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Abstract. We consider elliptic problems on graphs under given loads. We ask
the question which graph is best suited to sustain the loads. More precisely, given
a cost function we may look at a multiple node of the graph and ask as to whether
that node should be resolved into a number of nodes of edge degree 3, in order to
decrease the cost. Thus, we are looking into the topological gradient of an elliptic
problem on a graph.

Key words: topological derivative, shape optimization, asymptotic analysis,
graph theory, singular perturbations, topology optimization

1 Introduction

For a considerable number of important problems the notion of topological deriv-
atives has been introduced, and examples for such gradients have been reported
in the literature. The list of problems considered comprises elliptic problems in 2
and 3 dimensions with and without obstacles, the equations of elasticity and the
Helmholtz equation. See Sokolowski [10], Amstutz [2], Allaire et.al. [1], Masmoudi
et. al. [7], Novotny et.al.[8] and others together with the references therein. Topo-
logical derivatives are important in dealing with topology and shape optimization.
The reason for this fact is that homeomorphic variations of the domains will not
allow for topology changes. Thus if one considers a shape optimization problem and
starts with a simply connected set, say, then all admissible variations will produce
simply connected sets. If, therefore, an optimal shape would necessitate digging
a hole into the domain, then it would not be possible to do this with the kind
of domain variations mentioned. Topological gradients are obviously a key ingre-
dient in topology optimization, the boundary between these disciplines becoming
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increasingly floating.
However, the topological gradient is more a qualitative tool than a quantitative

one: it helps to indicate where a hole has to be located. The actual optimization of
the domain is then subject to shape-sensitivities.

Topology optimization for graph-like problems has been considered in the en-
gineering literature for a long time. See Rozvany et.al.[9] as an example. Truss
optimization has also been the focus of many mathematical papers. However, to
best knowledge of the authors such truss problems do not describe flexible systems
as they use rod-models instead of flexible beam models, nor do they consider 1-d
elasticity models other than their finite element approximations. The method used
there typically comes down to selecting rod elements out of a complete graph in
order to decrease a given cost (the typical choice being the compliance). We instead
aim at graph structures which are locally described by partial differential equations
along the edges of the underlying graph. In this paper we confine ourselves with
second order equations which are representative of 1-d elasticity. Timoshenko-beam
and Euler-Bernoulli beams will be discussed in a forthcoming publication.

Networks carrying dynamics appear in many applications, such as neuronal dy-
namics, waste-water management, blood flow, micro-flows, gas- and traffic networks
and many more. In all these applications the optimization of the topology of the
graph is crucial. Thus it appears reasonable to approach this kind of problem with
a topological gradient calculus.

To the best knowledge of the authors, topological gradients for partial differential
equations on graphs have not been considered within the literature.

The first author has been working on partial differential equations on networked
domains during the last 10 years. See the monographs by Lagnese, Leugering and
Schmidt [5] and Lagnese and Leugering [6] for further reference on the modeling of
such problems. For the sake of self-consistency we introduce the models below.

The paper is organized as follows. In the second section we provide preliminaries
on elliptic problems on graphs. The third section is devoted to the Steklov-Poincaré
operator on the graph. In the fourth section we develop the asymptotic expan-
sions for the problems on graphs with a hole. The last section will be devoted to
asymptotic expansions of the energy and a tracking functional.

2 Preliminaries

We consider a simple graph (V, E) = G in Rd, d = 2, 3, with vertices V =
{vJ |J ∈ J } and edges E = {ei|i ∈ I}. Let m = |J |, n = ‖I‖ be the numbers of
vertices and edges, respectively. Given a node vJ we define

IJ := {i ∈ I|ei is incident at vJ}
the incidence set, and dJ = |J | the edge degree of vJ . The set of nodes splits
into simple nodes JS and multiple nodes JM according to dJ = 1 and dJ > 1,
respectively.

On G we consider a function

r : G → Rnp := Πpi

i∈I , pi ≥ 1 ∀i. (1)

The numbers pi represent the degrees of freedom of the physical model used to
describe the behavior of the edge with number i. For instance, p = 1 is representative
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Figure 1: A general graph

of a heat problem, whereas p = 2, 3 is used in an elasticity context on graphs in 2 or 3
dimensions. The p′is may change in the network in principle. However, in this paper
we insist on pi = p, ∀i. To keep matters simple, we also take the arcs as straight
lines. The more general case, which is of course also interesting in the combination
of shape and topology optimization, can also be handled. See Lagnese, Leugering
and Schmidt[5] and Lagnese and Leugering [6] for details on the modeling.

