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Abstract. 

Highly stereospecific polymerization of isoprene was achieved using borohydrido neodymium 

complexes. In combination with stoichiometric amounts of dialkylmagnesium, Nd(BH4)3(THF)3 (1) 

and Cp*’Nd(BH4)2(THF)2 (2) (Cp*’ = C5Me4nPr) afford very efficient catalysts. Activity reaches 

37300 g polyisoprene/mol Nd/h. Half-lanthanidocene 2 gives rise to polyisoprene 98.5 % trans-regular, 

the highest content yet described for a homogeneous organometallic catalyst. NMR experiments argue 

for the formation of bimetallic Nd(-BH4)Mg active species. 

 

 

Keywords: neodymium, rare-earths, trans-polyisoprene, borohydride, stereospecific polymerization. 
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Introduction 

 

Rare earth complexes have been involved in a great number of reports dealing with conjugated 

dienes polymerization since the 1980’s. 
1-4

 Whereas cis-diene polymerization has been to a large extent 

more studied, trans-polymerization has seen a renewed interest only recently, after the pioneer work of 

Natta. 
5
 Trans-1,4-polydienes, 

6
 and particularly 1,4-trans-polyisoprene, produced naturally as gutta-

percha rubber, appear well-suited for the elaboration of high-performances tires. 
7
 Moreover, trans-

polymerization may also allow incorporation of -olefin into a polydiene chain, affording high value-

added copolymers. 
8-10

 

Lanthanide-based isoprene polymerization catalysts are obtained by the reaction of a lanthanide 

precursor, selected among readily available carboxylates (versatates), 
11

 halides, 
12,13

 or alkoxides, 
14

 

with an Al or Mg co-catalyst. Trans-sterospecificity is generally related to the use of Nd/Mg 

combinations, 
15,16

 but such catalysts do not allow living polymerization. This had just been achieved 

by means of an organometallic initiator, (CMe2C5H4)2Sm(allyl)MgCl2(ether)2LiCl(ether), 
17

 which 

gives rise to polyisoprene with molecular weights that are well controlled, and have quite narrow 

polydispersity indices (1.5–1.8). The polymer was also 95 % trans-regular and it was assumed that 

such stereospecificity could be related to steric hindrance around the samarium atom in the trimetallic 

catalyst. 

Only recently, lanthanide trisborohydrides, Ln(BH4)3(THF)3, have been used as valuable precursors for 

organometallic syntheses. 
18,19

 The presence of a borohydride ligand in the coordination sphere of a 

lanthanide generally ensures the formation of neutral rather than ionic “ate” species, and isolation of 

adducts containing less coordinated THF than in the chloro homologues. For instance, well-defined 

early half-lanthanidocenes have been isolated readily from Ln(BH4)3(THF)3 (Ln = Sm, Nd) as starting 

materials. 
18,20

 These trisborohydrides behave like pseudo-halides and display several advantages, in 

particular their higher solubility in apolar solvents, respective to traditional LnCl3(THF)3. Also, they 

are easily available in one step from trichlorides, and the BH4 ligand affords a typical pattern by 
1
H 

NMR, allowing easier NMR analysis and monitoring, particularly in the case of paramagnetic 

lanthanides.  

It was thus of interest to study the ability of lanthanide borohydrido complexes as precatalysts for 

isoprene polymerization. We present here a complete study, using inorganic Nd(BH4)3(THF)3  (1) as an 

alternative to generic LnX3 (X = Cl, OR, OCOR), and organometallic half-lanthanidocene 

Cp*’Nd(BH4)2(THF)2 (2) (Cp*’ = C5Me4nPr), both associated to dialkylmagnesium derivatives, for 
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such a purpose. Additional information about the molecular structure of active catalytic species is 

obtained from NMR experiments. 
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Results and Discussion 

 

Nd(BH4)3(THF)3 
21

 has been used as a single-component initiator for -caprolactone 

polymerization. 
22,23

 It behaves in that case like a hydride, via Ring Opening Polymerization. In a 

preliminary paper, we reported that Nd(BH4)3(THF)3 (1) is active as well toward isoprene, but only in 

the presence of specific alkylating agents, whereas no activity was observed with 1 alone. 
24

