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Abstract— This paper focuses on the highest step of our NoC
design flow, which addresses the efficient deployment of real
applications over an ad hoc NoC. At this level we propose a
methodology and a tool to decide the NoC parameters and to
generate the path coding within network interfaces for guarantied
and best effort communications. The originality of our approach
is based on two points. First our tool includes a derivation
technique to obtain NoC communication constraints (latency,
bandwidth) from application designer knowledge (application
throughput). Secondly, the decision tool explores a 3D graph
(t,x,y) for path allocation while taking into account mutual
exclusion and global latency for FIFO minimisation under time
constraints. This paper illustrates the first point. Two real
applications: smart camera and multiprocessor turbo-decoder
are presented to illustrate the design flow.

I. I NTRODUCTION

A lot of efforts have been performed in the domain of
Network-on-Chip (NoC) design in the last seven years. The
first kind of work was dealing with proof of concepts,
topologies and workload simulations. Then researchers have
explored different topics such as virtual channels for guar-
antied traffics, network interfaces, IP mapping, asynchronous
communications, adaptivity, security and some current new
directions, like 3D design for heterogeneous huge system on
chips, bring out some new opportunities. Few CAD tools are
proposed for NoC design decisions, the first category deals
with a library of NoC components and simulations tools to
verify data-rate constraints [1]. The second category aimsto
guaranty real-time constraints with time division multiplexing
(TDM) NoC accesses while considering individual constraints
(latency, bandwidth) for each communication individually([2],
step 4 of our flow). Today some additional efforts are required
to adapt CAD tools to the real needs of system designers.
The NoC design space is in practice intractable if all problem
dimensions are considered simultaneously, these dimensions
would at least include : topology, mapping, media access
policy (best effort (BE) traffic, Guaranteed Throughput (GT)
traffic)), TDM scheduling for GT traffic, path allocation,
latency and bandwidth constraint checking. From a designer
point of view, the problem never starts from scratch but froma
set of heterogeneous communicating IPs (dedicated hardware,
memories, processors) and application throughput constraints.

First, it appears that the topology optimization is not currently
a real issue since few alternatives have to be tested in reality.
Secondly, the mapping exploration is quite constrained since
IP usually have heterogeneous sizes and limited real mobility
within the SOC. We believe, according to designer needs and
knowledge, that an interactive tool is required for mapping,
topology and communication policy selections (1). A CAD
tool must focus on real tedious and error prone design steps.To
our point view, these steps are (2) the derivation of individual
communication constraints from the application specification,
(3) the TDM table design, (4) the slot / path decision including
buffer sizing and, according to all previous features, (5) NoC
code generation. Our complete design flow described in figure
1 is based on this approach. The paper mainly focuses on step
2 of our flow. In section II, we present the state of the art
related to it. In section III we briefly describe our complete
NoC design flow. In section IV we deeply detail steps 2. In
section V, we apply our flow to two realistic applications, a
smart camera and a multiprocessor turbo decoder. Finally we
conclude.

II. STATE OF THE ART

In [2] is proposed a design flow for GT implementation
in NoC. It is based on iterative phases of NoC generation,
NoC configuration and NoC performance verification. It uses
TDM slots for GT. Designer must specify required bandwidth,
burst size, latency constraints and GT/BE traffic class for each
individual read/write transaction. This assumes a deep study
of the application communications by the designer to provide
those informations. In [3], timing analysis of the application
is used to prove guaranty of traffic. Authors consider the
utilization of communication dependence and computation
graphs extract communications that may or not be in conflict
in order decide a relevant mapping. It is based on a simple XY
routing technique, so the path is unique for each IP mapping,
which is computed with a simulated annealing algorithm. This
approach only focuses on mapping. Our approach deals with
application specification, to derive communication constraints
and to identify mutual exclusions to guide path allocations, so
it is based on application analysis to find a proper solution.



