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Abstract 
This paper details the first step of the Design Trotter 

framework for design space exploration applied to 

dedicated SOCs. The aim of this step is to provide metrics 

in order to guide the designer and the synthesis tool 

towards an efficient application architecture matching. 

This work presents a computation of metrics at all levels 

of the application graph-based hierarchy. These metrics 

are computed through data and control dependency 

analysis. They quantify the memory, control and 

processing orientations as well as the average of 

parallelism for different granularities. 

1. Introduction 

 

    The domain of embedded systems is driven by the 

requirement of fast design methodologies guarantying 

optimized chips in terms of energy, area and real-time 

constraints. This matter of fact leads to an increasing use 

of CAD tools which enable to set rapidly parameters such 

as the selection of instructions, the capabilities of local or 

I/O memories, the bandwidth of communication channels, 

the parallelism of processing units and the choice of 

dedicated hardware. This type of option-based 

methodology can be applied to various targets including 

IPs, ASIPs, DSPs, processor cores and associated 

compilers. Moreover, we observe an evolution of 

programmable chips which i) enables a massive use of 

parallelism versus relatively low clock frequencies and ii) 

permits a tolerable ratio of deficient gates while insuring 

reliability. So, regarding this trend towards 

personalization of chips, it arises that the frontier between 

software and hardware modules is gradually disappearing. 

Consequently, the design issue is no more software or 

hardware selection but turns into the selection of the 

amount, the nature (spatial, pipeline, …) and the 

granularity of parallelism for processing and bandwidth 

resources that fit with the application constraints. 

Moreover, by improving the application-architecture 

matching, the system designer also alleviates high clock 

frequency requirements and consequently reduces the  

design effort at the gate level.  So, in a design space 

exploration strategy, a first step consisting in a metric-

based analysis can be performed rapidly without any 

architectural directive. In a second step the results can be 

used to sketch the target architecture in order to perform a 

first set of estimations. Then the aim of the metrics is to 

stress the proper architecture style for a given function or 

task. These features include the wider/deeper trade-off, 

namely the ratio of explicit parallelism versus the pipeline 

depth, the necessity of complex control instructions, the 

requirements in terms of local memories and specific 

bandwidth or the need of processing resources for address 

generation. 
    Previous work have been completed around metrics in 

the areas of high-level synthesis [1,2] and hardware 

software codesign [3,4,5]. In [1] the metrics provide 

algorithm properties regarding a hardware 

implementation, the quantified metrics address the 

concurrency of arithmetic operations based on uniformed 

scheduling probabilities and the regularity that measures 

the repetition rate of a given pattern. In [2], some 

probability based metrics are proposed to quantify the 

communication link between arithmetic operators 

(through memory or registers). These metrics focus on a 

fine grain analysis and are mainly used to guide the design 

of datapaths especially to optimize local connection and 

resource reuse.  The metrics from [3] are computed at the 

functional level to highlight resource, data and 

communication channel sharing capabilities in order to 

perform a pre-partitioning resulting in functions clustering 

to guide the next design step, which is hardware/software 

partitioning. The main issue is the placement of close 

functions on the same component in order to optimize 

communications and resource sharing. An interesting 

method for processor selection is presented in [4]. Three 

metrics representing the orientation of functions in terms 

of control, data transformation and data accesses 

orientation of functions are computed by counting specific 

instructions from a processor independent code. Then a 

distance is calculated, with specific characteristics of 

processors regarding their control, bandwidth and 

processing capabilities. In this framework a coarse and 

fixed granularity level is considered and the target is 

limited to predefined processors. Moreover the technique 
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do not take into account instruction dependencies and 

there is no detail about the different types of memory 

accesses regarding the abstract processor model used. 

However we can reuse the concept of distance during the 

design steps located at lower levels. Finally, in [5] finer 

metrics are defined to characterize the affinity between 

functions and three kinds of targets : GPP, DSP and ASIC. 