 The 

catalyst displayed trans-stereospecificity, and among the possible reasons for such a control, the 

formation of a sterically hindered bimetallic Nd-Mg species allowing only a single coordination of the 

diene was retained. It was thus of interest to study the influence of a bulky and electron-rich ligand in 

the coordination sphere of Nd for such catalysis, and we studied the ability of recently prepared 

Cp*’Nd(BH4)2(THF)2 (2) (Cp*’ = C5Me4(nPr)) for this purpose. 
20

 The synthesis of this complex, a 

rare example of monocyclopentadienyl derivatives of early lanthanides, had been achieved 

straightforwardly from Nd(BH4)3(THF)3 according to equation 1, without the comproportionation 

usually observed with these elements, particularly with chloride complexes. 
25

 

 

(Equation 1) 

 

As expected, 2, combined with equivalent amounts of Mg(nBu)2 displayed good efficiency along with 

higher trans-stereospecificity for isoprene polymerization. 

 

Selected experiments are gathered in Table 1. Runs 1-4 and runs 5-12 were carried out starting 

respectively from 1 and 2. 

 

 

(Table 1) 

 

Activity. The monomer conversion is mostly quantitative in less than 3 hours, depending on the 

monomer/catalyst ratio and the amount of co-catalyst. The average activity reaches 15600 g 

polymer/mol Nd/h with 1 (run 3) which is in all cases higher than that obtained with neodymium 

trichloride based catalysts. 
13,15,26

 With 2 (run 8) a better activity, 37300 g polymer/mol Nd/h, is 

observed, markedly higher than those mentioned in the literature for trans-specific similar 

polymerizations (range from 1000 to 10000 g polyisoprene/mol catalyst/h). The activities of cis-

processes, kinetically favored, 
27

 are by two orders of magnitude higher. 
28,29
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The higher activity of catalytic system obtained with precatalyst 2 might be ascribed to the smaller 

quantity of coordinated THF than in 1. However, a more convincing explanation is the presence of the 

electron-rich Cp*’ ligand, which favors 
3
-

1
 allylic rearrangement, hence allowing faster chain 

migration. 
30

 

The 2/Mg(nBu)2 catalytic system appears less successful in the presence of a large excess of 

dialkylmagnesium (run 11); a very poorly soluble material, likely cross-linked, is obtained. Obviously 

the quasi-living character is no more retained in such conditions. Competition between Mg(nBu)2 and 

isoprene monomer during the coordination step may account for such a result. A blank test conducted 

with Mg(nBu)2 alone did not afford any polymer in the same experimental conditions (run 13). 

In the presence of a 50/50 isoprene/1-hexene mixture, no incorporation of olefin in the polymer 

occurred (pure polyisoprene is quantitatively obtained, run 12) and 2/Mg(nBu)2 catalyst is inactive as 

well toward 1-hexene homopolymerization in our experimental conditions. Actually, the very few 

lanthanide catalysts allowing -olefin polymerization all consist of electronic deficient complexes. 
31

 

Such a finding may account here for a too important electronic donor environment in 

Cp*’Nd(BH4)2(THF)2/Mg(nBu)2 despite the presence of only one cyclopentadienyl ligand. 

 

Macromolecular data. As reported in table 1, both catalysts display a good control of the 

polymerization process, i.e. Mn values close to theoretical ones, and molecular weight distributions 

typical of a single-site mechanism. Calculated molecular weights take into account the number of 

equivalent of Mg co-catalyst added, i.e. the number of chains growing on the metal. SEC analyses were 

performed against polystyrene standards, but we established that such experimental values were close 

to the real ones for trans-polyisoprenes, since they were in accordance with values determined by 
1
H 

NMR for allyl terminated samples. 
8,32

 With precatalyst 1, each equivalents of dialkylmagnesium give 

rise to initiation of one single growing chain (runs 1-4). In the presence of two (run 3) or three (run 4) 

Mg per Nd, two and three chains are initiated on the lanthanide metal, respectively. Addition of a slight 

stoichiometric default (runs 5-7) or excess (runs 8-9) of dialkylmagnesium to precatalyst 2 affords 

molecular weights close to the expected ones. All these results are in accordance with a quasi-living 

process, indicating that: i) only one alkyl group per MgR2 is transferred from the Mg atom to the Nd 

one to create an active bond and initiate polymerization, ii) then, most of Nd-R formed species are 

active. Such a behavior features a main difference with the well-known double alkyl-transfer reaction 

in lanthanide/MgR2 dual component catalysts. 
33
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SEC analysis shows monomodal profiles (in very few cases a slight shoulder at high Mn values could 

be observed). A typical chromatogram (run 5) is displayed on figure 1. Especially with catalyst 

prepared from 2 (runs 5-10), Mw/ Mn values are very close to the ideal value of 1: they are in the 1.15-

1.3 range, which confirms the single-site catalyst character deduced from molecular weights.  