Once the function r is understood as being representative of, say, a deformation
of the graph, we may localize it to the edges

ri := r|ei
: [αi, βi] → Rp, i ∈ I, (2)

where ei is parametrized by x ∈ [αi, βi] =: Ii,0 ≤ αi < βi, ℓi := βi−αi. We introduce
the incidence relation

diJ :=

{

1 if ei[ ends at vJ

−1 if ei starts at vJ

Accordingly, we define

xiJ :=

{

0 if diJ = −1

ℓi if diJ = 1

We will use the notation ri(vJ) instead of ri(xiJ). In order to represent the material
considered on the graph, we introduce stiffness matrices

Ki := hi[(1 − 1

si

)I +
1

si

eie
T
i ] (3)

where we now use the notation ei as the normalized vectors along the edge i. Ob-
viously, the longitudinal stiffness is given by hi, whereas the transverse stiffness is
given by hi(1− 1

si
). This can be related to 1-d analoga of the Lamé parameters. We

introduce Dirichlet and Neumann simple nodes

JD := {J ∈ JS|ri(vD) = 0}
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JN := {J ∈ JS|diJKir
′
i(vN ) = 0}

Notice that IJ , J ∈ JN ∪ JD is a singleton. The basic assumption at a multiple
node is that the deformation r is continuous across the joint. In truss design this is
not the case, and consequently pin-joints are considered, however on a discrete level.
One may consider pin-joints also on the continuous level, as in Lagnese, Leugering
and Schmidt[5] and [6]. In this paper we restrict ourselves to ’rigid’ joints in the
sense that the angles between edges in their reference configuration remain fixed.
The continuity is expressed simply as

ri(vJ) = rj(vJ), i, j ∈ IJ , J ∈ JM

We consider the energy of the system

E0 :=
1

2

∑

i∈I

ℓi
∫

0

Kir
′
i · r′i + ciri · ridx (4)

where the primes denote the derivative with respect to the running variable xi, ci

represents a reaction term or an elastic support.
In order to analyze the problem, we need to introduce a proper energy space

V := {r : G → Rnp|ri ∈ H1(Ii) (5)

ri(vD) = 0, i ∈ ID, D ∈ JD (6)

ri(vJ) = rj(vJ), ∀i, j ∈ IJ , J ∈ JM} (7)

V is clearly a Hilbert space in

H := L2(0, ℓi)
np (8)

We introduce the bilinear form on V × V

a(r, φ) :=
∑

i∈I

ℓi
∫

0

[Kir
′
i · φ′

i + ciri · φi]dx. (9)

Let now distributed and boundary data, fi, gJ be given along the edge ei and the
node vJ , respectively. Then we may consider the following variational problem in V

a(r, φ) = L(φ), ∀φ ∈ V (10)

with

L(φ) :=
∑

i∈If

ℓi
∫

0

fi · φidx +
∑

J∈J
g
N

gJ · φîJ(vJ), (11)

where î indicates that the simple nodes have just one incident edge. For fi ∈
H1(0, ℓi)

∗ (in fact, if the edge ei is incident to a Dirichlet node, an additional bound-
ary condition appears) such that maxi |fi| ≤ C and maxJ |gJ | ≤ C, we may apply
the Lax-Milgram-Lemma and hence obtain a unique solution r ∈ V of problem
(10),(11). The strong version of (10),(11) is obtained by integration by parts and
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taking variations in V. See Lagnese, Leugering and Schmidt [5],[6] for the details.
We obtain the following system:







































−Kir
′′
i + ciri = fi, i ∈ I

ri(vD) = 0, i ∈ ID, D ∈∈ JD

diJKir
′
i(vN ) = gJ , i ∈ IN , N ∈ JN

ri(vJ) = rj(vJ), ∀i, j ∈ IJ , J ∈ JM
∑

i∈IJ

diJKir
′
i(vJ) = 0, J ∈ JM

(12)

where fi = 0, i ∈ I \If , gN = 0, J ∈ JN \J g
N . Notice that (12) line 5 is an example

of the classical Kirchhoff condition known from electrostatics. Notice also that in
the vectorial case d = p = 2 we have







ri = yiei + wie
⊥
i

Kiri = hiyiei + hi(1 − 1

si

wi)e
⊥
i

(13)

and therefore the transmission conditions (12) lines 4 and 5 are to be understood as
vectorial quantities.