III. C OMPLETE NOC DESIGN FLOW OVERVIEW

Figure 1 gives an overview of the NoC design Flow. Our
NoC model enables the implementation of two kinds of
communications: best effort (BE) and guarantied traffic based
on a TDM technique. The first step is an interactive IHM
that enables the designer to rapidly specify the application
and the NoC parameters. The application is specified with
a set of characterized communication tasks, with application
throughputs and if necessary with links between mutual exclu-
sive communications. The NoC knobs are related to the NoC
topology which can be ad hoc, the router parameters (ports,
routing policy, arbiter,Ě), the Network Interface (NI) and
wrapper specification (slave, master, bus standard) and theIP
mapping namely the IP/NI association. If real-time constraints
are required, then related communications are implemented
with virtual channel (guarantied traffic). The second step is
automated and deals with derivation of local latency and
bandwidth constraints for each unidirectional communication
from application I/O throughputs. The important issue, which
is always omitted in NoC design flows, is in practice nec-
essary for applying steps 3 and 4. This work is not trivial
since firstly different local decisions are possible two meet
global constraints and secondly latency, bandwidth and TDM
table size are strongly dependent. Moreover read operations
imply two types of heterogeneous communications: the read
command and the data response for with two distinct set
of constraints must be define. Thus, the second step first
transforms communication tasks into unidirectional ones.This
aspect is required for read operations that need a lightweight
forward communication for sending a read command and a
backward communication for receiving data. Then we pro-
duce, for each communication with a guarantied traffic, the
minimum bandwidth and a set of rules for latency/bandwidth
checking. The third step computes the minimum TDM table
size required for implementing GT communications and a
minimum bandwidth for all BE communications. It provides
minimum latencies for each communication to the next step.
The fourth step explores the time (TDM slots)-space (NoC
paths) space in order to allocate time slots to each GT
communications. It provides the next steps with a complete
NoC specification. Due to space restriction, this step is not
detailed in this paper. The fifth and last step is the VHDL code
generator, some additional C API codes are also provided for
interfacing the NoC component with IP compliant with the
OPB bus standard bus and/or Xilinx FSL ports.

IV. A PPLICATION SPECIFICATION FORMALISATION

On the one hand, in telecom and image processing domains,
an application is usually specified as a set of communicating
tasks with global input/output time constraints. On the other
hand Latency and Bandwidth constraints are necessary for
mapping guarantied traffic communications within a NoC. So,
local constraints have to be derived from global ones. However
these issues are not trivial since design decision are strongly
dependent. Thus, for solving the TDM sizing problem, latency

Fig. 1. NoC Design Flow

and bandwidth constraints are required for each communica-
tion, however latency depends on TDM specifications and on
bandwidth, which is also related to the latency. We face a usual
CAD problem of decision ordering. Our approach is based on
starting assumptions that aim to minimize the most critical
NoC parameter namely the FIFO global size.

A. Real-time verification rules

In telecom and multimedia domains, communication
dominated applications can be specified as a graph of tasks
exchanging data through a NoC. In Fig.2 a simplified view
is given, a chain of four tasks (1-4) must be executed within
a period T. In practice, an application can be specified as a
set of chains tasks running within specific periods. Without
loss of generality, we illustrate constraint computation with a
single chain of tasks. Two constraints have to be considered:
the initialization constraint and the cadence constraint.
The initialization constraint addresses the delay for reading
the minimum amount of data a task Ti needs before starting
computation; This initialization is computed while addingthe
initialization delays from the input to the output. A task Ti
requires three kinds of communication as illustrated in Fig.3.
CFRi is the communication related to the read instruction,
CBRi is the communication for reading data consumed by Ti,



CFWi is the communication for writing data produced by Ti.