Upon addition of an excess of magnesium co-catalyst to 2 (1.7 Mg/Nd, run 10), the experimental Mn 

value (6600) remains higher than the calculated one (4400) for a mono alkylation (i.e. one active R per 

MgR2)  with 1.7 Mg per Nd. Since double alkylation (i.e. both R of MgR2 active) of Nd by Mg(nBu)2 

should provide molecular weights that would be significantly lower than 4400, this occurrence can be 

discarded. 

 

 (Figure 1) 

 

Stereospecificity. Both catalysts are trans-stereospecific, as long as the amount of Mg(nBu)2 

remains stoichiometric (Table 2). In the presence of 1.7 equivalents of dialkylmagnesium per Nd, the 

trans-stereoregularity falls down to 96.2 % (run 10), whereas no specificity remains when a large 

excess of co-catalyst is used (run 11), indicating a different polymerization mechanism in that latter 

case. 

 

 (Table 2) 

 

Cp*’Nd(BH4)2(THF)2/Mg(nBu)2 affords up to 98.5 trans-steroregularity. To our knowledge, such a 

trans-content is the highest one obtained with a homogeneous single-site catalyst. It is noteworthy that 

the rate of defects with 2 as precatalyst consists in 3,4-units only (cis-1,4 polyisoprene was detected as 

traces). A typical 
1
H NMR spectrum is displayed in figure 2 (run 6). DSC thermogram of 98.5 % trans-

polyisoprene (run 5) exhibits a glass transition at Tg = -71°C. The polymer is highly crystalline as 

expected (Tm = 47 °C ; H = 43 Jg
-1

), in accordance with the low rate of defects of the polymer. 

 

(Figure 2) 

 

Microstructure of polyisoprene is 1,4-trans at more than 95 % with the Nd(BH4)3(THF)3/Mg(nBu)2 

system (runs 1-4). Small quantities of 1,4-cis and 3,4 motives (ca. 2-3 % each) are also present. 

It is generally admitted that trans-polymerization can be related to single coordination of the diene 

monomer to the metal, 
27,34,35

 when double coordination of the diene is required to afford cis-polydiene. 
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According to a recent theoretical study related to hindered permethyllanthanidocenes catalysts, the 

coordination step of the monomer is likely dependent on the steric hindrance around the metal and, as a 

matter of fact, single 
2
 coordination may be preferred. 

36
 Such an assomption was also made by Spitz 

and coworkers who polymerized butadiene with neodymocene catalysts. 
37

 This feature must be 

specially taken into consideration in the case of isoprene polymerization; it was invoked to account for 

the 95 % trans-specificity obtained with the already mentioned trimetallic ansasamarocene. 
17

  

One can note that the small amount of 1,4-cis polymer obtained with 1/Mg(nBu)2 disappears when 1 is 

replaced by 2; the bulky Cp*’ totally prevents 
4
 coordination of isoprene to the neodymium atom. As 

same, although the trans-stereoregularity falls down to 96.2 % with a Mg/Nd ratio of 1.7 (run 10), the 

microstructure reveals the presence of a very low quantity of cis-polyisoprene (1.0 %), which agrees 

well with a disfavored 
4
 coordination, likely due to competition between monomer and co-catalyst. 

Considering the well-known bridging ability of the borohydride ligand in lanthanides chemistry, 
20

 the 

trans-stereospecificity can be tentatively correlated to the formation of sterically hindered borohydrido-

bridged bimetallic Nd-Mg species. Bimetallic Nd-Mg associations have been frequently observed 
38-40

 

or postulated 
15,41

 when a magnesium derivative is reacted with a lanthanide complex. It was therefore 

assumed that bridging Ln(-BH4)Mg species could be formed and NMR experiments were undertaken 

to focus on that point. 

