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ABSTRACT

In this article we present the results of 215 h of time-series photometry on the rapidly pulsating subdwarf B star PG 1325+101 (Teff = 35 000 K,
log g= 5.8, log N(He)/N(H)= –1.7), obtained during 25 days of observation in Spring 2003 from nine different sites. As in previous observations,
the temporal spectrum is dominated by the main peak at 7255.55 µHz, with an amplitude of about 2.7% which, however, is dropped to about 1.7%
in February 2005. No secondary peaks close to the dominant pulsation mode are clearly detected. In addition, at least fourteen more pulsation
frequencies are found: three of them at 7704.92, 9380.17 and 14511.10 µHz were already present in the discovery run with small differences in
frequency, probably due to 1-day aliasing effects. The peak at 7704.92 µHz belongs to a triplet of almost equally spaced frequencies that could
be due to rotational splitting and would imply a rotational period of about 1.6 days. Based on the results of this article, a detailed asteroseismic
analysis of PG 1325+101 is presented in a separate paper (Charpinet et al. 2006b, A&A, 459, 565, Paper II).
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1. Introduction

Subluminous B (sdB) stars dominate the populations of faint
blue stars of our own Galaxy and are found in both the disk (field
sdBs) and the halo populations as blue tails to the horizontal
branches of globular clusters (Ferraro et al. 1997). Observations
with the Ultraviolet Imaging Telescope and the Hubble Space
Telescope (Brown et al. 1997, 2000) have shown that these stars
are sufficiently common to be the dominant source for the “UV
upturn phenomenon” observed in elliptical galaxies and galaxy
bulges (see also Dorman et al. 1995; Greggio & Renzini 1999).
However, important questions remain over their exact evolution-
ary paths and appropriate time-scales.

It is now generally accepted that the sdB stars can be iden-
tified with Extreme Horizontal Branch (EHB) stars burning
He in their core (Heber 1986; Saffer et al. 1994). Their inert
hydrogen envelope is too thin (<1% by mass) to sustain nu-
clear burning and therefore, following stellar evolution calcu-
lations by Dorman et al. (1993), they are expected to bypass the

� Based on observations obtained at the following telescopes: Loiano
1.5 m and Serra La Nave 0.9 m (Istituto Nazionale di Astrofisica),
Moletai 1.65 m (Institute of Theoretical Physics and Astronomy,
Vilnius), BOAO 1.8 m (Korea Astronomical Observatory), SARA
0.9 m (Southeastern Association for Research in Astronomy, Kitt Peak,
Arizona), La Palma 0.6 m (KVA), BAO 0.85 m (Beijing Astronomical
Observatory), Baker 0.4 m (Baker Observatory, Marshfield), Wise 1.0 m
(Wise Observatory).
�� Individual photometric measurements are only available in elec-
tronic form at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/459/557
��� Table 1 is only available in electronic form at
http://www.aanda.org

