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Abstract

We present numerical results relative to the resolution of the time-harmonic Maxwell
equations discretized by discontinuous Galerkin methods. First, a numerical study of
the convergence of discontinuous Galerkin methods which compares different strate-
gies proposed in the litterature for the elliptic Maxwell equations, is performed in
the two-dimensional case. We also introduce a Schwarz-type domain decomposition
algorithm for solving the resulting linear systems; this strategy is evaluated in the
three-dimensional case.

Key words: time-harmonic Maxwell’s equation, discontinuous Galerkin methods,
domain decomposition methods.

1 Introduction

This work is concerned with the numerical resolution of the time-harmonic
Maxwell equations discretized by discontinuous Galerkin methods on unstruc-
tured tetrahedral meshes. Our motivation for using a discontinuous Galerkin
method is the enhanced flexibility compared to the conforming edge element

∗ Corresponding author.
Email addresses: dolean@math.unice.fr (V. Dolean), Hugo.Fol@inria.fr (H.

Fol), Stephane.Lanteri@inria.fr (S. Lanteri), Ronan.Perrussel@inria.fr (R.
Perrussel).

Preprint submitted to Journal of Computational and Applied Mathematics17 October 2006



method [12]: for instance, dealing with non-conforming meshes is straight-
forward and the choice of the local approximation space is not constrained.
Nonetheless, before taking full advantage of these features, it is required to
carefully study the basic ingredients of the method such as the choice of the
numerical flux at the interface between neighboring elements. In the context
of time-harmonic problems, the design of efficient solution strategies for the
resulting sparse linear systems is an equally important question.

Previous works have shown convergence results for discontinuous Galerkin
methods applied to the time-harmonic Maxwell equations, studied under the
form of second-order vector wave equations. Most of these works use a mixed
formulation [13,11] but discontinuous Galerkin methods on the non-mixed
formulation have recently been proved to converge (interior penalty technique
[10,2] and local discontinuous Galerkin method [2]). However, to our knowl-
edge, no direct convergence analysis on the first-order time-harmonic sys-
tem (1) has been conducted so far, which should be useful, for instance, when
using an upwind flux (see subsection 2.3). A first contribution of this work
is a numerical study of the convergence of discontinuous Galerkin methods
based on centered and upwind fluxes applied to the first-order time-harmonic
Maxwell in the two-dimensional case. These methods have previously been
shown to be convergent in the time-domain case [9,8]. In a second part, we
deal with the resolution of the linear system resulting from a discontinuous
Galerkin method based on a centered flux for the discretization of the three-
dimensional first-order time-harmonic Maxwell equations. We consider using
in this context, a Schwarz-type domain decomposition algorithm based on
a first-order condition at interfaces between neighboring subdomains. This
condition corresponds to a Dirichlet condition for characteristic variables as-
sociated to incoming waves [5].

2 Discretization of the first-order time-harmonic Maxwell system

2.1 Continuous problem

The system of non-dimensionalized time-harmonic Maxwell’s equations can
be written under the following form:

{

iωεrE − curl H = −J ,

iωµrH + curl E = 0,
(1)

where E and H are the unknown electric and magnetic fields and J is a known
current source. The parameters εr and µr are respectively the complex-valued
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relative dielectric permittivity (integrating the electric conductivity) and the
relative magnetic permeability; we consider here the case of linear isotropic
media. The angular frequency of the problem is given by ω. We solve Equa-
tions (1) in a bounded domain Ω, and on its boundary ∂Ω = Γa ∪ Γm, we
impose the following boundary conditions:

- a perfect electric conductor condition on Γm, ie: n × E = 0 on Γm,

- a Silver-Müller (first-order absorbing boundary) condition on Γa, ie:

n × E − n × (H × n) = (n × E
inc − n × (H inc × n)) on Γa.

(2)

The vectors E
inc and H

inc represent the components of an incident electro-
magnetic wave. We can further rewrite (1)+(2), assuming J equals to 0, under
the following form:















iωG0W + Gx∂xW + Gy∂yW + Gz∂zW = 0 in Ω,

(MΓm
− Gn)W = 0 on Γm,

(MΓa
− Gn)(W − W inc) = 0 on Γa.