The metrics are the result of the analysis and counting of 

C code instructions in order to highlight instruction 

sequences which can be DSP-oriented (buffer circularity, 

MAC operations inside loops, etc.), ASIC-oriented (bit 

level instructions) or GPP-oriented (conditional or I/O 

instructions ratio). Then a HW/SW partitioning tool is 

driven by the affinity metrics. Like [4] these metrics are 

dedicated to HW/SW partitioning, they do not exploit 

instruction dependencies and address a fixed (C 

procedures) granularity. Moreover, the locality of data 

bandwidth  is not clearly taken into account. 

    This paper deals with the first step of the Design Trotter 

Framework, namely the characterization step. This 

framework is devoted to the design of strongly 

personalized SOCs, therefore we avoid as much as 

possible to introduce architectural directives during the 

first analysis step. Thus, we propose guidance metrics 

based on a hierarchical graph specification of the 

application in order to highlight parallelism opportunities 

at different levels of granularity. We define metrics 

independent from a target architecture in order to drive the 

platform specification. Theses metrics focus on 

local/global data-transfers, data-processing and control 

operations while considering data and control 

dependencies. 

2. Efficient graph-based specification 

 

2.1 Definitions  

 
    Each C function of the specification is a node at the top 

level of the Hierarchical Control and Data Flow Graph 

(HCDFG). A function is a HCDFG. A HCDFG is a graph 

that contains only HCDFGs and CDFGs. A CDFG 

contains only elementary conditional nodes and DFGs. A 

DFG contains only elementary memory and processing 

nodes. Namely, it represents a sequence of non-

conditional operations. There are three kinds of 

elementary (i.e., non-hierarchical) nodes of which the 

granularity depends on the architectural model: a 

processing node represents an arithmetic or logic 

operation, its granularity depends on the architectural 

model: (ALU, MAC, +, -, etc.). A memory node 

represents a data transfer (memory operation). Its 

parameters are the transfer mode (read/write), the data 

format and the hierarchy level that can be fixed by the 

designer. A conditional node represents a test operation 

(if, case, loops, etc.) There are also three types of 

dependencies represented by edges: a control dependency 

indicates an order dependency between operations without 

memory transfers (e.g., index computation before array 

access). Control dependency edges can also be used to 

impose an order between independent operations or 

graphs in order to favor resource usage optimization. A 

scalar data dependency between two vertex A and B 

indicates that node B uses a scalar issued from B vertex. A 

multi-dimensional data dependency is a data dependency 

where data produced is not a scalar but an array. Such an 

edge is created between a loop CDFG that reads an array 

produced by another loop CDFG. 
 

2.2 Graph creation rules  
 

    The graph is traveled with a depth-first search 

algorithm. A HCDFG/CDFG is created when a 

conditional node is found at the next hierarchy level. 

When no more conditional nodes are found, a DFG is 

built. In order to facilitate the estimation process, CDFG 

patterns have been defined to identify rapidly loop, if etc. 

structures. Another important point is that the model 

covers the complete application complexity. Thus, index 

computation (address computation), conditional tests and 

loop index evolution are represented with DFGs. We 

distinguish several types of memory nodes: 

 

1. input/ouput nodes (N1) 

2. temporary data (produced by computations) (N2) 

3. re-usable data (re-used input nodes) (N3) 

4. accumulator data (N4) 

 

N1 data are always global, N4 data are always local, N2 

and N3 data can initially be local (stored in the register 

file) but they can be moved to the global memory if ever 

the local memory size becomes too small as compared to 

the application’s requirements. The first step of the metric 

calculation is located at the highest level of abstraction, 

without any architectural assumption. So, the data 

accesses considered are the global ones, corresponding to 

N1 data nodes. The metrics that we will define are 

independent from the type of transfers (synchronous, 

asynchronous, buffered) and from the memory hierarchy. 

These parameters will be chosen later on, after the 

application characterization which is the aim of our 

system-level metrics. A HCDFG example is depicted in 

Fig. 1. 