Asymptotic Giant Branch and evolve directly to the white dwarf
cooling track. Hence sdB stars can be considered as immedi-
ate progenitors of low mass white dwarfs but this evolutionary
route is quite inefficient and only roughly 2% of the DA white
dwarfs are formed from the sdB stars (Heber 1986). While the
next stages of sdB evolution appear to be known, their prior evo-
lution is still controversial. There have been three different sce-
narios proposed: i) binary interaction involving Roche lobe over-
flow (Mengel et al. 1976); ii) single star evolution with strong
mass loss near the tip of the Red Giant Branch (D’Cruz et al.
1996); iii) merging of two helium white dwarfs (Iben & Tutukov
1986). Five different binary routes to form an sdB star (two based
on common envelope ejection, two stable Roche lobe overflow
models and the merger of two He WDs) have been systemati-
cally investigated by Han et al. (2003), using the radial veloc-
ity sample from Maxted et al. (2001) and Morales-Rueda et al.
(2003) to calibrate their models. Lisker et al. (2005) compared
the twelve simulation sets of Han et al. (2003) with a sample of
76 sdBs found in the SPY (=Supernovae type Ia Progenitor sur-
vey, Napiwotzki et al. 2003) project, the largest and most homo-
geneous sample obtained to date. They found that these simula-
tion sets can reproduce well the observed distribution in Teff and
log g, but not the slope of the observed cumulative luminosity
function. The authors conclude that “a combination of single star
and binary formation channels would be necessary to achieve
full understanding of sdB formation processes”. Another impor-
tant element to compare observations with models is the fraction
of radial velocity (RV) variables: Napiwotzki et al. (2004), us-
ing a subset of 46 stars from the SPY sample, found a frequency
of 39% of RV variables, which increases up to 45% after cor-
recting for the detection efficiency.
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The discovery of multimode pulsators among the sdB stars
has opened an attractive new possibility of probing their interi-
ors using seismological methods. There are two classes of sdB
pulsators (also called sdBV= sdB Variables) consisting firstly of
37 short-period variables (the last three discovered by Solheim
& Østensen 2006), whose prototype is V361 Hya (or EC 14026,
Kilkenny et al. 1997), that are characterized by short pulsation
periods (∼1 to 10 min) caused by low-order acoustic waves (or
p-modes). These oscillations are driven by an opacity bump as-
sociated with iron ionization (Charpinet et al. 1996). The second
class was discovered more recently (Green et al. 2003) and con-
sists of 25 pulsators having longer periods (∼30 min to 2 h),
whose oscillations are associated with high-order gravity waves
(or g-modes), analogous to our ocean waves. The driving mech-
anism for them could be again an opacity bump associated with
iron ionization, but tidal forces in close binaries might be a pos-
sible alternative (Fontaine et al. 2003).

In both classes the iron enrichment in the driving layers be-
low the atmosphere is caused by material being pushed up by
radiative acceleration from deeper layers (Charpinet et al. 1997;
Unglaub & Bues 2001). According to the predictions of mi-
croscopic elemental diffusion, the surface abundance of iron in
sdB stars is mostly solar. However, a uniform solar metallicity
would not drive pulsations in both types of pulsating sdB stars.
Presently, there is no clear evidence of a significant overabun-
dance of iron-group elements in pulsating sdBs with respect to
the non-pulsating ones at similar effective temperatures. Recent
results on a few sdBs from UV and far UV spectroscopy using
HST/STIS (O’Toole et al. 2004) and FUSE (Chayer et al. 2004)
are still contradictory.

The two sdBV instability strips have slightly different effec-
tive temperatures (∼28 000–36 000 K for the fast pulsators and
∼24 000–30 000 K for those with longer periods), with an over-
lap between about 28 000 and 30 000 K. The stars in this temper-
ature range could in principle show both kinds of variability and
indeed this is the case for at least two objects: HS 0702+6043
(Schuh et al. 2006) and Baloon 090100001 (Oreiro et al. 2004,
2005; Baran et al. 2005).

In this article we present a detailed study of the power spec-
trum of the sdB pulsator PG 1325+101 (hereafter PG 1325),
that is located near the high gravity boundary of the short pe-
riod sdBV instability strip. The variability of PG 1325 was dis-
covered by Silvotti et al. (2002) in the framework of a search
program at the Nordic Optical Telescope (Solheim et al. 2004)
and further studied by Telting & Østensen (2004), who were
able to see the radial-velocity and line-profile variations of the
main pulsation mode. Based on the findings of the present pa-
per, a detailed asteroseismic analysis of PG 1325 is presented in
a separate paper by Charpinet et al. (2006b, hereafter Paper II).
The asteroseismic solution described in Paper II is further im-
proved using new higher quality determinations of the atmo-
spheric parameters (log g= 5.81± 0.04, Teff = 35 050± 220 K
and log N(He)/N(H)= –1.70± 0.02, see Paper II for more
details).