(3)

where W = (E, H)t is the new unknown vector and G0 =







εrI3 03×3

03×3 µrI3





 .

Denoting by (ex, ey, ez) the canonical basis of R
3, the matrices Gl with l ∈

{x, y, z} are given by:

Gl =







O3×3 Nel

N t
el O3×3





 where for a vector n, Nn =















0 nz −ny

−nz 0 nx

ny −nx 0















.

In the following we denote by Gn the sum Gxnx + Gyny + Gznz and by G+
n

and G−
n its positive and negative parts 1 . We also define |Gn|= G+

n − G−
n.

In order to take into account the boundary conditions, the matrices MΓm
and

MΓa
are given by:

1 If Gn = TΛT−1 is the eigenfactorization then G±
n = TΛ±T−1 where Λ+ (resp.

Λ−) only gathers the positive (resp. negative) eigenvalues.
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MΓm
=







03×3 Nn

−N t
n 03×3





 and MΓa
= |Gn|.

See [4] for further details on the derivation of this formulation.

2.2 Discretization

Let Ωh denote a discretization of the domain Ω into a union of conforming
elements (tetrahedral or hexahedral elements) Ωh =

⋃

K∈Th

K. We look for the

approximate solutions (Eh, Hh)
t of (3) in Vh × Vh where the function space

Vh is defined by:

Vh =
{

V ∈ [L2(Ω)]3 / ∀K ∈ Th, V |K ∈ P(K)
}

. (4)

where P(K) denotes a space of polynomial functions on the element K. We
take the scalar product of the first equation of (3) by a sufficiently smooth
vector field V and we integrate over an element K of the mesh Th:

∫

K
iωG0W · V dx +

∫

K

∑

l∈{x,y,z}

Gl∂lW · V dx = 0.

By using Green’s formula we obtain a weak formulation involving a boundary
term Φ∂K that requires a specific treatment and which is usually referred as
a numerical flux (see also Ern and Guermond [6,7]):

∫

K
iωG0W · V dx −

∫

K
W ·

∑

l∈{x,y,z}

Gl∂lV dx +
∫

∂K
Φ∂K(W ) · V = 0. (5)

In order to couple the element K with its neighbors for ensuring the consis-
tency of the discretization, this numerical flux can be defined in the following
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way:

Φ∂K =



























IFKSF JW K + IFKGnF
{W } if F ∈ Γ0,

1

2
(MF,K + IFKGnF

)W if F ∈ Γm,

1

2
(MF,K + IFKGnF

)W −
1

2
(MF,K − IFKGnF

)W inc if F ∈ Γa,

(6)

where Γ0, Γa and Γm respectively denote the set of interior faces, the set of
faces on Γa and the set of faces on Γm. IFK stands for the incidence matrix
between oriented faces and elements whose entries are given by:

IFK =















0 if the face F does not belong to element K,

1 if F ∈ K and their orientations match,

−1 if F ∈ K and their orientations do not match.

We also define respectively the jump and the average of W on a face F shared
by two elements K and K̃:

JW K = IFKW K + IFK̃W K̃ and {W } =
1

2
(W K + W K̃).

Finally, the matrix SF allows to penalize the jump of a field or of some com-
ponents of this given field on the face F and the matrix MF,K to be defined
later insures the asymptotic consistency with the boundary conditions of the
continuous problem.

2.3 Choice of the numerical flux

In this study, we aim at comparing the properties of three classical numerical
fluxes:

- a centered flux (see [8] for the time-domain equivalent). In this case SF = 0
for all the faces F and, for the boundary faces, we use:

MF,K =























IFK







03×3 NnF

−N t
nF

03×3





 if F ∈ Γm,

|GnF
| if F ∈ Γa.
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- an upwind flux (see [6,14]). In this case:

SF =







αE
F NnN t

n 03×3

03×3 αH
F N t

nNn





 , MF,K =







ηF NnF
N t

nF
IFKNnF

−IFKN t
nF

03×3





 ∀F ∈ Γm,

with αE
F , αH

F and ηF equals to 1 for homogeneous media. The definition of
MFK for F in Γa is identical to the centered case.