3 Steklov-Poincaré operators on graphs

In order to proceed with the introduction of a topological gradient, we consider
a multiple node v0

J , J ∈ JM . Let the edge degree d0
J be greater or equal to three,

thus we do not consider a serial junction. Ultimately we would like to cut out a
star-subgraph

SJ0

:= {ei|i ∈ IJ0} ⊂ E, (SJ0

, vJ0) = GJ0 ⊂ G (14)

and connect the adjacent nodes. This we consider as digging a hole into the given
graph.

We would like to use Steklov-Poincaré operators in order to decompose the entire
graph into a subgraph and the remaining network (the exterior). In order to do this
we pick Dirichlet-values at the simple vertices of the subgraph obtained by the ’cuts’
and evaluate the corresponding Neumann-data there. This constitutes the Steklov-
Poincaré operator. The decomposition method applies to any subgraph. Thus the
’effect’ of the subgraph can be represented in the context of the overall problem by
the way of the Steklov-Poincaré operator corresponding to the subgraph. In order to
be able to handle holes with varying sizes, we consider decomposing the graph into
an exterior part and a subgraph containing the node vJ0 to be cut out. That node
is considered together with its adjacent edges, however with edge-lengths ρi. The
latter star-graph, in turn, is then cut out of the subgraph. Therefore, we obtain the
analogue of a ring-like subgraph which constitutes the Steklov-Poincaré subgrpah.
See Figure 2 for a typical general situation and Figure 3 for the exemplary local
handling of subgraph removal.

In order to simplify the notation, and in fact without loss of generality, we may
consider the subgraph (from which the hole is then subsequently removed) as a star
with edge degree dJ(vJ0) = q.
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Figure 2: Graph with star-like subgraph to be cut out

Figure 3: A star-like subgraph

We are led to study the following subproblem



























−Kir
′′
i + ciri = fi, i ∈ IJ0

ri(vJ0,i) = ui, i ∈ IJ0

ri(vJ0) = rj(vJ0), ∀i, j ∈ IJ0

∑

i∈IJ

diJKir
′
i(vJ0) = 0,

(15)

where vJ0
i

= vJ0,i are the nodes adjacent to vJ . See Figure 3

We assume for simplicity that vJ0 is an interior node with edge degree q such
that its adjacent nodes are not simple. Problem (15) admits a unique solution
ri,0, i = 1, . . . q. We consider the Dirichlet-Neumann-map or the Steklov-Poincaré-
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map
{

SJ0 : Rqp → Rqp

Si
J0 := diJKir

′
i,0(vJ0,i), i ∈ IJ0

(16)

In order to simplify notation we may assume that the nodes vJ0,i, which are the nodes
incident at vJ0 , have edge degree ≥ 3 in G, such that after cutting the corresponding
edges out of G they are still multiple, but now in G \ GJ0 .

The relevance of the Steklov-Poincaré map in this context becomes apparent
when we consider the overall problem. Indeed, we solve the problem (15) generate
the Neumann data (16) and integrate those into the system with the hole as follows







































































−Kir
′′
i + ciri = fi, ∈ i ∈ I

ri(vD) = 0, i ∈ ID, D ∈ JD

diJKir
′
i(vN ) = gJ , i ∈ IN , N ∈ JN

ri(vJ) = rj(vJ), ∀i, j ∈ IJ , J ∈ JM \ J 0
S

∑

i∈IJ

diJKir
′
i(vJ) = 0, J ∈ JM \ J 0

S

rk(vJ) = rℓ(vJ) = ri(vJ0,i) ∀k, ℓ ∈ IJ0
S
, i ∈ IJ0

∑

j∈I
J0

i

dj,J0
i
Kjr

′
j(vJ0,i) + Si

J0(ri(vJ0,i)) = 0, i ∈ IJ0

, (17)

where Si
J0(rĵ(vJ0,i))i is the Steklov-Poincaré-map applied to the nodal data at vJ0,i.

The problem (17) is equivalent to the original problem (12). Obviously, there is
nothing special about cutting out a star-subgraph. One may as well cut out any
subgraph, solve the corresponding Steklov-Poincaré problem, and read it into the
graph problem with the ’hole’. The procedure itself is also completely natural in
most of the known domain decomposition techniques. See Lagnese and Leugering [6]
for domain decompostion techniques in the context of optimal control problems on
networked domains.