2. Observations and data reduction

PG 1325 was observed in Spring 2003, from March 21 to
April 13, at nine different sites, resulting in 264 h of good
data in 51 independent runs (see Table 1), which are reduced
to 215 h considering the overlaps. Two kinds of different in-
struments were used: photoelectric photometers with B-peaked
bialkali photomultipliers (PMTs) without any filter, as well as
CCDs with standard B filters. The integration time was set to

10 s for all the PMTs and between 10 and 25 s for the CCDs, giv-
ing an effective sampling time between 12 and 30 s considering
the read-out time. The light curve, shown in Fig. 1, is character-
ized by a duty cycle of 38%, which increases to 45% if we ex-
clude the first short isolated run and the last one (which is quite
noisy). Unfortunately, because of the “Pacific ocean gap”, we
were never able to reach 24 h of continuous coverage and there-
fore the 1-day aliases in the spectral window are still important
(Fig. 3).

The data reduction was performed following standard pro-
cedures. For the PMT data, the sky was subtracted on a point-
by-point basis when 3 channels were available. For the single
channel photometer of Serra La Nave a linear interpolation was
applied to the sky and comparison star measurements, which
were done every 15–40 min, depending on the sky stability, and
with a non-regular time sampling, in order to get a clean as pos-
sible spectral window. We then calculated the flux ratio between
target and comparison star in order to compensate for the sky
transparency variations. For the CCD data, bias and flat field
corrections were applied; then aperture photometry was per-
formed after subtracting the background. The flux ratios were
obtained by dividing the counts of the target by the best combi-
nation of the available reference stars (between one and three).
Finally, for both PMT and CCD data, the flux ratios of each run
were converted to fractional intensities by dividing by the mean
flux ratio of that run, and then to the so called milli-modulation
intensity (mmi) units (1 mmi= 0.1% change in intensity) by
subtracting unity and multiplying by 1000. The same defini-
tion applies to the milli-modulation amplitude (mma) units
(1 mma= amplitude of 0.1%). Residual atmospheric extinction
and further large time-scale variations, presumably due to sky
transparency fluctuations, were then removed by means of a cu-
bic spline interpolation. Intrinsic luminosity variations with peri-
ods of the order of 0.5 up to about 3 h were not observed, at least
with amplitudes larger than a few percent. When data from more
than one site were available at the same time, a weighted average
was applied. As a final step, the times of the whole data set were
converted to barycentric Julian date (BJD) using the algorithm
of Stumpff (1980).

3. Data analysis

3.1. Statistical weights

The main problem of using large data sets from different sites,
telescopes and instruments is that the quality of the data changes
a lot from one observation to another. Taking this into account
is important if we want to maximize the signal-to-noise (S/N)
ratio in the power spectrum and detect as many pulsation fre-
quencies as possible. One possible solution is to use a weighted
Fourier transform (see e.g. Butler et al. 2004), where the statis-
tical weights wi are given by:

wi = 1/σ2
i . (1)

Unfortunately, most of the data have no reported observational
errors and therefore the first problem is to define the σi. Since
the oscillation signal is the dominant cause of variations in the
time series, as a first step we need to remove this signal from the
data. This was done iteratively by finding the strongest peaks in
the power spectrum and subtracting the corresponding sinusoids
from the time series. At the end of this process we were left with
a time series of residuals that reflects the noise properties of the
measurements. For each of these residuals we then measured the
standard deviation of the 100 points (or less when we are close



R. Silvotti et al.: The rapidly pulsating subdwarf B star PG 1325+101. I. 559

Fig. 1. The light curve of PG 1325+101 during the multisite run of March–April 2003. Upper plot: the whole data set. In this figure each panel
represents 24 h and the vertical scale of each panel corresponds to 600 mmi (from –300 to 300), where mmi stands for milli-modulation intensity
units (1 mmi= 0.1% variation). Lower plot: detail of the central part of the light curve from BJD 2731.45 to 2731.55 (April 1–2).

to the beginning or the end of a single data set) centered on it,
and this was considered as the error σi of that measurement. In
Fig. 2 the statistical weights obtained from this procedure are

shown as a function of the scatter in the residuals series. Note
that in this way we do not remove the bad data but simply give
them a lower weight. The only exception was applied to the last
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Fig. 2. Statistical weights as a function of the scatter in the residuals se-
ries (see the text for more details). Residuals are given as fractional in-
tensities (∆F/F, where F is the measured flux). The non homogeneous
distribution, with regions of higher density, is related to the different
qualities of the observing runs.