- a partially penalized upwind flux (local Discontinuous Galerkin method,
see [3]). This flux is characterized by a penalization coefficient given by:

SF = τF h−1
F







NnF
N t

nF
0

0 0





 , MF,K =







ηF h−1
F NnF

N t
nF

IFKNnF

−IFKN t
nF

03×3





 ∀F ∈ Γm.

The definition of MFK for F in Γa is also identical to the centered case.

We are interested in assessing these numerical fluxes for the discretization of
(3). Firstly, we want the best asymptotic convergence order in L2-norm for
the electric and magnetic field for a fixed polynomial order approximation
on an unstructured mesh. Secondly, a minimal numerical dispersion is also
needed. In the following we will focus on the first criterion. The asymptotic
convergence order in L2-norm between the exact solution (E, H) and the
approximate solution (Eh, Hh) corresponds to the largest real coefficients β
and γ such that :

∃C1, C2, h0 > 0, ∀h > h0, ‖E−Eh‖L2(Ω) ≤ C1h
β and ‖H−Hh‖L2(Ω) ≤ C1h

γ ,

where h is the mesh size.

We first recall in Table 1 below the theoretical convergence order for the elliptic
Maxwell equations [6,7], for a sufficiently smooth solution and when the local
function space P(K) is [Pk(K)]3 ie the space of vectors whose components
are polynomials of order at most k. When using flux with a penalization
of E, similar convergence results are proved for the time-harmonic Maxwell
equations in [2].
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flux centered upwind penalization of E

field E k k + 1/2 k + 1

field H k k + 1/2 k

Table 1
Theoretical convergence order for the elliptic Maxwell equations.

2.4 Two-dimensional numerical results

We consider the case of an electric transverse wave in the plane (O, x, y). In
this case the components Ez, Hx and Hy are zero. We numerically simulate
the propagation of a plane wave in vacuum where the incident wave is given
by (Einc

x , Einc
y , H inc

z ) = exp(−iωx)(0, 1, 1). The computational domain is the
unit square Ω =]0; 1[2 and a Silver-Müller boundary condition is imposed on
the whole boundary, that is Γa = ∂Ω and Γm = ∅. The parameters εr and
µr are set to 1 everywhere and we choose ω = 2π. We numerically estimate
the asymptotic convergence order of discontinuous Galerkin methods for the
above problem using two different sequences of triangular meshes:

- uniformly refined meshes. The first mesh of Figure 1(a) is uniformly
refined resulting in the meshes of Figures 1(b) and 1(c).

- independent meshes. We use four unstructured (quasi-uniform) indepen-
dent meshes with an imposed maximal mesh size h (see Figure 2 for the first
three meshes). These meshes are denoted by Ti for i = 1, . . . , 4 with h in a
decreasing order. Thus Ti+1 is not a refinement of Ti.

Our implementation of high order discontinuous Galerkin methods makes use
of nodal basis functions with equi-spaced nodes.
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(a) Initial mesh.
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(b) First refinement.
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(c) Second refinement.

Fig. 1. Initial mesh of the unit square and two uniform refinements.

2.4.1 Convergence behavior using meshes obtained by uniform refinement

Centered flux. Numerical convergence results in a logarithmic scale are
shown on Figure 3. They clearly demonstrate the interest of higher order poly-
nomial approximations which allow a considerable reduction of the number of
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(a) h = 1/8.
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(b) h = 1/16.
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(c) h = 1/32.

Fig. 2. First three independent unstructured meshes.

degrees of freedom to reach the same accuracy. Table 2 summarizes numerical
estimates (using a linear regression method) of the asymptotic convergence
order.

10
−3

10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

L2 norm of the error on H. Centered flux.

h

E
rr

or

P
0

h1

P
1

h2

P
2

h3

P
3

h3.6

(a) ‖H − Hh‖L2 against h.