4 Stars with a hole

We consider a star-graph GJ0 with q edges and center at the node vJ0 . As has been
seen in the previous section, we may consider this problem completely independent
of the original graph. In particular, we may without loss of generality, assume that
the edges ei stretch from the center to the simple boundary nodes, which we will
label from 1 to q. By this assumption we consider the multiple node at the center
as being reached at x = 0 for all outgoing edges. Thus, the data ui are picked up at
the ends x = ℓi.































−Kir
′′
i + ciri = fi, i ∈ I

ri(ℓi) = ui, i = 1, . . . , q

ri(0) = rj(0), ∀i, j = 1, . . . , q
q
∑

i=1

Kir
′
i(0) = 0.

(18)
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Figure 4: Cutting a hole into star-like subgraph

We are going to cut out the center and connect the corresponding cut-nodes via a
circuit as seen in the Figure 4. In general we have numbers ρi ∈ [0, ℓi), i = 1, . . . , q
which are taken to be the lengths of the edges that are cut out. Thus the remaining
edges have lengths ℓi − ρi. At x = ρi we create a new multiple node vi. We connect
these nodes by edges eq+i, i = 1, . . . , q with lengths σi(ρi). After that, these nodes
receive a new edge degree. In this paper we assume that all these nodes have the
same edge degree di = 3. More complicated cutting procedures can be introduced,
but obscure the ideas of this first paper on topological derivatives of graph problems.

The problem we have to solve is the following







































−Kir
′′
i + ciri = fi, i ∈ I

ri(ℓi) = ui, ı = 1, . . . , q

ri(ρi) = rq+i(0) = rq+1−i(σ
i(ρi)), ∀i = 2, . . . , q

r1(ρ1) = rq+1(0) = r2q(σ
2q(ρ2q)),

−Kir
′
i(ρi) − Kq+ir

′
q+i(0) + Kq+i−1r

′
q+i−1(σ

q+i−1(ρq+i−1)) = 0, i = 2, . . . , q

−K1r
′
1(ρ1) − Kq+1r

′
q+1(0) + K2qr

′
2q(σ

2q(ρ2q)) = 0.

(19)

We proceed to derive the solutions to (18) and(19), respectively. To this end we
look at

−Kir
′′
i + ciri = fi ⇔ r′′i + ciK

−1
i ri = K−1

i fi

and define Ai := ciK
−1
i , Fi := 1

ci
Aifi. The general solution of the homogeneous

equation (fi = 0) is given by

rH
i (x) = sinh(A

1

2

i x)ai + cosh(A
1

2

i x)bi (20)

The inhomogeneous equation is then solved by variation of constants as follows

rI
i (x) = A

− 1

2

i

x
∫

0

sinh(A
1

2

i (x − s)Fi(s)ds. (21)

We will treat the case fi = 0 only. The general case is then a matter of additional
but straightforward calculus.
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Lemma 4.1 The solution r to problem (18) with fi = 0, i = 1, . . . , q is given by

ri(x) = sinh((ciK
−1
i )

1

2 (x))ai + cosh((ciK
−1
i )

1

2 (x))b (22)

with the coefficient-vectors ai, b given by

ai = sinh(A
1

2

i ℓi)
−1(ui − cosh(A

1

2

i )

·(
q
∑

i=1

1

ci

A
− 1

2

i cothA
1

2

i ℓi)
−1

q
∑

i=1

1

ci

A
− 1

2

i sinh(A
1

2

i ℓi)
−1ui (23)

b = (

q
∑

i=1

1

ci

A
− 1

2

i coth(A
1

2

i ))−1

q
∑

i=1

1

ci

A
− 1

2

i sinh(A
1

2

i ℓi)
−1ui (24)

The Stekov-Poincaré map is given by

Si
J0(u) = A

1

2

i (cosh(A
1

2

i ℓi)ai + sinh(A
1

2

i ℓi)b) (25)

with ai, b according to (23),(24).

The situation appears to be much more simple in case all material parameters
and geometrical data are equal.

ci = 1, Ki = Id = A
1

2 , ℓi = ℓ, fi = 0, i = 1, . . . q (26)

Example 4.1 Let assumption (26) hold true. Then the solution r to (18) is given
by

ri(x) =
1

sinh(ℓ)
sinh(x)(ui −

1

q

q
∑

j=1

uj) (27)

+
1

cosh(ℓ)
cosh(x)

1

q

q
∑

i=1

ui

The Steklov-Poincaré map is given by

Si(u)J0 = coth(ℓ)(ui −
1

q

q
∑

j=1

uj) + tanh(ℓ)
1

q

q
∑

j=1

uj (28)

We proceed to problem (19). Again, we will treat the general case first and will
then restrict to assumption (26) in order to better reveal the underlying structure.