Fig. 3. Spectral window of the whole run with and without statistical
weights. Note that the 1-day aliases increase from 40 to 59% when the
weights are used. This is not surprising because using weights is equiva-
lent to using less data in some parts of the overall light curve. Therefore
the spectral window appears more noisy although the S/N ratio in the
weighted Fourier transform is higher.

run of April 13, which was particularly noisy due to bad weather
conditions, and that was simply removed from the data set used
in our analysis.

The discrete Fourier transform (DFT) of the data, with and
without statistical weights, is shown in Fig. 4. The average noise
of the amplitude spectrum is decreased by a factor of about 1.5
when the weights are used. This allows us to identify one more
peak at 5960.26 µHz and another two or three peaks around
10 000 µHz. On the other hand, in the region of maximum power
near 7256 µHz, the noise of the weighted DFT is higher because
of the degradation of the spectral window (Fig. 3).

3.2. Temporal stability of the amplitude spectrum

In order to check the stability of the spectrum over short time-
scales, we divide the data set into three parts of similar length
and calculate the DFT of each subset. As can be seen from the
lower part of Fig. 4, the spectra are quite similar, suggesting a
substantial stability over time-scales of the order of one week,
although a few small amplitude peaks (at 6389.04, 10017.68 and
14511.10 µHz) show some possible variations. In any case, the
amplitude of the main peak at 7255.55 µHz, which is not visible
in the figure, is constant within the errors.

The same is not true over longer time-scales, of the order of
years, as shown in Fig. 5, where the amplitude spectra at differ-
ent epochs are compared. We clearly see that the peaks at ∼7700
and 9380 µHz have significantly decreased their amplitude from
July 2001 (discovery run, Silvotti et al. 2002) to March–April
2003. On the other hand, the main peak at 7255.55 µHz is con-
stant within the errors (25.9 vs. 27.1 mma). However, this peak
has lost significant power in the last run of February 2005, where
its amplitude is reduced to 16.6 mma and where all the other
peaks are below the noise level. Note that these differences can
not be explained by the different efficiencies of the instruments
used. The single site data of 2001 and 2005 were obtained with
different telescopes (2.6 m NOT and 1.5 m Loiano respectively),
but similar instruments (ALFOSC1 and BFOSC2) and B filters.
Regarding the multi-site data of 2003, the amplitude measure-
ments can be partially affected by the different quantum efficien-
cies and transmission curves of the many instruments used (in
particular between bialkali PMTs and CCDs), but these uncer-
tainties can be estimated as being on the order of ∼5% (see
for instance the analysis of Kanaan et al. 2000, for pulsating
white dwarfs). Indeed, a direct comparison between simultane-
ous PMT and CCD data on March 28 (Moletai vs BOAO) gave
a difference of about 4% in amplitude.

3.3. Pre-whitening: extracting the pulsation frequencies

The pulsation frequencies were extracted by applying a pre-
whitening technique: at each iteration the main frequency was
subtracted from the data and the DFT of the residuals was recal-
culated, until the residuals were close to the noise level (Fig. 6).
The results of this process, after having optimized frequencies,
amplitudes and phases through a least-squares weighted sinu-
soidal fit, are reported in Table 2. However, to disentangle be-
tween real pulsation modes and artifacts is always a difficult task.
Moreover, in the case of PG 1325 the spectrum is dominated by
a single peak which has an amplitude at least 20 times higher
than all the other signals. This makes it very difficult to extract
possible weak signals close to the main peak. Therefore we di-
vided Table 2 into two sections. The upper part reports the 15
best frequencies (named as Fn, n = 1, 15), i.e. those which were
directly visible in the original amplitude spectrum (before pre-
whitening) and whose amplitude is equal to at least 4 times the
local noise (defined as the average amplitude after pre-whitening
in a region of typically ±100 µHz centered on the peak consid-
ered). The lower part of Table 2 reports another 15 frequencies
which are more uncertain (named as fn, n = 1, 15). Although
many of these frequencies are probably due to artificial effects,
we see from Fig. 6 (central panel) that the residual spectrum after
having subtracted 15 frequencies still contains significant power;

1 Andalucia Faint Object Spectrograph & Camera, see
http://www.not.iac.es/instruments/alfosc/ for more details.

2 Bologna Faint Object Spectrograph & Camera, see
http://www.bo.astro.it/loiano/ for more details.
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Fig. 4. Amplitude spectrum of PG 1325+101 with and without using weights. The three lower panels represent the weighted spectra of three
subsets of data with similar length, each one covering almost one week. The amplitude is given in milli-modulation amplitude (mma) units, where
1 mma corresponds to an amplitude of 0.1%.