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

L2 norm of the error on E. Centered flux.

h

E
rr

or

P
0

h1

P
1

h1

P
2

h2

P
3

h3

(b) ‖E − Eh‖L2 against h.

Fig. 3. Convergence results using a centered flux.

P0 P1 P2 P3

E 1.02 1.03 2.05 2.97

H 1.05 1.98 3.05 3.58

Table 2
Numerical convergence order using a centered flux.

The method based on a P0 approximation (i.e. the standard cell centered
finite volume method) is special: the convergence order is optimal for both
fields E and H , that is, equal to k+1. This could be the consequence of using
uniformly refined meshes, since a somewhat different behavior is obtained for
independent meshes with decreasing mesh size (see subsection 2.4.2). For the
other polynomial degrees, we get exactly the predicted theoretical convergence
order in the elliptic case for E, whereas for H , this convergence order is
optimal. Therefore, in this example, the magnetic field is better approximated
than the electric field, when using the centered flux.

Upwind flux. We used here the parameters αH
F = αE

F = ηF = 1 for each face
F . Numerical convergence results are shown on Figure 4. Similar conclusions
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can be derived as in the centered case except that the convergence properties of
the methods based on P0 and P1 interpolations are this time clearly different
with respect to the centered case. The asymptotic convergence orders (see
Table 3) are similar for both fields and correspond to the theory for the elliptic
Maxwell equations. The convergence is optimal except for the case P0, but
nevertheless we are still above the theoretical estimates.
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Fig. 4. Convergence results using an upwind flux.

P0 P1 P2 P3

E 0.89 1.95 3.03 3.95

H 0.89 1.93 2.99 3.93

Table 3
Numerical convergence order using an upwind flux.

Penalized flux on E. We set τF = ηF = 1 for each face F . Results are shown
on Figure 5. Table 4 summarizes the numerical estimates of the asymptotic
convergence order. Besides the expected lack of convergence in the case P0,
we can notice for all the other cases ((Pk)k>0) a complementary behavior with
respect to the centered flux, since this time we get an optimal convergence
rate for E, but not for H .

P0 P1 P2 P3

E X 1.97 3.05 3.93

H X 0.97 2.02 2.89

Table 4
Numerical convergence order using a penalized flux on E.

2.4.2 Convergence behavior using independent meshes

On Figure 6, we compare the evolution of the L2-norm of the error with
the mesh size h by using the meshes (Ti)i=1,...,4, for both a centered flux and
an upwind flux, Figure 6(b) corresponds to the error for the field E while
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Fig. 5. Convergence results using a penalized flux on E.

Figure 6(a) corresponds to the error for the field H . The results for the upwind
flux are the same as for the uniformly refined meshes. For the centered flux,
note the lack of convergence for the case P0. For all the other cases the results
remain the same as for the uniformly refined meshes.
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Fig. 6. Comparison of the convergence results between centered flux and upwind
flux.

It is already known for time-domain problems that the centered flux combined
to a leap-frog time integration scheme results in a non-dissipative discontin-
uous Galerkin method (a mandatory feature for long time computations, see
[8]). As far as time-harmonic problems are concerned, the previous results show
that the upwind flux has better convergence properties. Nevertheless, the cen-
tered flux remains less expensive both for time-domain and time-harmonic
problems (arithmetic operations and memory requirements). In the following
we will show some preliminary numerical results for the thrree-dimensional
problem discretized by a discontinuous Galerkin method based on a centered
flux combined to a P0 or P1 interpolation in the elements of a tetrahedral
mesh.
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3 Parallel solvers for the time-harmonic Maxwell system

From now, we assume that the three-dimensional first-order time-harmonic
Maxwell system is discretized using a discontinuous Galerkin method based
on a centered flux. Inside each element of the mesh (tetrahedra in the present
case), the components of the E and H fields are approximated using a P0

approximation (leading to a standard cell centered finite volume method) or
a P1 approximation.