We introduce the ansatz for the solution as follows

r
ρ
i (x) := sinh(A

1

2

i x)aρ
i + cosh(A

1

2

i x)bρ
i (29)

From the Dirichlet conditions in (19)2 we infer

r
ρ
i (ℓi) = sinh(A

1

2

i (ℓi))a
ρ
i + cosh(A

1

2

i (ℓi))b
ρ
i = ui, i = 1, . . . , q. (30)
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From the continuity requirement in (19)3,4 we obtain

r
ρ
i (ρi) = sinh(A

1

2

i ρi)a
ρ
i + cosh(A

1

2

i ρi)b
ρ
i = r

ρ
q+i(0) = b

ρ
q+i (31)

= r
ρ
q+i−1(σ

q+i−1(ρq+i−1)), i = 2, . . . q

r
ρ
1(ρ1) = sinh(A

1

2

1 ρ1)a
ρ
1 + cosh(A

1

2

1 ρ1)b
ρ
1 (32)

= r
ρ
q+1(0) = b

ρ
q+1 = r

ρ
2q(σ

2q(ρ2q))

The Kirchhoff conditions in (19) result in

− 1

ci

A
− 1

2

i [cosh(A
1

2

i ρi)a
ρ
i + sinh(A

1

2

i ρi)b
ρ
i ] −

1

cq+i

A
− 1

2

q+ia
ρ
q+i (33)

+
1

cq+i−1
A

− 1

2

q+i−1[cosh(A
1

2

q+i−1(σ
q+i−1(ρq+i−1)))a

ρ
q+i−1

+ sinh(A
1

2

q+i−1(σ
q+i−1(ρq+i−1)))b

ρ
q+i−1] = 0, i = 2, . . . , q

− 1

c1

A
− 1

2

1 [cosh(A
1

2

1 ρ1)a
ρ
1 + sinh(A

1

2

1 ρ1)b
ρ
1] −

1

cq+1

A
− 1

2

q+1a
ρ
q+1 (34)

+
1

c2q

A
− 1

2

2q [cosh(A
1

2

2q(σ
2q(ρ2q)))a

ρ
2q

+ sinh(A
1

2

2q(σ
2q(ρ2q)))b

ρ
2q] = 0,

This set of equations ( (30)-(34))constitutes 4q conditions on the 4q unknowns
a

ρ
i , b

ρ
i , i = 1, . . . , 2q. The problem is as to whether there is an asymptotic expansion

of r
ρ
i in terms of ρ for small ρ := (ρi)i=1,...,q. This problem is a singular perturbation

problem. Notice that the graph with ρ = 0 is the original star-graph with q edges,
while for every ρ > 0 (i.e. ρi > 0), the graph has 2q edges and contains exactly one
circuit. We may of course also formally start with a star-graph consisting of 2q edges
with serial joints at xi = 0, xq+i = ρi, i = 1, . . . , q so that the edges ei, i = 1, . . . , q
have length ℓi−ρi to begin with, while the other edges eq+i, i = 1, . . . , q stretch from
the center (at xq+i = 0) to the serial nodes at xq+i = ρi. But still, the perturbation
is then singular with respect to the subgraphs spanned by the edges eq+i, i = 1 . . . q.

Our analysis depends on the expansion of the set of equations (30) to (34) up
to second order terms. The asymptotic analysis is based on the expansions of
sinh(x), cosh(x) on the matrix level. By spectral decomposition we have

sinh(A
1

2

i (x))ξ =

p
∑

j=1

sinh(λ
1

2

ijx)(ξ, φij)φij

accordingly for cosh(A
1

2

i (x)). We use the asymptotic expansions

{

sinh(A
1

2

i (σi(ρi)))ξ = σi(ρi)A
1

2

i ξ + O(ρ2
i )

cosh(A
1

2

i (σi(ρi)))ξ = ξ + O(ρ2
i )

(35)
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By (30) we have

a
ρ
i = (sin(A

1

2

i (ℓi))
−1(ui − cosh(A

1

2

i (ℓi))b
ρ
i ), i = 1, . . . , q (36)

We expand (31) and(32)

A
1

2

i ρia
ρ
i + b

ρ
i = b

ρ
q+i (37)