 

1
H NMR experiments. For clarity, the cyclopentadienyl ligand exhibiting numerous signals, 

these experiments were first conducted with 1. Figure 3 displays 
1
H NMR spectrum of 

Nd(BH4)3(THF)3 (1) alone (a) and immediately after addition of 1 equivalent of Mg(nBu)2 (1.6 M, 

heptane) (b), both recorded at 300 K. BH4 signal is shifted from  = 98 ppm to ca 50 ppm. In addition, 

this new resonance is now very broad, accounting for dynamic exchange between different borohydride 

groups. 

 

(Figure 3) 

 

We assume that thanks to the bridging ability of the BH4 group, formation of a Nd(-BH4)(-R)MgR 

bimetallic species may occur, which corresponds well to the mono alkylation deduced from 

macromolecular data. A possible molecular structure is depicted on scheme 1; the neodymium atom is 

surrounded by two terminal BH4 groups (Nd(BH4)3(THF)3 is a monomer in the solid state) 
21

 and the 

third one bridging to the Mg-R moiety, leading to a 
1
H NMR spectrum showing average BH4 resonance 
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(Figure 3, b). No coalescence could be observed at low temperature, indicating fast exchange at NMR 

time scale. 

 

(Scheme 1) 

 

Similar experiments were carried out with half-neodymocene Cp*Nd(BH4)2(THF)2 (3), (Cp* = C5Me5, 

giving only one signal for the Me groups, the electron donating ability being similar to that of 2). 1 

equivalent of butylethylmagnesium (BEM, 20 % in hexanes) is added and a blue precipitate partially 

soluble is formed. Figure 4 displays 
1
H NMR spectrum of 3 (a), and that of the same complex after 

addition of BEM (b). Initial BH4 signal ( = 96 ppm, (a)) is shifted to ca 43 ppm at 293 K, which is an 

uncommonly low value for a borohydrido half-neodymocene ((C5
i
Pr4H)Nd(BH4)2(THF):  = 114 

ppm
18

). As same as for 1, the BH4 resonance is very broad, typical of a dynamic exchange between 

different borohydride groups. A variable temperature NMR study was undertaken (Fig. 4, b); this time 

coalescence occurs, at 253 K, and one BH4 resonance is clearly depicted since 213 K (the second one is 

probably masked in the diamagnetic zone). Dynamic exchange between BH4 groups, slower than with 

1, arises from the presence of the bulky Cp* in the coordination sphere of neodymium atom. 

 

(Figure 4) 

 

On scheme 2 is depicted a possible bimetallic Nd(-BH4)Mg compound resulting from the reaction of 

3, represented under associated form, 
42

 with 1 equivalent of dialkylmagnesium. The Nd atom bears 

two different BH4 ligands: a pure Nd(BH4) one, and the other one bridging to the Mg moiety. 

Association of that Nd/Mg compound, likely in an oligomeric form, may account for the poor solubility 

observed in NMR solvent. Note however that in isoprene medium, the in situ formed Nd/Mg catalyst is 

perfectly soluble. 

 

(Scheme 2) 

 

Comparison with similar dual component catalysts. In table 3 are compared the 

performances of catalysts prepared from 1 and 2, to the results obtained with NdCl3(THF)3, 

Cp*Nd(BH4)2(THF)2 (3), heteroleptic {Cp*’[C(p-tol)NMe]2Nd(BH4)}2 (4),
43

 and 

(C5
i
Pr4H)Sm(BH4)2(THF) (5) 

18
 in analogous conditions. 
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(Table 3) 

 

All complexes show a high rate of trans-specificity. Catalyst prepared from 2 remains the most active 

and is the most trans-stereospecific, closely followed by 4, the latter showing only a moderate activity, 

correlated with the high steric hindrance due to the diketiminate ligand. 
44

   We could not obtain, with 

3, a conversion and an activity as high as with 2, though the latter provides also more than 98 % trans-

regular polymer. It is noteworthy that the hyper bulky C5iPr4H ligand in 5 is not as efficient as 

C5Me4nPr to ensure the steric hindrance allowing the trans-stereospecificity. But in the case of 5, the 

co-catalyst used was nBuLi. 

