adaptive

scheduling [7].

3.2 combination rules

 The metrics are computed using a bottom-top approach,

they are firstly calculated for leaf DFGs, then for higher

level CDFGs and HCDFGs with combination rules

according to sequential, parallel, exclusive and loop

structures. Hereafter are introduced combination rules for

sequential, parallel, IF and FOR patterns for the

computation of γ. The same approach is used for the other

metrics.

 A “IF” CDFG is composed of three subgraphs. The first

one specifies the condition, the two others correspond to

the true and false branches.

For this graph, γ is calculated with the following formula:

c
CP*CPP

true
*CPP

c
Nop

false
*NopP

true
*NopP

if
falsefalsetrue

falsetrueγ ++
++= (2)

where “Ptrue” and “Pfalse” are the probabilities to execute

the true and false branches respectively. The probability

values are considered equiprobable by default but can be

modified after profiling the application. “Nopc“ and

“Noptrue/false“ are the number of operations (global memory

accesses, processing nodes and test nodes) in the condition

graph and the conditional branches respectively (a branch

can be a HCDFG).

accessesmemory global of Nb operations processing of Nb

accessesmemory global of Nb
MOM += (6)

 A “FOR” CDFG is composed of three subgraphs: 1) an

evolution graph for the loop index computation, 2) a body

graph for the loop body and 3) an evaluation graph for the

loop test. A “FOR” CDFG γ is calculated according to

formula (3) which is independent from the iteration

number since loop unfolding is not considered at this level

of the design flow.

)

evaluation
CP

for
CP

evolution
(CP

)
evaluation

Nop
for

Nop
evolution

(Nop

forγ ++
++

= (3)

The computations of γ for “DO-WHILE” and “SWITCH”

graphs are generalizations of “FOR” and “IF” formulas

respectively. To determine the γ value of a HCDFG graph,

we have to analyze its hierarchical structure. In Fig.2 an

example of a HCDFG coding is given. It is composed of

two nested “IF” CDFGs. The algorithm calculates Nop

and CP for the following graphs:

“IF_DHeq0_CONDITION” and “IF_DHeq0_TRUE”

since they are simple DFGs and do not contain any

subgraph. The “IF_Dheq0_FALSE” graph contains a

subgraph (“IF_TMPsup”), therefore our algorithm goes

down into the hierarchy, determines NopIF_TMPsup and

CPIF_TMPsup values. Then NopIF_Dheq0_FALSE and

CPIF_Dheq0_FALSE are computed. Finally, NopIF_DHeq0 and

CPIF_DHeq0 (and therefore γIF_DHeq0) can be determined.

This approach is recursively applied to the whole graph in

order to compute its metric values. A HCDFG can be

made of sequential and parallel graphs. For sequential

graphs we use formula (4) to calculate γ. If there are

parallel graphs (or combination of parallel and sequential

graphs) we use formula (5):

{ } (5)
Max

(4)
i i

subgraphs

i

par

subgraphs

i

subgraphs

i

seq
CP

Nop

γ
CP

Nop

γ
∑

∑
∑

==

Fig. 2. Nested IF HCDFG coding

3.3 MOM (Memory Orientation Metric)

 This metric is defined for a DFG by the following

formula (6) :

MOM indicates the frequency of memory accesses in a

graph. MOM values are normalized in the [0;1] interval.

The closer to 1 MOM is, the more the function is

considered as data-access dominated. Therefore in the

case of hard time constraints, high performance memories

are required (large bandwidth, dual-port memory, etc.) as

well as an efficient use of memory hierarchy and data

locality [6].

 To calculate MOM for {H}CDFGs, we follow the same

approach as for γ computation. For a DFG graph, the

global memory and processing nodes are enumerated and

saved as graph attributes. Then the MOM value is

computed for the DFG. These attributes are used to

compute MOM metric values for graphs located at higher

hierarchical levels. We detail MOM computations for two

CDFG cases: “IF” CDFGs, and “FOR” CDFGs.

 For “IF” CDFGs, the formula used to calculate MOM is

given in (7)

∑ = ++
++=

tpmx cfalsefalsetruetrue

cfalsefalsetruetrue

if
Nx*pNxpNx

Nm*pNm*pNm
Mom

,,
*

(7)

where Nmtrue/false/c , Nptrue/false/c and Nttrue/false/c are the

numbers of global memory accesses, processing

operations and test operations in the branch(true),

branch(false) and conditional graph respectively. For the

“FOR” CDFG, we use formula (8):

∑ = ++
++=

m,p,tx evolutionforevaluation

evolutionforevaluation

for
NxNxNx

NmNmNm
Mom

 (8)

 To determine HCDFGs MOM values, the algorithm

goes through the hierarchy, extracts the Nm and Nt

attributes from the different graphs and then calculates the

equivalent MOM with formula (9):

∑
∑

++=
subgraphs

iii

subgraphs

i

NtNpNm

 Nm

Mom (9)

3.4 COM (Control Metric Orientation)

 To calculate this metric, test operations, namely the

following operators: <=, <, >, >=, !=, ==, must be

identified. COM is defined by the general formula (10):

 op.Nb of testc. op. Nb of processes al mem. acNb of glob

.op.Nb of test
 COM ++=

(10)

It indicates the appearance frequency of control

operations (i.e., tests that cannot be eliminated during

compilation) in a CDFG or HCDFG since there is no test

within a DFG. COM values are normalized in the [0;1]

interval. The closer to 1 COM is, the more the function is

control dominated, so needs complex control structures. It

also indicates that the use of the pipeline technique is not

efficient for such functions. We detail COM computations

for two CDFG cases: “IF” CDFGs, and “FOR” CDFGs.