Fig. 2. Communication and task chain

Fig. 3. A task and its communications

• T : application period;
• nFRi : number of words forCFRi;
• nBRi : number of words forCBRi;
• nFWi : number of words forCFWi;
• Pi : number ofTi iterations duringT ;
• Ii : number of read communications before startingTi;
• ∆memR, ∆memW : memory access time for read and

write operations respectively;
• SRi : number of hops for a read operation;
• SWi : number of hops for a write operation;
• Texe(i) : task execution time for one iteration;
• Oi : number of task iterations to provide the required

number of words to initialise the subsequent tasks.
For all tasksj consuming data produced by taski :

Oi =

⌈

IjnBRj

nFWi

⌉

(1)

Thus we can define an initialization delay for a task Ti to start
as Tinit(i) such as :

Tinit(i) =

Maxp∈Prev(i)(Tinit(p))

+FT (nFRi,KFRi, SRi)

+∆memR

+FT (IinBRi,KBRi, SRi)

+Texe

+max{Texe(i) − FT (nFWi,KFWi, SWi); 0}(Oi − 1)

+FT (OinFWi,KFWi, SWi)

+∆memW (i) (2)

Where P(i) is the set ofTi predecessors andFT the communi-
cation delay in the NoC.FT depends on the TDM table in the
Network Interface (see Fig.4), the path length and the number
of data to be transmitted, it is defined as follows :

FT (n, k, p) = d
n

K
e(N − K) + n + pLS (3)

where :

• Ls is the number of words within a slot;
• N is the number of words in TDM table (N = Ls|S|);
• |S| is the number of time slots in TDM table;
• K is the number of slot reserved for the considered

communication;
• p is the path length in hop counts.

This model is generic and can be applied to different commu-
nication models such as shared memories or direct communi-
cations between IP FIFOs, in that last casenFRi is null.

Fig. 4. TDM

The first verification rule is given in Eq.4 and is related
to the initialization constraints. These rule is necessarybut
not sufficient to guaranty real-time constraints since cadences
must be verified to ensure that data can be produced on time
after each iteration.

Rule 1 :

Tinit(j) + FT (nFWj , (Pj − 1)nFWj , SWj) < T (4)

The cadence verification is related to the ability of
the system to consume and produce data according to
application cadences. Basically it means that the bandwidth
allowing to each task to proceed must be compliant with
its communication requirements. We assume that, in a
steady data flow, the latency is hidden since a read (resp.
write) communication requests can be launched before
the previous ones have proceeded. Different cases must
be considered depending on the IP architecture models
where read communications, write communications and task
execution can be executed sequentially or simultaneously.For
simplicity sake we present a single rule compliant with a full
sequential model. In that case we obtain :

Tread(i) = ∆memR + FT (nBRi,KBRi, SRi)

Twrite(i) = ∆memw + FT (nFWi,KFWi, SWi)

(6)



Rule 2 :

Tread(i) + Twrite(i) + Texec(i) < T/Pi (7)

B. Bandwidth and latency verification rules for TDM sizing

The TDM table must be defined before guarantied traffic
path allocations. The TDM is built in order to meet latency (Li
in cycles) and bandwidth (BWi in words per cycle) constraints.
Without any information about the TDM table, the constraint
for a communication Ci can be specified as (if we assume
having a sequential architectural model namely the worst
case):

Li +
Pini − 1

BWi

< T − δmPiTexe(i) (8)

⇔ BWi >
Pini − 1

T − δmPiTexe(i) − Li

BWmin
i '

Pini − 1

T − δmPiTexe(i) − Si

(9)

whereni is the number of words transmitted during eachCi

iteration,δm equals 1 (resp.0) if computations and communi-
cations are performed sequentially (resp. simultaneously), Si is
the shortest path. Guarantied traffic for telecommunication and
image processing are usually dominated by communications
and deal with periodic communications(Pi � 1) of large
amount of data (ni � 1). Moreover, the TDM access delay
is masked by decoupling buffers. It means thatLi could be
neglected compared to the bandwidth term, however to be safe
we setLi = Si, which is the shortest path delay in NoC for
Ci. Thus, we can obtain a constraint BWimin for initiating
the TDM design step independently from theLi unknown
value. This assumption is enforced by the fact that finalBWi

values are larger than constraints since the computation is
based on the integer TDM slot division. Actually, the real
challenge is to find path in order to use the minimum TDM
table size. Thus, the method we apply to provide the path
allocation algorithm with constraints is based on two steps: 1)
a minimum bandwidth is settled by the designer for best effort
traffics in eachNI , it means that a minimum of free slots will
be available in TDM tables 2) a computation of bandwidth
requirements based on Eq.9.