We observed that combination of NdCl3(THF)3 with 1 equivalent of Mg(nBu)2 affords a quite trans-

stereospecific catalyst of low activity. Similar behavior was previously reported for 

NdCl3(TBP)3/MgR2 system (TBP = tributylphosphate). 
13,15

 To improve the activity of NdCl3-based 

catalysts, Porri added (allyl)MgCl to NdCl3(THF)3 -he obtained in situ prepared allyllanthanide 

complexes- arguing that  Ln-C compounds were too unstable. 
45

 The enhancement of activity 

observed for Nd(BH4)3(THF)3/Mg(nBu)2 against NdCl3(THF)3/Mg(nBu)2 may be here attributed to the 

higher solubility of the trisborohydride. Nd(BH4)3(THF)3, much more easily available and handled, 

appears then as a valuable alternative to alkyl- and allyllanthanide catalysts. The use of MgR2 as 

alkylating reagent is required to afford trans-polyisoprene, whereas in combination with nBuLi or 

AlEt3, Nd(BH4)3(THF)3 gives rise to the formation of irregular polyisoprene. 
24

 

The low activity of 4/Mg(nBu)2 might be ascribed to the high steric environment around the metal, 
44

 

leading to a probable competition between internal and monomer coordination. Also, molecular weight 

distribution (2.01) shows that the process is not as controlled as with 2/Mg(nBu)2. 

Experiments conducted with Sm(BH4)3(THF)3 were totally unsuccessful irrespective of the alkylating 

agent used. This is a rare difference of catalytic behavior between Nd and Sm, both belonging to the 

same early lanthanides group. Complex 5 is however an example of borohydrido complex of samarium 

(and the sole one reported) that provides as well good activity and 95 % trans-content. 

Finally, 2/Mg(nBu)2 is clearly the first catalytic system to simultaneously satisfy high conversion, well-

controlled and narrow distribution of macromolecular weights, together with high 1,4-trans content. 

The half-lanthanidocene framework appears as particularly well-suited for the efficient trans-

polymerization of conjugated dienes. 
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Conclusion 

 

Borohydrido complexes of neodymium have been found very efficient toward isoprene polymerization 

catalysis in the presence of equimolar amounts of dialkylmagnesium co-catalyst. 

Cp*’Nd(BH4)2(THF)2/Mg(nBu)2 and Nd(BH4)3(THF)3/Mg(nBu)2 are both trans-stereospecific, up to 

98.5 % with the former catalyst. As far as we know, this is the best result yet obtained with an 

organometallic catalyst. Quasi-living character is observed, with extremely narrow polydispersity and 

formation of polymers whose molecular weight corresponds well to the monomer/catalyst ratios. 

Monomodal distribution is typical of a single-site character. Trans-stereospecific character of these 

catalysts is tentatively attributed to the formation of Nd(-BH4)Mg bridging active species on the basis 

of 
1
H NMR experiments. Further studies are in progress. 
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Experimental section 

Materials. The solvents were dried on sodium-benzophenone ketyl and deoxygenated by 

distillation immediately before use. All solids were handled in an argon-filled glove-box (Jacomex)). 

Isoprene (99 %, Aldrich) was dried first on calcium hydride, then on 3A molecular sieve and distilled 

just before use. BuLi (1.6 M, hexane) and Mg(nBu)2 (1.0 M, heptane) were purchased from Aldrich. 

BEM (20 %, hexanes) was purchased from Texas Alkyl. Nd(BH4)3(THF)3, 
21

 Cp*Nd(BH4)2(THF)2 
19

 

and Cp*’Nd(BH4)2(THF)2, 
20

 were synthesized from NdCl3(THF)3 
21

 as reported in the literature.  

 

Polymerization procedure. In a typical polymerization (run 5 is given as an example), 20 mg 

(0.041 mmol) of catalyst precursor 2 was weighed in a glove box, in a 20 mL flask. Dry toluene (0.5 

mL), Mg(nBu)2 (0.036 mL, as a 1.0 M solution in heptane), and freshly distilled isoprene (0.5 mL, 5 

mmol), were added in this order via syringes into the flask. The reaction mixture was magnetically 

stirred at 50 °C for 2 h 45 min. The polymerization reaction was terminated as follows: the viscous 

mixture was diluted in standard toluene (1 mL) and the resulting solution was poured into ethanol. The 

white polymer was filtered out, and dried under vacuum for 24 h. Yield: 338 mg (99.3 %); SEC: Mn = 

9500, PDI = 1.15; 
1
H NMR: 98.5 % trans-1,4, 1.5 % 3,4. 