 

2.2 Hierarchical Characterization 

 
    The HCDFG representation enables multi-level 

granularity specification and characterization. Therefore 

the notion of  function can correspond to several levels of 

granularity. At the lowest level, a function can represent 



for example a FIR filter. At an intermediate level, a 

function can represent a DWT. At the highest level, a 

function can represent a JPEG2K encoder. The scheme 

used for characterizing the application specification is 

based on a hierarchical bottom-up approach. The 

characterization results obtained for a certain level in the 

specification are combined together in order to 

characterize its upper level.  The lower level 

characterization is performed with a fine grain granularity. 

At that level, the type of operations can be either 

processing (shifting, multiplications etc.) or data transfer. 

Once the lower levels have been estimated, the higher 

levels are estimated through combinations. This step can 

be performed rapidly as the information relevant to each 

low level function has been saved within its graph. 
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Fig. 1. a HCDFG specification example 

3. Metrics Computation 

 
    In this section we define 3 metrics: γ (Average 

Parallelism Metric), MOM (Memory Orientation Metric) 

and COM (Control Orientation Metric). We explain how 

they are computed in the leaf  graphs and how they are 

combined to characterise  CDFGs and HCDFGs. 

 

3.1 γ metric 

 

    For a DFG graph γ is defined as : 

 

 PathCritical

operationsprocessingandaccessesmemoryglobalofNb
γ =

 (1) 

 

The critical path, noted CP, in a DFG graph, is the number 

of cycles of the longest sequential chain of operations 

(processing, control, memory). The CP is computed for 

each hierarchical level with a data and control 

dependencies analysis. Our analysis method is not 

exclusively statistical contrary to [4, 5] metrics. As 

defined, γ indicates the average spatial parallelism 

available at a given hierarchy level. For instance, if a 

HCDFG contains five parallel DFGs where each DFG is 

fully sequential, then γ equals one for each DFG and five 

at the HCDFG level. γ enables the classification of 

application functions according to their criticality, namely 

their capability to exploit the available parallelism. In the 

following design steps functions with highest γ can be 

first considered since they have the most important 

optimization potential regarding the acceleration and 

consequently energy savings.  Note that it is also used to 

distribute cycle budgets to functions during the estimation 

and synthesis design steps of DesignTrotter framework. 

    Functions with high γ values can then be considered as 

appropriate to architectures with large explicit 

parallelisms. Functions that have a low γ value (circa 1) 

are rather sequential, so the acceleration can only be 

reached by exploiting temporal parallelism (i.e. deep 

pipeline). The parallelism is fully exploited during the 

next estimation step of our framework based on adaptive 

scheduling [7]. 

 

3.2  combination rules  

 
    The metrics are computed using a bottom-top approach, 

they are firstly calculated for leaf DFGs, then for higher 

level CDFGs and HCDFGs with combination rules 

according to sequential, parallel, exclusive and loop 

structures. Hereafter are introduced combination rules for 

sequential, parallel, IF and FOR patterns for the 

computation of γ. The same approach is used for the other 

metrics. 

    A “IF” CDFG is composed of three subgraphs. The first 

one specifies the condition, the two others correspond to 

the true and false branches. 

For this graph, γ is calculated with the following  formula: 

c
CP*CPP

true
*CPP

c
Nop

false
*NopP

true
*NopP

if
falsefalsetrue

falsetrueγ ++
++=    (2) 

where “Ptrue” and “Pfalse” are the probabilities to execute 

the true and false branches respectively. The probability 

values  are considered equiprobable by default but can be 

modified after profiling the application. “Nopc“ and 



“Noptrue/false“ are the number of operations (global memory 

accesses, processing nodes and test nodes) in the condition 

graph and the conditional branches respectively (a branch 

can be a HCDFG).  

accessesmemory  global of Nb  operations processing of Nb

accessesmemory  global of Nb
MOM += (6) 

    A “FOR” CDFG is composed of three subgraphs: 1) an 

evolution graph for the loop index computation, 2) a body 

graph for the loop body and 3) an evaluation graph for the 

loop test. A “FOR” CDFG γ is calculated according to 

formula (3) which is independent from the iteration 

number since loop unfolding is not considered at this level 

of the design flow.  