For “IF” CDFGs, COM is calculated with formula (11):

∑ = ++
++=

m,p,tx
if

c
Nx

false
)*p

false
(Nx

true
)*p

true
(Nx

c
Nt

false
*p

false
Nt

true
*p

true
Nt

COM

For “FOR” CDFGs, COM is given by formula (12):

∑ = ++=
m,p,tx evolutionforevaluation

for NxNxNx

for
Nt

COM

Note that Nt is calculated (in the case of “FOR” CDFGs)

only for loops of which the number of iterations can not

solved at compilation time. Actually, all control (test)

operations within deterministic loops can be removed with

unfolding. The COM computation for a complex graph

uses the same approach as for MOM computation (eq.13).

∑
∑

++=
subgraphs

iii

subgraphs

NtNpNm
COM

 Nt i

3.5 Additional metrics

 Other useful metrics have been implemented in our

framework but cannot be detailed due to the paper length

restriction: • The DRM metric includes a local memory estimation

based on data life times and provides a data-locality

ratio [7]. • The AOM is the ratio of index computation that

stresses address generator requirements. • Data format histograms. • Simple operation counting.

4. Experimental results

 We have applied the previously defined metrics to

functions widely used in embedded systems. Hereafter we

present results for Wavelet (DWT) and 2D-DCT

transforms as well as for a G722 audio decoder and the

TCP protocol.

 The DWT algorithm is implemented with the lifting

scheme and table 1 shows the results for the different

functional blocs and for the whole HCDFG. The first

observation is that the COM metric is null for all graphs,

since this application is composed of deterministic loops

and does not contain any test. Secondly we observe that

MOM values of the wavelet functional blocs are higher

than 0,7; this means that more than 7/10 of operations are

data accesses, so the application is clearly, at all levels,

memory oriented. Finally, the γ values are around 1,5 for

all the functional blocs, this indicates a weak fine grain

spatial parallelism. However γ increases at the second

level of granularity (greater than 2,7 for the DWT graph),

this indicates that a coarse grain parallelism is available.

We can now conclude about a way to specify the abstract

architectural model for the second step of the general

framework, namely the system-level estimation [7]. The

fact that there is no need for complex control structures,

the high data-accesses requirements and the coarse grain

parallelism mean that optimizations can be obtained with

a pipelined architecture with possible coarse grain

dedicated hardware modules providing a large bandwidth.

So if high performances are required, an ASIP or a

programmable dedicated hardware can be introduced

within the SOC.

The results for the G722 decoder (H320 standard) are

given in table 2. This application is composed of many

functional blocs, hereafter we present the results obtained

for the adaptive predictor bloc. We can notice that the

results are quite similar to the previous example. Indeed

we observe also high MOM values and that parallelism is

weak at fine grain level and increases at the highest level

of the specification.

The third application is a 2D DCT for 8x8 image blocs

(table 3). From a HCDFG point of view, it is composed of

two identical and sequential 1D DCT subgraphs, so all the

graphs have the same metric values. This third experience

is interesting since, like previously, the results are

identical for the COM metrics which are null (all tests can

be eliminated), the MOM values are also quite high and

denote large bandwidth requirements but the γ values are

different. In fact, γ

(11)

(12)

(13)

 is greater than 5 at the lowest levels

and does not increase at the second level of granularity. It

means that a fine grain spatial parallelism is available if

large data accesses are provided. So, if performances are a

key point, the designer can efficiently implement this

algorithm with an architecture presenting five fine grain

processing units. The COM metric values indicate that for

communication a pipeline structure or local small

memories can be introduced.

 Finally we have computed the TCP protocol metrics in

order to test another kind of classical application. Each

function represents a TCP state. Table 4 shows the

analysis result for some representative functions. We can

notice that the functions have relatively high COM values

denoting heavily conditioned data-flows. The MOM

metric values (greater than 1/3) also indicate an important

data accesses frequency. It indicates that these functions

are control-oriented and require high memory bandwidth.

So, a suitable target architecture is a GPP (General

Purpose Processor) powered by efficient I/O devices.

There is no need for a DSP and for a complex data path

structure, since the parallelism cannot be exploited at any

level. Note that another very efficient architecture could

be implemented using a dedicated FSM associated with

fast FIFO.