= σq+i−1(ρq+i−1)A
1

2

q+i−1a
ρ
q+i−1 + b

ρ
q+i−1 + O(ρ2), i = 2, . . . q

A
1

2

1 ρ1a
ρ
1 + b

ρ
1 = b

ρ
q+1 = σ2q(ρ2q)A

1

2

2qa
ρ
2q + b

ρ
2q + O(ρ2) (38)

We now proceed to the Kirchhoff conditions at the multiple nodes (33),(34)

− 1
ci

A
− 1

2

i [aρ
i + ρiA

1

2

i b
ρ
i ] − 1

cq+i
A

− 1

2

q+ia
ρ
q+i

+ 1
cq+i−1

A
− 1

2

q+i−1[a
ρ
q+i−1 + σq+i−1(ρq+i−1)A

1

2

q+i−1b
ρ
q+i−1]

= 0 + O(ρ2), i = 2, . . . , q

(39)

and

− 1
c1

A
− 1

2

1 [aρ
1 + ρ1A

1

2

1 b
ρ
1] − 1

cq+1
A

− 1

2

q+1a
ρ
q+1

+ 1
c2q

A
− 1

2

2q [aρ
2q + σ2q(ρ2q)A

1

2

2 b
ρ
2q] = 0 + O(ρ2)

(40)

We reformulate the system (37),(38),(39),(40) as follows

[

A
1

2

i−1ρi−1 − tanh(A
1

2

i−1ℓi−1)
]

a
ρ
i−1 −

[

A
1

2

i ρi − tanh(A
1

2

i ℓi)
]

a
ρ
i

+σq+i−1(ρq+i−1)A
1

2

q+i−1a
ρ
q+i−1

= cosh(A
1

2

i ℓi)
−1ui − cosh(A

1

2

i−1ℓi−1)
−1ui−1, i = 2, . . . , q

−
[

A
1

2

1 ρ1 − tanh(A
1

2

1 ℓ1)
]

a
ρ
1 +

[

A
1

2
q ρq − tanh(A

1

2
q ℓq)

]

aρ
q

+σ2q(ρ2q)A
1

2

2qa
ρ
2q = cosh(A

1

2

1 ℓ1)
−1u1 − cosh(A

1

2
q ℓq)

−1uq + O(ρ2)

(41)

−
[

1
ci

A
− 1

2

i +
(

σq+i−1(ρq+i−1)

cq+i−1
− ρi

ci

)

tanh(A
1

2

i ℓi)
]

a
ρ
i

− 1
cq+i

A
− 1

2

q+ia
ρ
q+i + 1

cq+i−1
A

− 1

2

q+i−1a
ρ
q+i−1

= −
(

σq+i−1(ρq+i−1)

cq+i−1
− ρi

ci

)

cosh(A
1

2

i ℓi)
−1ui, i = 2, . . . q

−
[

1
c1

A
− 1

2

1 +
(

σ2q(ρ2q)

c2q
− ρ1

c1

)

tanh(A
1

2

1 ℓ1)
]

a
ρ
1

− 1
cq+1

A
− 1

2

q+1a
ρ
q+1 + 1

c2q
A

− 1

2

2q a
ρ
2q

= −
(

σ2q(ρ2q)

c2q
− ρ1

c1

)

cosh(A
1

2

1 ℓ1)
−1u1 + O(ρ2)

(42)

Now, (41)-(42) constitute a system of 2q linear asymptotic equations to order 2
in the 2q variables a

ρ
i , i = 1, . . . , 2q.



Variational Formulations in Mechanics: Theory and Applications

Theorem 4.1 The system of equations (39) to (42) admits a unique solution a
ρ
i , i =

1, . . . 2q. Moreover, we have the asymptotic expansion

a
ρ
i = ai + O(ρ), i = 1, . . . , q, (43)

where ai is given by (23) There exists a function si(·) such that

r
ρ
i (x) = ri(x) + O(ρ)si(x), i = 1, . . . , q, (44)

where ri is the solution of the star-graph problem (18) ρ = 0.

Proof: Using equations (37) and (38), taking appropriate differences, we realize
that bi = b̂ + O(ρ). This information is inserted into equations (39) and (40). If
we write all quantities involving a

ρ
i with indices i = 1 . . . q on the left and the other

terms on the right side, we obtain after summing up, using a ’telescope-sum’, only
O(ρ)-terms on the right hand side, i.e. we have

q
∑

i=1

1

ci

A
− 1

2

i a
ρ
i = O(ρ) (45)

Then we use the expression (36) for a
ρ
i in (45) to obtain

q
∑

i=1

1

ci

A
− 1

2

i sinh(A
1

2

i ℓi)
−1ui =

(

q
∑

i=1

1

ci

A
− 1

2

i coth(A
1

2

i ℓi)
−1

)

b̂

From this and (24) we see that up to terms of order O(ρ), b̂ = b. Then a
ρ
i , up to the

order O(ρ), are given by ai in (23).