          
)

evaluation
CP

for
CP

evolution
(CP

)
evaluation

Nop
for

Nop
evolution

(Nop

forγ ++
++

=                (3) 

The computations of γ for “DO-WHILE” and “SWITCH” 

graphs are generalizations of “FOR” and “IF” formulas 

respectively. To determine the γ value of a HCDFG graph, 

we have to analyze its hierarchical structure. In Fig.2  an 

example of a HCDFG coding is given. It is composed of  

two nested “IF” CDFGs. The algorithm calculates Nop 

and CP for the following graphs: 

“IF_DHeq0_CONDITION” and “IF_DHeq0_TRUE” 

since they are simple DFGs and do not contain any 

subgraph. The “IF_Dheq0_FALSE” graph contains a 

subgraph (“IF_TMPsup”), therefore our algorithm goes 

down into the hierarchy, determines NopIF_TMPsup and 

CPIF_TMPsup values. Then NopIF_Dheq0_FALSE and 

CPIF_Dheq0_FALSE are computed. Finally, NopIF_DHeq0 and 

CPIF_DHeq0 (and therefore γIF_DHeq0) can be determined. 

This approach is recursively applied to the whole graph in 

order to compute its metric values. A HCDFG can be 

made of sequential and parallel graphs. For sequential 

graphs we use formula (4) to calculate γ. If there are 

parallel graphs (or combination of parallel and  sequential 

graphs) we use formula (5): 

{ } (5)
Max

(4)
i i

subgraphs

i

par

subgraphs

i

subgraphs

i

seq
CP

Nop

γ
CP

Nop

γ
∑

∑
∑

==     

 

Fig. 2. Nested IF HCDFG coding 

3.3 MOM (Memory Orientation Metric) 
 

    This metric is defined for a DFG by the following 

formula (6) : 

 

MOM indicates the frequency of memory accesses in a 

graph. MOM values are normalized in the [0;1] interval. 

The closer to 1 MOM is, the more the function is 

considered as data-access dominated. Therefore in the 

case of hard time constraints, high performance memories 

are required (large bandwidth, dual-port memory, etc.) as 

well as an efficient use of memory hierarchy and data 

locality [6]. 

    To calculate MOM for {H}CDFGs, we follow the same 

approach as for γ computation. For a DFG graph, the 

global memory and processing nodes are enumerated and 

saved as graph attributes. Then the MOM value is 

computed for the DFG. These attributes are used to 

compute MOM metric values for graphs located at higher 

hierarchical levels. We detail MOM computations for two 

CDFG cases: “IF” CDFGs, and “FOR” CDFGs.  

    For “IF” CDFGs, the formula used to calculate MOM is 

given in (7) 

∑ = ++
++=

tpmx cfalsefalsetruetrue

cfalsefalsetruetrue

if
Nx*pNxpNx

Nm*pNm*pNm
Mom

,,
*

 
(7)

where Nmtrue/false/c , Nptrue/false/c and Nttrue/false/c are the 

numbers of global memory accesses, processing 

operations and test operations in the branch(true), 

branch(false) and conditional graph respectively. For the 

“FOR” CDFG, we use formula (8): 

∑ = ++
++=

m,p,tx evolutionforevaluation

evolutionforevaluation

for
NxNxNx

NmNmNm
Mom

 (8) 

    To determine HCDFGs MOM values, the algorithm 

goes through the hierarchy, extracts the Nm and Nt 

attributes from the different graphs and then calculates the 

equivalent MOM with formula (9): 

∑
∑

++=
subgraphs

iii

subgraphs

i

NtNpNm

 Nm

Mom             (9) 

  