 

Measurements. 
1
H and 

13
C NMR were recorded on a Bruker Avance 300 at 300 K in CDCl3 

solutions. Steric Exclusion Chromatography analyses were carried out in THF as eluent at 20 °C (1 

mL/min) using a Gynkotek P580A apparatus equipped with two PLgel 5m MIXED-C 300x7.5 mm 

Polymer-Labs divinylbenzene columns (range 200 – 200,000,000) and with a PLgel 5m 300x7.5 mm 

Guard column, and an IOTA2 refractive index detector. Absolute values of molecular weights were 

calculated against polystyrene standards, without correction due to the lack of Mark-Houwink 

constants for trans-regular polyisoprene in the literature. Differential Scanning Calorimetry (DSC) 
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measurements were performed on a TA Instruments 2920 DSC. An indium standard was used for 

calibration. Samples of c.a. 10 mg were scanned under nitrogen flow (60 mL.min
-1

; ramp rate 10 

°C.min
-1

). Temperatures were determined on the second scan to ensure identical thermal histories, as 

the inflection point of the corresponding heat capacity jump (Tg), and as the endothermic maximum 

(Tm). 

 

NMR experiments. In a typical experiment, pre-catalyst 1 (10 mg) was weight inside the glove-

box, in an NMR tube equipped with a stop-cock (Young). The solvent was added (C6D6 or C7D8 for 

variable temperature analysis), and then the desired amount of dialkylmagnesium (heptane or hexanes  

solution). The blue solution turned to yellow-green and then yellow-brown within 30 min. A small 

amount (less than 10 %) of olefin was present in the 
1
H NMR spectrum. After 24 h at room 

temperature, the tube’s content was brownish, and NMR analysis showed olefins as major products. In 

the case of pre-catalyst 2, progressive formation of a slightly soluble blue compound was observed. No 

olefins were detected in the spectrum, even after several hours. 
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Tables 

 

Table 1. Selected experiments of isoprene polymerization with borohydride complexes activated with 

Mg(nBu)2. 

run
a
 precatalyst [Mg]/[Nd] [I]/[Nd] 

Time 

(h) 

Yield 

(%) 

Activity
b
 

(gpol/molNd/h) 

Mn(exp)
c
 MWD

d
 Mn(calcd)

e
 

1
f
 1 1 600 2h45 69 10200 27600 1.57 28100 

2
 f
 1 1 1000 2h45 63 15600 43000 1.79 42800 

3
 f
 1 2 600 2h45 95 14100 23600 1.14 19400 

4
 f
 1 3 1000 20 91 3100 15000 1.50 20600 

5 2 0.9 120 2h45 >99 2900 9500 1.15 9100 

6 2 0.9 520 2h45 75 9600 26400 1.26 29400 

7 2 0.9 870 2 73 21600 56700 1.18 48000 

8 2 1.2 1180 2 93 37300 50500 1.16 62100 

9 2 1.2 520 2h45 89 11400 29100 1.21 26200 

10 2 1.7 120 2h45 91 2700 6600 1.27 4400 

11 2 52 120 20 60 250 -
h
 - - 

12
g
 2 0.9 120 20 >99 400 13400 1.54 9100 

13 - Mg(nBu)2 135 20 0 - - - - 

a Toluene 0.5 ml; T = 50 °C. Mg(nBu)2 (1.0 M, heptane solution). b Calculated with {[monomer]/[Nd]} 

x Yield x 68 x (time)
-1

. 
c 

Average number molecular weight, determined par Steric Exclusion 

Chromatography (THF, polystyrene standards). 
d
 Mw/Mn.

 e
 Calculated with {[monomer]/[Mg]} x Yield 

x 68. 
f
 Preliminary results, already published.