4.1 Homogeneous networks

In this subsection we consider the network under the assumption (26), i.e. all
material and geometrical quantities are the same, and a symmetric hole. Under this
assumption the system of equations (41) to (42) reduces to

a
ρ
i−1 − a

ρ
i − σρ coth(ℓ)aρ

q+i−1 = −1+ρ coth(ℓ)
sinh(ℓ)

(ui − ui−1) + O(ρ2),

−a
ρ
1 + aρ

q − σρ coth(ℓ)a2q = −1+ρ coth(ℓ)
sinh(ℓ)

(u1 − uq) + O(ρ2),

−(1 + (σ − 1)ρ tanh(ℓ))aρ
i − a

ρ
q+i + a

ρ
q+i−1 = 1−σ

cosh(ℓ)
ui + O(ρ2)

−(1 + (σ − 1)ρ tanh(ℓ))aρ
1 − a

ρ
q+1 + a

ρ
2q = 1−σ

cosh(ℓ)
u1 + O(ρ2),

(46)

where the first and the third equations hold for i = 2, . . . , q, respectively. This
system has a very particular sparse structure which reflects the adjacency structure
of the graph. To obtain the direct explicit solution is, nevertheless, a matter of
substantial calculations. Instead we look at an example.

Example 4.2 In this example we reduce the graph to a tripod. See figure 4. Here
we can solve (46) analytically an obtain
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a
ρ
i = 1

sinh(ℓ)
(ui − 1

3

3
∑

j=1

uj)

+ρ 1
cosh(ℓ)

{

(1 − 1
3
σ) coth(ℓ)2(ui − 1

3

3
∑

j=1

uj)

+ (σ − 1)1
3

3
∑

j=1

uj

}

+ O(ρ2),

(47)

b
ρ
i = 1

cosh(ℓ)
1
3

3
∑

j=1

uj

−ρ
sinh(ℓ)
cosh(ℓ)2

{

(

(1 − 1
3
σ) coth(ℓ)2

)

(ui − 1
3

3
∑

j=1

uj)

+ (σ − 1)1
3

3
∑

i=1

ui

}

+ O(ρ2),

(48)

where i = 1, 2, 3.
We also display the coefficients a

ρ
q+i, i = 1, 2, 3 in order to reveal the behavior of

the edges introduced by cutting the hole.

a
ρ
4 =

1

3 sinh(ℓ)
(u2 − u1) (49)

+
ρ

3 sinh(ℓ)

(

(1 − σ

3
) coth(ℓ))(u2 − u1)

)

+ O(ρ2)

a
ρ
5 =

1

3 sinh(ℓ)
(u3 − u2) (50)

+
ρ

3 sinh(ℓ)

(

(1 − σ

3
) coth(ℓ))(u3 − u2)

)

+ O(ρ2)

a
ρ
6 =

1

3 sinh(ℓ)
(u1 − u3) (51)

+
ρ

3 sinh(ℓ)

(

(1 − σ

3
) coth(ℓ)(u1 − u3)

)

+ O(ρ2)

The remaining bq+i, 1 = 1, 2, 3 are of course given by bi, i = 1, 2, 3 according to
(37),(38). This completely determines the solution r

ρ
i (x), i = 1, . . . , 6. We list the

first three members for easier reference:

r
ρ
i (x) = 1

sinh(ℓ)

(

ui − 1
3

3
∑

j=1

uj

)

sinh(x) + 1
cosh(ℓ)

1
3

3
∑

j=1

uj cosh(x)

+ρ

{

1
cosh(ℓ)

[

(1 − 1
3
σ) coth(ℓ)2(ui − 1

3

3
∑

j=1

uj)

+ (σ − 1)1
3

3
∑

j=1

uj

]

sinh(x)

− sinh(ℓ)
cosh(ℓ)2

[

(1 − 1
3
σ) coth(ℓ)2(ui − 1

3

3
∑

j=1

uj)

+(σ − 1)1
3

3
∑

j=1

uj

]

cosh(x)

}

+ O(ρ2), i = 1, 2, 3

(52)
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The Steklov- Poincaré-map is then obtained using

(r′i)
ρ(ℓ) = coth(ℓ)(ui − 1

3

3
∑

j=1

uj) + tanh(ℓ)1
3

3
∑

j=1

uj

+ρ

{

(1 − tanh2(ℓ))[(1 − 1
3
σ) coth2(ℓ)(ui − 1

3

3
∑

j=1

uj))

+ (σ − 1)1
3

3
∑

j=1

uj]

}

, i = 1, . . . q.