3.4 COM (Control Metric Orientation) 
 

    To calculate this metric, test operations, namely the 

following operators: <=, <, >, >=, !=, ==, must be 

identified. COM is defined by the general formula (10):  

 

 op.Nb of testc. op.  Nb of processes al mem. acNb of glob

.op.Nb of test
 COM ++=  

(10)

It indicates the appearance frequency of control  

operations (i.e., tests that cannot be eliminated during 

compilation) in a CDFG or HCDFG since there is no test 

within a DFG. COM values are normalized in the [0;1] 

interval. The closer to 1 COM is, the more the function is 

control dominated, so needs complex control structures. It 



also indicates that the use of the pipeline technique is not 

efficient for such functions. We detail COM computations 

for two CDFG cases: “IF” CDFGs, and “FOR” CDFGs. 

For “IF” CDFGs, COM is calculated with  formula (11): 

 

∑ = ++
++=

m,p,tx
if

c
Nx

false
)*p

false
(Nx

true
)*p

true
(Nx

c
Nt

false
*p

false
Nt

true
*p

true
Nt

COM  

 

For “FOR” CDFGs, COM is given by formula (12): 

 

∑ = ++=
m,p,tx evolutionforevaluation

for NxNxNx

for
Nt

COM   

 

Note that Nt is calculated (in the case of  “FOR” CDFGs) 

only for loops of which the number of iterations can not 

solved at compilation time. Actually, all control (test) 

operations within deterministic loops can be removed with 

unfolding. The COM computation for a complex graph 

uses the same approach as for MOM computation (eq.13).  
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3.5 Additional metrics 

 
    Other useful metrics have been implemented in our 

framework but cannot be detailed due to the paper length 

restriction: • The DRM metric includes a local memory estimation 

based on data life times and provides a data-locality 

ratio [7]. • The AOM is the ratio of index computation that 

stresses address generator requirements. • Data format histograms. • Simple operation counting. 

4. Experimental results 

 

    We have applied the previously defined metrics to 

functions widely used in embedded systems. Hereafter we 

present results for Wavelet (DWT) and 2D-DCT 

transforms as well as for a G722 audio decoder and the 

TCP protocol. 

 
    The DWT algorithm is implemented with the lifting 

scheme and table 1 shows the results for the different 

functional blocs and for the whole HCDFG. The first 

observation is that the COM metric is null for all graphs, 

since this application is composed of deterministic loops 

and does not contain any test. Secondly we observe that 

MOM values of the wavelet functional blocs are higher 

than 0,7; this means that more than 7/10 of operations are 

data accesses, so the application is clearly, at all levels, 

memory oriented. Finally, the γ values are around 1,5 for 

all the functional blocs, this indicates a weak fine grain 

spatial parallelism. However γ increases at the second 

level of granularity (greater than 2,7 for the DWT graph), 

this indicates that a coarse grain parallelism is available. 

We can now conclude about a way to specify the abstract 

architectural model for the second step of the general 

framework, namely the system-level estimation [7]. The 

fact that there is no need for complex control structures, 

the high data-accesses requirements and the coarse grain 

parallelism mean that optimizations can be obtained  with 

a pipelined architecture with possible coarse grain 

dedicated hardware modules providing a large bandwidth.  

So if high performances are required, an ASIP or a 

programmable dedicated hardware can be introduced 

within the SOC. 

 

 

The results for the G722 decoder (H320 standard) are 

given in table 2. This application is composed of many 

functional blocs, hereafter we present the results obtained 

for the adaptive predictor bloc. We can notice that the 

results are quite similar to the previous example. Indeed 

we observe also high MOM values and that parallelism is 

weak at fine grain level and increases at the highest level 

of the specification. 