C. TDM table size computation algorithm

1) Mutual exclusive Ci notification.
2) |S| is initialized to 1. It means that the search starts with

minimum latency for all Ci.
3) While (Sum of required slots > TDM size & TDM size

< max size) ,
Add a new slot to TDM table,
Compute number of required slots Si for each Ci

4) All Si and N are available: computation of path length
constraints Simax with real bandwidth (based on Si and
N) and Eq.9.

The next step is the path allocation based on Simax and Si.

D. Mutual exclusive communications

1) Mutual exclusion (ME) definition and rules:Mutual
exclusion improve the probability to find valid paths for a
given small TDM table size. We have defined two kinds of
ME in the context of NoCs :
- Ci and Cj are strongly exclusive communications if data from
Ci (resp. Cj) are entirely consumed before the emission of data
over Cj (resp. Ci). At the NoC level, it means that credits are
fully setup, i.e. the buffer at destination is empty.
- Ci and Cj are lightly exclusive communications if they can
not overlap in time, however it does not guaranty that data
from Ci (resp Cj) are consumed entirely before Cj (resp. Ci)
starts. It means that they can not use the link at the same
time. For both cases, we can share slot reservations of ME
GT communications and then obtain a better link utilization
leading to a better NoC use. The difference between strong and
light ME is observed on buffers size. In the first case the round
trip buffer size can be optimally reduced since it is limitedto
the maximum value among ME communication buffer sizes
whereas in the second case optimizations are obtained only if
reserved time slots are overlapping as explained hereafter. ME
exclusions are specified by the designer in the first step and
then automatically organized in cliques in the second design
step before TDM sizing. A single communication can belong
to several cliques. During path allocation the following rule is
applied:
Multiple pre or final reservations can be instantiated for a
single slot only if communications are belonging to at least
one common clique.

E. Space Time Path Allocation

It’s crucial to implement an efficient path allocation algo-
rithm able to find right paths with minimum TDM table size.
Our algorithm do choice after pre-reservations phase, to find
a optimised solution. This algorithm is detailed in [?].

V. CASESSTUDIES AND RESULTS

Our derivation technique has been evaluated with different
cases studies. Two different applications have been chosento
illustrate both aspects of communication constraint derivation,
namely the initialisation and cadence constraints. The first
one is an embedded smart camera application implemented
object tracking tasks and the second is a multiprocessor turbo-
decoder.

1) Context: As explained in introduction, the aim of this
study is not the NoC sizing which is decided by the designer
with our interactive tool in step 1. NoC specifications are the
following: The routing technique is street sign. The router
pipeline depth equals 2 and consequently a packet needs two
clock cycles to perform a hop from one router to its neighbor.

2) Embedded Smart Camera:This application implements
different image processing tasks including video acquisition,
image filtering, object and background extraction, object track-
ing and different display controls. The application architec-
ture is composed of 13 IP Ports: 6 Memories, 6 hardware
IPs and 1 Processor. The application required 19 read or



Fig. 5. Embedded Smart Camera Application

write transactions. The image size is 320x240 pixels and the
throughput constraints is 25 frames per second. Figure 5 shows
the algorithm flow.

The smart camera application presents a typical example
where initialisation constraints have to be handled. Most
of the tasks need a minimum amount of data from their
predecessor before starting first iteration. For instance,erosion
task requires 2 lines (640 pixels) and 3 pixels before starting
the first computation iteration. Another point is the long
chain of dependency between tasks, which imply recursive
computation of initialising delays according to Eq. 2. This
timing verification is mainly based on rule 1 checking.