Fig. 5. Amplitude spectra of PG 1325+101 at different epochs: July
2001 (from Silvotti et al. 2002), March–April 2003 and February 2005.
The latter was obtained from 5.3 h of CCD time-series data collected
on February 12 and 14 (2005) at the Loiano 1.5 m telescope using the
BFOSC camera + Johnson B filter.

therefore at least some of the peaks reported in the lower part of
Table 2 must be due to true pulsation modes.

The uncertainties reported in Table 2 for amplitudes, fre-
quencies and phases are the formal errors of the sinusoidal
fit, based on the analytical estimates by Montgomery &
O’Donoghue (1999):

σ(a) =

√
2
N
σ(i) � 0.10 mma (2)

σ( f ) =

√
6
N

1
πT
σ(i)

a
=

√
3
πT
σ(a)

a
� 0.03

amma
µHz (3)

σ(φ) =
1

2π

√
2
N
σ(i)

a
=

1
2π
σ(a)

a
� 0.02

amma
(4)

where N = 56079 is the number of data points, T = 22.4 the
total duration of the run in days and σ(i) = 〈σi〉 = 0.01592 is the
mean error of the data (or mean error of the residual intensity
as defined in Sect. 3.1). Note that σ(a) represents the noise of
the amplitude spectrum after pre-whitening and σ(a)/a is the in-
verse of the S/N ratio. However, as pointed out by Montgomery
& O’Donoghue (1999), the errors given by these formulae rep-
resent a lower limit to the real errors; in particular, the actual
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Fig. 6. The amplitude spectrum of PG 1325+101 at different steps of the pre-whitening procedure: starting from above, the spectrum is calculated
after having subtracted the main signal (F4), the 15 best frequencies listed in the upper section of Table 2, 30 frequencies (upper + lower part of
Table 2). The dotted lines represent the frequencies subtracted at each step.

Table 2. Results of the least-square sinusoidal fit (using weights) for the 15 best frequencies and 15 more suspected signals.

F [µHz]1 P [s] A [mma]1 φ1,2 S/N3 Name
5960.258 ± 0.068 167.7780 0.53 ± 0.11 0.529 ± 0.031 5.5 F1
6389.037 ± 0.028 156.5181 1.29 ± 0.11 0.200 ± 0.013 12.8 F2
6897.344 ± 0.067 144.9834 0.54 ± 0.11 0.488 ± 0.030 5.7 F3
7255.549 ± 0.002 137.8256 27.12 ± 0.12 0.657 ± 0.001 239.3 F4
7431.097 ± 0.035 134.5696 1.12 ± 0.12 0.806 ± 0.016 10.9 F5
7691.036 ± 0.045 130.0215 0.82 ± 0.11 0.197 ± 0.021 7.5 F6
7698.664 ± 0.065 129.8927 1.04 ± 0.15 0.209 ± 0.030 8.1 F7
7704.918 ± 0.047 129.7872 0.97 ± 0.11 0.827 ± 0.021 9.3 F8
8484.680 ± 0.033 117.8595 1.08 ± 0.11 0.508 ± 0.015 12.4 F9
9380.169 ± 0.058 106.6079 0.61 ± 0.11 0.851 ± 0.026 6.5 F10