 

 

The third application is a 2D DCT for 8x8 image blocs 

(table 3). From a HCDFG point of view, it is composed of 

two identical and sequential 1D DCT subgraphs, so all the 

graphs have the same metric values. This third experience 

is interesting since, like previously, the results are 

identical for the COM metrics which are null (all tests can 

be eliminated), the MOM values are also quite high and 

denote large bandwidth requirements but the γ values are 

different. In fact, γ

(11)

(12) 

(13) 

 is greater than 5 at the lowest levels 

and does not increase at the second level of granularity. It 

means that a fine grain spatial parallelism is available if 

large data accesses are provided. So, if performances are a 

key point, the designer can efficiently implement this 

algorithm with an architecture presenting five fine grain 

processing units. The COM metric values indicate that for 

communication a pipeline structure or local small 

memories can be introduced. 

 

    Finally we have computed the TCP protocol metrics in 

order to test another kind of classical application. Each 

function represents a TCP state. Table 4 shows the 

analysis result for some representative functions. We can 

notice that the functions have relatively high COM values 

denoting heavily conditioned data-flows. The MOM 



metric values (greater than 1/3) also indicate an important 

data accesses frequency. It indicates that these functions 

are control-oriented and require high memory bandwidth. 

So, a suitable target architecture is a GPP (General 

Purpose Processor) powered by efficient I/O devices. 

There is no need for a DSP and for a complex data path 

structure, since the parallelism cannot be exploited at any 

level. Note that another very efficient architecture could 

be implemented using a dedicated FSM associated with 

fast FIFO. 

5. Conclusion 

 

    In this paper, we have presented the first step of the 

Design Trotter framework for design space exploration of 

SOCs. This step provides an application characterization 

which is based   on a analysis of a hierarchical control 

data-flow graph (HCDFG). For all granularity levels, the 

characterization provides firstly measures of control, 

processing and data-access orientations and secondly the 

parallelism intrinsic capabilities. Experiences with 

classical algorithms show firstly how functions with a 

high potential of optimization (whatever the hierarchy 

level is) can be detected and secondly how the 

characterization can finely highlight architectural 

opportunities and directions to improve application-

architecture matching. Note also, that the characterization 

step is also a fast and simple way to compare different 

algorithmic specifications for a given functional bloc. 
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Functional bloc (graph) MOM COM γ
HFirstLiftingStep_FOR11 0,721 0 1,576

HFirstDualLiftingStep_FOR21 0,721 0 1,576

HSecondLiftingStep_FOR31 0,721 0 1,576

HSecondDualLiftingStep_FOR41 0,722 0 1,579

HScaling_FOR51 0,802 0 2,136

HRearrange_FOR61 0,904 0 1,843

VFirstLiftingStep_FOR71 0,721 0 1,576

VFirstDualLiftingStep_FOR81 0,721 0 1,576

VSecondLiftingStep_FOR91 0,721 0 1,576

VSecondDualLiftingStep_FOR10_1 0,722 0 1,579

VScaling_FOR11_1 0,802 0 2,136

VRearrange_FOR12_1 0,904 0 1,843

dwt 0,765 0 2,704

 

Table 1. DWT metrics 

Functional blocs MOM COM γ
 parrec_recons 0,714 0 2,333

 upzero 0,758 0,039 1,686

 uppol2 0,674 0,087 2,045

 uppol1 0,743 0,086 2,188

 filtez 0,688 0 1,375

 filtep 0,5 0 2,000

 predic 0,75 0 1,333

 predic_sup 0,738 0,037 3,602

 predicteur_sup 0,739 0,037 3,621
 

Table 2. Adaptive predictor (G722) metrics 

Functional bloc MOM COM γ
DCT8L 0,575 0 5,714

DCT8C 0,575 0 5,714

DCT8x8 0,575 0 5,714

 

Table 3.  2D 8x8 DCT metrics 

function name MOM COM

TCPTIMEWAIT 0,482 0,06

TCPFIN_WAIT2 0,534 0,055

TCPABORT 0,457 0,343

TCPwakeup 0,333 0,556

Tfinsert 0,5 0,01

TCPdodat 0,375 0,06

TCPSENT 0,508 0,320

TCPRESET 0,667 0,148
 

Table 4. TCP states metrics 
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