5. Conclusion

 In this paper, we have presented the first step of the

Design Trotter framework for design space exploration of

SOCs. This step provides an application characterization

which is based on a analysis of a hierarchical control

data-flow graph (HCDFG). For all granularity levels, the

characterization provides firstly measures of control,

processing and data-access orientations and secondly the

parallelism intrinsic capabilities. Experiences with

classical algorithms show firstly how functions with a

high potential of optimization (whatever the hierarchy

level is) can be detected and secondly how the

characterization can finely highlight architectural

opportunities and directions to improve application-

architecture matching. Note also, that the characterization

step is also a fast and simple way to compare different

algorithmic specifications for a given functional bloc.

6. References

[1] L.Guerra, M.Potkonjak and J.Rabaey, "System-Level Design

Guidance Using Algorithm Properties", IEEE Work. on VLSI

Signal Processing, San Diego, USA, Oct. 1994

[2] J-Ph.Diguet, O.Sentieys, J-L.Philippe and E.Martin,

"Probabilistic Resource Estimation for pipeline architecture",

IEEE Work. on VLSI Signal Processing, Sakai, Japan, Oct. 1995

[3] F.Vahid and D.D.Gajski, "Closeness Metrics for System-

Level Functional Partitioning", EDAC'95, U.K, Sep. 1995

[4] L.Carro, M.Kreutz, F.Wagner and M.Oyamada, "System

Synthesis for Multiprocessor Embedded Applications",

DATE'00, Paris, France, Mar. 2000

[5] D.Sciuto, F.Salice, L.Pomante and W.Fornaciari, "Metrics

for Design Space Exploration of Heterogeneous Multiprocessor

Embedded Systems", CODES’02, Estes Park, USA, May 2002

[6] S.Wuytack, J.Ph.Diguet, F.Catthoor and H.De Man,

"Formalized Methodology for Data Reuse Exploration for Low-

Power Hierarchical Memory Mappings", IEEE Trans. on VLSI

Systems, Vol . 6, No.4, pp 529-537,Dec. 1998

[7] Y. Le Moullec, J-Ph. Diguet, D. Heller and J-L. Philippe,

"Fast and Adaptive Data-flow and Data-transfer Scheduling for

Large Design Space Exploration", GLSVLSI’02, April 18-19,

New-York, http://lester.univ-ubs.fr:8080/~moullec/glsvlsi02.pdf

Functional bloc (graph) MOM COM γ
HFirstLiftingStep_FOR11 0,721 0 1,576

HFirstDualLiftingStep_FOR21 0,721 0 1,576

HSecondLiftingStep_FOR31 0,721 0 1,576

HSecondDualLiftingStep_FOR41 0,722 0 1,579

HScaling_FOR51 0,802 0 2,136

HRearrange_FOR61 0,904 0 1,843

VFirstLiftingStep_FOR71 0,721 0 1,576

VFirstDualLiftingStep_FOR81 0,721 0 1,576

VSecondLiftingStep_FOR91 0,721 0 1,576

VSecondDualLiftingStep_FOR10_1 0,722 0 1,579

VScaling_FOR11_1 0,802 0 2,136

VRearrange_FOR12_1 0,904 0 1,843

dwt 0,765 0 2,704

Table 1. DWT metrics

Functional blocs MOM COM γ
 parrec_recons 0,714 0 2,333

 upzero 0,758 0,039 1,686

 uppol2 0,674 0,087 2,045

 uppol1 0,743 0,086 2,188

 filtez 0,688 0 1,375

 filtep 0,5 0 2,000

 predic 0,75 0 1,333

 predic_sup 0,738 0,037 3,602

 predicteur_sup 0,739 0,037 3,621

Table 2. Adaptive predictor (G722) metrics

Functional bloc MOM COM γ
DCT8L 0,575 0 5,714

DCT8C 0,575 0 5,714

DCT8x8 0,575 0 5,714

Table 3. 2D 8x8 DCT metrics

function name MOM COM

TCPTIMEWAIT 0,482 0,06

TCPFIN_WAIT2 0,534 0,055

TCPABORT 0,457 0,343

TCPwakeup 0,333 0,556

Tfinsert 0,5 0,01

TCPdodat 0,375 0,06

TCPSENT 0,508 0,320

TCPRESET 0,667 0,148

Table 4. TCP states metrics

	Multi-Granularity Metrics for the Era of Strongly Personalized SOCs
	Email: moullec@iuplo.univ-ubs.fr
	Abstract
	This paper details the first step of the Design Trotter framework for design space exploration applied to dedicated SOCs. The aim of this step is to provide metrics in order to guide the designer and the synthesis tool towards an efficient application architecture matching. This work presents a computation of metrics at all levels of the application graph-based hierarchy. These metrics are computed through data and control dependency analysis. They quantify the memory, control and processing orientations as well as the average of parallelism for different granularities.

	1. Introduction
	2. Efficient graph-based specification
	3. Metrics Computation
	4. Experimental results
	5. Conclusion
	6. References