10017.680 ± 0.059 99.8235 0.65 ± 0.12 0.234 ± 0.026 6.0 F11
10019.204 ± 0.068 99.8083 0.61 ± 0.12 0.950 ± 0.030 4.5 F12
10164.744 ± 0.097 98.3793 0.37 ± 0.11 0.252 ± 0.044 4.0 F13
10545.219 ± 0.094 94.8297 0.38 ± 0.11 0.545 ± 0.042 4.0 F14
14511.096 ± 0.031 68.9128 1.28 ± 0.11 0.087 ± 0.013 14.7 F15= 2F4
6639.427 ± 0.092 150.6154 0.39 ± 0.11 0.545 ± 0.041 4.2 f1
6891.787 ± 0.092 145.1002 0.39 ± 0.11 0.217 ± 0.041 4.1 f2
7087.283 ± 0.061 141.0978 0.60 ± 0.11 0.629 ± 0.027 6.4 f3
7089.645 ± 0.076 141.0508 0.48 ± 0.11 0.421 ± 0.034 4.9 f4
7228.214 ± 0.085 138.3468 0.44 ± 0.11 0.508 ± 0.038 3.8 f5
7247.132 ± 0.049 137.9856 0.84 ± 0.12 0.011 ± 0.021 4.7 f6
7252.547 ± 0.055 137.8826 0.71 ± 0.12 0.335 ± 0.025 5.2 f7
7259.310 ± 0.082 137.7541 0.51 ± 0.11 0.696 ± 0.034 4.4 f8
7266.034 ± 0.051 137.6267 0.77 ± 0.12 0.572 ± 0.024 4.8 f9
7269.114 ± 0.070 137.5683 0.56 ± 0.12 0.103 ± 0.031 4.0 f10
7430.157 ± 0.077 134.5867 0.49 ± 0.11 0.065 ± 0.035 3.8 f11
7434.945 ± 0.074 134.5000 0.51 ± 0.11 0.122 ± 0.033 4.4 f12
7698.230 ± 0.145 129.9000 0.46 ± 0.15 0.960 ± 0.065 3.8 f13
7704.319 ± 0.093 129.7973 0.50 ± 0.11 0.217 ± 0.041 4.3 f14

10007.298 ± 0.083 99.9271 0.49 ± 0.12 0.221 ± 0.038 3.9 f15
1 The errors listed are the formal errors of the fit. 2 Phases in [0, 1] units are referred to the first datum at BJD= 2 452 719.919625. 3 S/N is defined
as the ratio between amplitude and local average of the amplitude spectrum after pre-whitening.
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Fig. 7. Pre-whitening of the region near the main peak at 7255.55 µHz:
the panels represent the amplitude spectrum before pre-whitening, after
subtraction of the main peak (F4), and after subtraction of all the seven
frequencies in the region near 7250 µHz (F4 plus f5 to f10, see Table 2).
The huge difference in amplitude between the panels suggests that all
the secondary peaks are not really significant. Further comments are
given in the text.

errors in frequency can be several times larger, up to a factor
≈10 (remembering that the formal resolution is only 0.52 µHz).

Considering the upper part of Table 2, we note that there
are no peaks close to the main signal at 7255.55 µHz. All
six frequencies obtained from the pre-whitening in the range
7228.21–7269.11 µHz, reported in the lower section of Table
2, have relatively low S/N ratios and could easily be the prod-
uct of some artificial effect during the subtraction of the various
sinusoids. A detail of the pre-whitening applied to this region
is given in Fig. 7. Therefore we conclude that there is no clear
evidence of secondary peaks in the region near the main peak
at 7255.55 µHz. This result apparently supports the suggestion
of Telting & Østensen (2004) that the main peak, with an RV
amplitude of 18 km s−1, could be an l= 0 mode. However, the
detailed asteroseismic analysis reported in Paper II leads to a
different conclusion and points towards an l= 2 mode.

Another interesting point concerns the peak at 7698.66 µHz,
which in 2001 was observed at about 7713 µHz, a difference
of ∼14.3 µHz. Considering that the uncertainty in frequency
of that run was of the order of 2.7 µHz, it is likely that the
peak detected in 2001 was simply the 1-day alias of the true
value, that falls at 7710.23 (7698.66+11.57) µHz. The same ar-
gument applies to the high frequency peak at 14511.10 µHz,
which in 2001 was found at 14523 µHz: the difference is very
close to 11.57 µHz. Note that the new and much more precise
value corresponds exactly to the first harmonic of the main peak
(7255.55× 2 = 14511.10).