It is very difficult to provide bandwidth and latency com-
munication constraints assumed known in traditional tools.
All those constraints can be specified with our model in our
tool. Without such a tool, bandwidth and latency are usually
approximated. This leads designers to over constrain the com-
munication specification requirements, with the consequence
of a over sizing of the architecture, or unfortunately constraints
are wrong evaluated and applications constraints are not met.

3) Multiprocessor Turbo Decoding :This application use
the DVB RCS turbo code. Turbo decoder allows to reduce the
error rate with a lower signal-to-noise ratio. It can be designed
using multiprocessor platform to reach high speed rates [4].
The turbo-decoder is made of two decoder, exchanging infor-

Fig. 6. Turbo decoder communications

mation to converge to decisions.

Communication exchanges depend on the shuffling scheme.
Our aim is the design of a turbo decoder able to change its
shuffling scheme. To carry communications, we chose to use
a NoC for its ability to be reconfigured.

In our use case, one extrinsic information is constituted
of 72 bits (9 Bytes), moreover each of the two decoders are
made of four processors, and each processor has two input and
two output channels. Fig.6 shows the architecture of our turbo
decoder. Thus the application has 8 processors, and 16 inputs
and 16 output ports. Input and output ports of same channel
are clustered. Thus, we have 16 NIs, and 128 connections are
possible. Only 16 extrinsic informations are produced (one
every 0.1µ seconds). Latency constraint to carry an extrinsic
information is 0.30µs. The shuffling scheme is based on a
16*64 matrix with the following restriction: An input port
can’t receive more than 5 extrinsic informations during a
period of 3 consecutive iterations. This avoids over sizingour
communication architecture.

There is not data dependency between tasks. This applica-
tion is typically cadence oriented. This is the rule 2 which is
applied. The difficulty is to take benefits from communication
application knowledge to find a solution. Extract communica-
tion specifications from the application knowledge is a very
tedious and error prone problem. But, without this important
specification step, the worst case is considered and lead to a
prohibitive architecture cost.



A. Results

1) embedded smart camera application:For the embedded
smart camera application, we specify a 3x2 mesh topology,
with 5 ports routers, and with 32 bits Phit width (physical
units) at 100MHz. Thanks to our approach, during problem
solving, appropriately constraints are relaxed when it becomes
possible, leading to a cheaper NoC. The 25 frames per second
constraint is respected. Slot Table Depth is 5 slots and the sum
of buffer depths is 120 words of 32 bits.

2) multiprocessor turbo-decoder application:For the mul-
tiprocessor turbo-decoder application, we specify a 4*4 mesh
topology, with 4 ports routers, and a frequency of 200MHz.
NoC parameters are successfully found out. Slot Table Depth
is equal to 10 slots. Buffer cost is 416 words. Path and TDM
tables for NI are successfully computed. The largest latency
is 0,20µ seconds, and is so in accordance with the specified
constraints.

To achieve application constraints, a 24 bits phit width
is sufficient with mutual exclusion when a 72 bits width is
needed without mutual exclusion specification. The area cost
is so 3 times higher in the second case than in the first one.
It is a typical example that shows how a cad tool with formal
constraint specifications can help the designers to find a low
cost design.

VI. CONCLUSION

NoC optimal design requires constraint specification for
each of its communications. Those communication constraints
are bandwidth and latency. Unfortunately, those informations
are usually unknown, because communications belong to a
complex flow with many interdependencies, and only applica-
tion level constraints are usually available. A problem like this
can only be managed with a formal specification with the de-
finition of mutual exclusion communications and rule checker
used during problem solving to appropriately relax constraints
when it become possible. We used smart camera and turbo
decoder applications to demonstrate our derivation technique.
These two real-life applications are especially relevant to prove
our approach since the first one mainly constrained by the
initialisation phase (checked with rule 1) and the second one
is mostly dominated by the cadence constraint (checked with
rule 2). Our method is based on a fast rule checker algorithm
that provides a solution for taking automatically benefits from
system-level application knowledge in order to reduce NoC
cost.
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