3.1 Domain decomposition algorithm

The linear systems resulting from the discretization methods adopted here
are large and sparse and their condition number grows with the decrease
of the mesh size or the increase of the polynomial order. Therefore, if one
wants to reach a prescribed accuracy at a manageable computational cost, it
is required to look for (almost) scalable resolution strategies. A standard ap-
proach for solving these systems calls for sparse direct solvers. However, such
an approach is not feasible for reasonably large systems due to the memory
requirements of direct solvers. Moreover, parallel computing is a mandatory
route for the design of solution algorithms capable of solving problems of re-
alistic importance. Several parallel sparse direct solvers have been developed
in the recent years such as MUMPS[1]. Even if these solvers efficiently exploit
distributed memory parallel computing platforms and allow to treat very large
problems, there is still room for improvements of the situation. In this context,
domain decomposition algorithms are popular strategies that can be used to
design parallel preconditioning techniques for Krylov type iterative methods
or as coordination methods for sparse direct solvers applied at the subdomain
level.

Our strategy for the design of parallel solvers in conjunction with discontinuous
Galerkin methods on simplicial meshes relies on a Schwarz algorithm where
a first-order condition is imposed at the interfaces between neighboring sub-
domains that corresponds to a Dirichlet condition for characteristic variables
associated to incoming waves. From the discretization viewpoint, this inter-
face condition gives rise to a boundary integral term in (5) which is treated
using a flux splitting scheme similar to the one applied at absorbing bound-
aries. This approach is actually a first step prior to considering high-order,
optimized, interface conditions and we refer to [5] for a more detailed presen-
tation of these algorithms including convergence analysis results. Note that
the Schwarz algorithm can be used as a global solver or it can be reformulated
as a Richardson iterative method acting on an interface system. In the latter
case, the resolution of the interface system can be performed in a more effi-
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cient way using a Krylov method. Concerning computer implementation, the
adopted parallelization strategy combines an element-wise partitioning using
the MeTiS partitioner, combined to a message passing programming model
using the MPI standard.

3.2 Performance evaluation on a model test case

The test case considered here is essentially used for a first validation of the
proposed domain decomposition algorithms. The computational domain is the
unit cube and a Silver-Müller condition is applied on the whole boundary of
the cube. The underlying meshes are constructed as a subdivision of a regular
cubic meshes (Nx, Ny and Nz denotes the number of discretization along the
x, y and z directions) where each cube yields five tetrahedra.

Numerical experiments are conducted on a cluster of 64 AMD Opteron/2 GHz
processors with a Gigabit Ethernet interconnection. Each processor is equip-
ped with 1 GB of RAM memory for a total of 64 GB. The solvers that we
consider make use of a BiCGstab(l) Krylov method [15] either for solving the
interface system associated with the Schwarz algorithm or as a subdomain
solver. Note that the BiCGstab(l) method is here preconditioned either by a
full factorization using the MUMPS sparse direct solver [1] or by an ILUT(τ ,p)
incomplete factorization. In both cases, the factorization is performed in 32 bit
floating point arithmetic in order to save memory space; this is the reason why
the factorization provided by MUMPS is not directly used to solve the linear
system. All other operations are performed in double precision arithmetic.

We compare the performances of the following solvers:

• GLOB: an unpreconditioned BiCGstab(6) method.
• GLOBD: one iteration of a BiCGstab(1) method preconditioned by

a MUMPS factorization.
• DDM1: a Schwarz algorithm used as a global solver where the subdomain

solver relies on a BiCGstab(6)+ILUT(10−3,1000) combination.
• DDM2: BiCGstab(6) applied to the interface system where the the subdo-

main solver relies on a BiCGstab(6)+ILUT(10−3,1000) combination.
• DDM3: BiCGstab(6) applied to the interface system where the the subdo-

main solver relies on BiCGstab(1)+MUMPS combination.