Finally, looking at Table 2, we note two groups of close
frequencies near 7700 and 10 000 µHz. In particular, the first
group, which is highlighted in Fig. 8, is formed by a triplet
of almost equally spaced frequencies at 7691.04, 7698.66 and
7704.92 µHz. Their spacings are equal to 7.62 and 6.26 µHz,
with an average value of 6.94 µHz. If this effect was due to rota-
tional splitting and considering a spherical harmonic index l= 1,
the rotational period of the star Prot = (1–Cnl)/∆ f would be equal
to about 1.6 days (considering a value smaller than 0.07 for the

Fig. 8. Pre-whitening of the region near 7700 µHz where a triplet of
almost equally spaced frequencies is found. Further comments are given
in the text.

constant Cnl related to the stellar structure). Indeed, looking at
Paper II, we see that the best-fit model points towards l= 1 for
the triplet and therefore, using the best value C31 = 0.014, we
obtain Prot = 1.6 ± 0.2 days (i.e. Veq on the order of 5 km s−1).
Unfortunately this result can not be directly verified by the spec-
troscopy: the time resolved spectra of Telting & Østensen (2004)
have a resolution of the order of R = 500, not sufficient to detect
such low RV variations. Moreover a low RV variation is hard to
see due to the pulsational line broadening. However, from the
higher resolution MMT spectrum reported in Paper II we can at
least derive an upper limit to the projected rotational velocity of
the order of 20–30 km s−1 (see Paper II for more details).

4. Summary

The analysis of our multisite time-series observations on
PG 1325 shows that this star has a rich frequency spectrum, with
at least 15 pulsation frequencies in the range between 5960 and
10545 µHz (94.8 < P < 167.8 s). The spectrum is dominated
by a strong peak at 7255.55 µHz (137.8 s) with an amplitude
of 27.1 mma, whereas all the other frequencies have much lower
amplitudes, below 1.3 mma. The first harmonic of the main peak
is also detected, with a period of only 68.9 s. The spectrum ap-
pears rather stable over short time-scales (no variations are seen
during our ∼3 weeks run) but shows significant variations over
longer time-scales (years). Because of its rich frequency spec-
trum and relative brightness, PG 1325 is a good target for seis-
mological studies together with a few other rapid sdB pulsators
like PG 1605+072, PB 8783, PG 0014+067, PG 1047+003,
PG 1219+534, Feige 48 and Baloon 090100001, some of them
having already been studied in great detail (O’Donoghue et al.
1998; Kilkenny et al. 1999; Reed et al. 2004; Charpinet et al.
2006a; Vučković et al. 2006; Baran et al. 2006). Indeed, the
seismic analysis reported in paper II demonstrates that a good
solution can be obtained, matching all twelve independent



564 R. Silvotti et al.: The rapidly pulsating subdwarf B star PG 1325+101. I.

frequencies, and in excellent agreement with the atmospheric
parameters obtained from spectroscopy. Moreover, a triplet of
close frequencies is detected, centered around 7698.66 µHz.
Considering a value l= 1 (and k= 3), as indicated by the best
model fit of Paper II, this triplet suggests a low rotation velocity
with a period Prot = 1.6 ± 0.2 days.
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Table 1. Observing log.