 24
 
g
Isoprene/1-hexene: 1/1. 

h
 Poorly soluble. 
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Table 2. Microstructure of polyisoprenes synthesized with borohydrido catalysts 

run precatalyst
a
 [Mg]/[Nd] trans-1,4

b
 (%) cis-1,4

b
 (%) 3,4

b
 (%) 

1
c
 1 1 95.1 3.2 1.7 

2
c
 1 1 95.3 3.1 1.6 

3
c 
 1 2 96.2 1.8 2.0 

4
c
 1 3 95.5 2.4 2.1 

5 2 0.9 98.5 - 1.5 

6 2 0.9 98.4 - 1.6 

7 2 0.9 98.3 - 1.7 

8 2 1.2 98.1 - 1.9 

9 2 1.2 98.0 - 2.0 

10 2 1.7 96.2 1.0 2.8 

11 2 52 57.7 1.0 41.3 

12 2 0.9 97.2 1.4 1.4 

a
 Nd(BH4)3(THF)3 (1), Cp*’Nd(BH4)2(THF)2 (2). 

b
Determined by 

1
H NMR. 

c
 Preliminary results, 

already published.
 24
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Table 3. Influence of the molecular structure of the catalyst for isoprene trans-polymerization 

Catalytic system
a
 [I]/[Nd] 

Activity 

(gpol/molNd/h) 

Mn MWD 

trans-

specificity (%) 

reference 

1/1 Mg(nBu)2 600 15600 43000 1.79 95.3 
24 

2/1.2 Mg(nBu)2 1180 37300 50500 1.16 98.1 this work 

2/0.9 Mg(nBu)2 120 2900 9500 1.15 98.5 this work 

3/1.2 Mg(nBu)2 160 700 9700 1.22 98.2 this work 

4/1 Mg(nBu)2 600 1100 15400 2.01 98.4 
43 

5/1.5 nBuLi 1000 13000 90000 1.5 95.0 
18 

NdCl3(THF)3/1 Mg(nBu)2 460 340 - - 89.5 
24 

a
 Nd(BH4)3(THF)3 (1), Cp*’Nd(BH4)2(THF)2 (2), Cp*Nd(BH4)2(THF)2 (3), {Cp*’[C(p-

tol)NMe]2Nd(BH4)}2 (4), (C5
i
Pr4H)Sm(BH4)2(THF) (5). 



 20 

Figures captions 

 

Equation 1. Synthesis of half-neodymocene 2. 

 

Scheme 1: Formation of the active bimetallic species Nd(-BH4)Mg upon addition of 

dialkylmagnesium to Nd(BH4)3(THF)3 (solvent molecules are omitted for clarity). 

 

Scheme 2: Formation of the active bimetallic species Cp*Nd(-BH4)Mg upon addition of 

dialkylmagnesium to Cp*Nd(BH4)2(THF)2 (solvent molecules are omitted for clarity). 

 

Figure 1: Steric Exclusion Chromatography trace showing the monomodal character of polyisoprene 

obtained with Cp*’Nd(BH4)2(THF)2/Mg(nBu)2 (run 5). 

 

Figure 2: 
1
H NMR (CDCl3) spectrum of 98.5% trans-polyisoprene, aliphatic region (a), olefinic region 

(b), showing traces of cis-polyisoprene (*) and 3,4-polyisoprene defects () (run 6). 

 

Figure 3: 
1
H NMR (C6D6, 300 K) spectrum of Nd(BH4)3(THF)3 (a) and after addition of 1 equivalent of 

Mg(nBu)2 (b) (s = C6D5H, * = heptane). 

 

Figure 4: 
1
H NMR (C7D8) spectrum of Cp*Nd(BH4)2(THF)2 (a, 300 K), and after addition of 1 

equivalent of BEM, recorded at different temperatures (b, range 193 – 293 K, * = hexanes). 
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Schemes and figures 

 

Equation 1. 

1. THF/toluene 

2. pentane
Nd(BH 4)3(THF)3  +  KCp*' Cp*'Nd(BH4)2(THF)2  +  KBH 4
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Figure 1.  
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Figure 2.  
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Figure 3.  
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Figure 4. 
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Graphical abstract: 

 

 

Borohydrido complexes of neodymium afford 

efficient and highly trans-stereospecific 

catalysts toward isoprene polymerization in the 

presence of dialkylmagnesium co-catalyst. The 

whole process is quasi-living as shown by well-

controlled molecular weights and distribution. 
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