In the tables below, “CPU” denotes the maximum of the per processor CPU
times while “Elapsed” stands for the elapsed execution time. For this test case,
we only consider a discontinuous Galerkin method based on a P0 approxima-
tion of the E and H fields. Performance results are given in Tables 5 and
6 for two mesh sizes. The GLOBD solver is clearly the most efficient option.
The DDM3 solver exhibits nice scalability properties as should be expected for
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such moderately parallel calculations. On the other hand, the domain decom-
position based solvers present another advantage over a global factorization
method which is related to the memory space used for storing the L and U
factors. As a matter of fact, the preprocessor memory usage for storing these
factors is 407 MB (min)/452 MB (max) while the corresponding figure for the
subdomain factors in the DDM3 solver is 164 MB (this figure is the same for
each subdomain in the present case). Finally, the elapsed time for building the
factors in the GLOBD and DDM3 solvers is 29.0 sec and 7.0 sec respectively.

Solver # iter CPU Elapsed

GLOBD 1 2.0 sec 3.0 sec

GLOB 383 227.0 sec 239.0 sec

DDM1 > 100 1070.0 sec 1074.0 sec

DDM2 5 698.0 sec 702.0 sec

DDM3 5 59.0 sec 63.0 sec

Table 5
Plane wave propagation in vacuum.
Nx=41, Ny=Nz=15, discontinuous Galerkin method with P0 approximation.
# vertices = 9,225 - # tetrahedra = 47,040 - # dof = 282,240, # procs = 4.

Solver # procs # iter CPU Elapsed

GLOBD 4 1 3.2 sec 5.5 sec

- 16 1 1.6 sec 5.1 sec

DDMINT3 4 6 157.0 sec 159.0 sec

- 16 7 38.0 sec 40.0 sec

Table 6
Plane wave propagation in vacuum.
Nx=81, Ny=Nz=15, discontinuous Galerkin method with P0 approximation.
# vertices = 18,225 - # tetrahedra = 94,080 - # dof = 564,480.

3.3 Scattering of a plane wave by a perfectly conducting sphere

The next test case is the scattering of a plane wave by a perfectly conduct-
ing unit sphere. The incident wave is given by E

inc = (exp(−iωx), 0, 0)t and
H

inc = (0, exp(−iωx), 0)t, with ω = 4π. The absorbing boundary is set to one
wavelength from the surface of the perfectly conducting sphere. Two tetrahe-
dral meshes have been used for this test case depending on the approximation
adopted in the discontinuous Galerkin method:

• P0 approximation, mesh M1: # vertices = 244,834, # tetrahedra = 1,382,400
and # dof = 8,292,000.
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• P1 approximation, mesh M1: # vertices = 70,422, # tetrahedra = 384,000
and # dof = 9,216,000.

The physical solution in terms of the contour lines of the real part of the com-
ponent Ex are shown on Figure 7. Note that despite the coarsest mesh used for
the discontinuous Galerkin method based on P1 approximation, the resulting
solution is very close to the exact solution. Concerning the solvers used for
this test cases, it has not been possible to apply the GLOBD solver (ie global,
parallel, factorization as a preconditioner to the BiCGstab(l) method) with
neither of the discontinuous Galerkin methods and tetrahedral meshes consid-
ered here, due to the memory space limitation. Moreover, for the same reason,
it has not been possible to run the DDM3 solver in combination with the dis-
continuous Galerkin method based on P1 approximation. Finally, performance
results for the discontinuous Galerkin method based on P0 approximation are
given in Table 7. Note that for the DDM3 solver, the per processor time for
performing the factorization is 18.0 sec (min)/102.0 sec (max) while the asso-
ciated memory usage is 405 MB (min)/1001 MB (max).

Solver # iter CPU (min) CPU (max) Elapsed

GLOB 2031 1940.0 sec 2142.0 sec 2919.0 sec

DDM3 14 259.0 sec 413.0 sec 449.0 sec

Table 7
Plane wave propagation in vacuum.
Mesh M2, discontinuous Galerkin method with P0 approximation.
Performance results, # procs = 64.
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[15] Gèrard L. G. Sleijpen and Diederik R. Fokkema. BiCGstab(l) for linear
equations involving unsymmetric matrices with complex spectrum. Electron.

Trans. Numer. Anal., 1(Sept.):11–32 (electronic only), 1993.

16