Datestart UTstart Duration [h] Telescope Instr. Observers
21/03/03 09:56:41.0 1.8 SARA 0.9 m CCD TDO, MR
24/03/03 20:50:45.0 5.8 Moletai 1.65 m 3ch.PMT RJ
25/03/03 12:50:27.0 7.1 BOAO 1.8 m CCD SLK, BGP
25/03/03 20:15:45.0 5.3 Moletai 1.65 m 3ch.PMT RJ
25/03/03 21:47:05.9 3.3 Serra la Nave 0.9 m 1ch.PMT AB, AF
26/03/03 03:59:03.5 6.8 Baker 0.4 m CCD MDR
26/03/03 12:40:47.0 4.4 BOAO 1.8 m CCD SLK, BGP
26/03/03 20:56:20.2 6.0 Serra la Nave 0.9 m 1ch.PMT AB, AF
26/03/03 21:01:45.0 5.9 Moletai 1.65 m 3ch.PMT RJ
27/03/03 03:33:04.0 2.8 Baker 0.4 m CCD MDR
27/03/03 12:39:17.0 0.9 BOAO 1.8 m CCD SLK, BGP
27/03/03 20:28:00.5 6.2 Serra la Nave 0.9 m 1ch.PMT AB, AF
27/03/03 20:41:45.0 5.8 Moletai 1.65 m 3ch.PMT RJ
28/03/03 17:35:52.0 2.5 BOAO 1.8 m CCD SLK, BGP
28/03/03 19:55:15.0 6.3 Moletai 1.65 m 3ch.PMT RJ
29/03/03 06:18:56.2 1.9 Baker 0.4 m CCD MDR, PJC
29/03/03 12:20:17.0 1.1 BOAO 1.8 m CCD SLK, BGP
29/03/03 20:40:55.0 4.1 Moletai 1.65 m 3ch.PMT RJ
29/03/03 23:09:33.2 4.2 Serra la Nave 0.9 m 1ch.PMT AB, AF
30/03/03 12:17:47.0 3.2 BOAO 1.8 m CCD SLK, BGP
31/03/03 22:58:31.6 5.9 La Palma 0.6 m CCD RØ
01/04/03 13:05:27.0 0.4 BOAO 1.8 m CCD SLK, BGP
01/04/03 18:20:52.6 4.0 Wise 1.0 m CCD YL, LF, EL
01/04/03 19:03:15.0 6.6 Moletai 1.65 m 3ch.PMT RJ
01/04/03 20:56:35.0 6.1 Loiano 1.5 m 3ch.PMT RS, SB
02/04/03 00:32:22.6 3.8 La Palma 0.6 m CCD RØ
02/04/03 03:07:33.0 4.8 Baker 0.4 m CCD MDR, KMG
02/04/03 13:48:37.0 6.0 BOAO 1.8 m CCD SLK, BGP
02/04/03 18:17:16.6 3.9 Wise 1.0 m CCD YL, LF, EL
03/04/03 03:19:11.0 6.0 Baker 0.4 m CCD RSP, PJC
03/04/03 13:19:55.0 7.1 BAO 0.85 m 3ch.PMT XJ
04/04/03 01:01:30.9 3.1 La Palma 0.6 m CCD RØ
04/04/03 01:35:16.6 1.1 Wise 1.0 m CCD YL, LF, EL
04/04/03 12:07:15.0 8.3 BAO 0.85 m 3ch.PMT XJ
04/04/03 21:41:25.0 6.3 Loiano 1.5 m 3ch.PMT RS, SB
04/04/03 22:39:25.9 5.7 La Palma 0.6 m CCD RØ
05/04/03 14:17:05.0 5.9 BAO 0.85 m 3ch.PMT XJ
05/04/03 19:52:40.7 6.7 Serra la Nave 0.9 m 1ch.PMT AB, AF
05/04/03 20:38:16.0 7.4 Loiano 1.5 m 3ch.PMT RS, SB
07/04/03 12:43:05.0 7.1 BAO 0.85 m 3ch.PMT XJ
07/04/03 20:29:45.0 7.4 Loiano 1.5 m 3ch.PMT RS, SB
08/04/03 03:10:50.3 5.8 Baker 0.4 m CCD MDR, PJC
08/04/03 12:25:45.0 7.1 BAO 0.85 m 3ch.PMT XJ
08/04/03 19:57:55.0 7.9 Loiano 1.5 m 3ch.PMT RS, SB
09/04/03 22:32:03.9 6.4 La Palma 0.6 m CCD RØ
10/04/03 03:21:21.0 7.4 Baker 0.4 m CCD RSP, PJC
10/04/03 22:44:10.9 6.0 La Palma 0.6 m CCD RØ
11/04/03 03:16:04.1 5.6 Baker 0.4 m CCD MDR, KMG
11/04/03 22:21:02.9 6.4 La Palma 0.6 m CCD RØ
12/04/03 15:51:45.0 4.3 BAO 0.85 m 3ch.PMT XJ
13/04/03 12:13:05.0 7.9 BAO 0.85 m 3ch.PMT XJ