(53)

It is apparent that (52),(53) provide the second order asymptotic expansion we
were looking for. We consider the following experiment: we apply longitudinal forces
ui = uei with the same magnitude at the simple nodes of the network. The (outer)
edges ei, 1 = 1, 2, 3 or, respectively the edges of the original star, are given by

e1 = (0, 1), e2 = (−
√

3

2
,−1

2
), e3 = (

√
3

2
,−1

2
)

which together with the orthogonal complements

e⊥1 = (−1, 0), e⊥2 = (
1

2
,−

√
3

2
), e⊥3 = (

1

2
,

√
3

2
)

form the local coordinate systems of the edges. Obviously
3
∑

i=1

ei = 0. Thus the

solution to the unperturbed problem is given by

ri(x) =
1

sinh(ℓ)
u sinh(x)ei (54)

This is in agreement with the fact that that particular reference configuration is
completely symmetric. Now, the solution r

ρ
i to the perturbed system and (r′i)

ρ(ℓ) are
then given by

r
ρ
i (x) =

1

sinh(ℓ)
sinh(x)uei

+ρ(1 − σ

3
)

1

sinh(ℓ)2
(coth(ℓ) sinh(x) − cosh(x)) uei + O(ρ2) (55)

(ri)
′ρ(ℓ) = coth(ℓ)u + ρ

1

sinh(ℓ)2
(1 − σ

3
)uei + O(ρ2)

The energy of the unperturbed system is given by

E0 =
1

2

3
∑

i=1

ℓ
∫

0

r′i · r′i + ri · ridx =
3

2
coth(ℓ)u2 (56)

The energy of the perturbed system is given by

Eρ =
1

2

3
∑

i=1

ℓ−ρ
∫

0

[r′i · r′i + ri · ri]dx +
1

2

6
∑

i=4

σρ
∫

0

[r′i · r′i + ri · ri]dx (57)

= 〈Sρu, u〉 = 〈S0u, u〉 + ρ
1

2
(1 − σ

3
)
{

(1 − (tanh(ℓ))2)
}

u2 (58)
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Figure 5: Graph with ’critical’ edge degree 6

From these experiments we may draw the conclusion, that nodes of edge degree 3
under symmetric load, where the configuration is at 120 between the edges (this
amounts to σ =

√
3) are not going to be replaced by hole, which would, in turn

result in 3 new multiple nodes of edge degree 3. This seems to support the optimality
of such graphs being observed by Buttazzo [3].

Remark:

1. Very similar formulae are obtained in the scalar case (ri(x) ∈ R, no planar
representation!), relevant for instance in problems of heat transfer or electrical
currents in networks.

2. If the loads are not symmetric, and/or if the geometry of the ’hole’ is not
uniform, the energy may in fact drop. A more detailed analysis is subject of
forthcoming paper. Suffice it to say here, that nodes with higher edge degree,
according to our analysis, are ’more likely’ to be released by a hole, as even in
the symmetric case the number σ(ρ) which measures the new edge-lengths will
be less than 1.

This is true e.g. for a node with edge degree 6 and beyond. Thus, the total
length of the new edges is smaller than the total length of the removed edges.
This, in turn, is intuitive with respect to the fact that in the higher-dimensional
problem (in 2- or 3-d, no graphs), digging a hole reduces the amount of mass.

Example 4.3 Here we consider the homogeneous situation for a star with edge
degree 6 at the multiple node. In this case σ = 1 for the symmetric situation. See
Figure 5

We calculate
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a
ρ
1 =

1

sinh(ℓ)
(u1 −

1

6

6
∑

j=1

uj) (59)

+ρ
cosh(ℓ)

cosh2(ℓ) − 1
{(−u5 − u3 − 4u2 − 4u6 + 10u1)

−7(u1 −
1

6

6
∑

j=1

uj)

}

Notice that the edges 2 and 6 are the ’neighboring’ edges of edge 1 in the original
star-graph. The other coefficients a

ρ
i , 1 = 2, . . . , 6 are then obvious. For the sake of

brevity, we only display e.g. a
ρ
12:

a
ρ
12 =

1

12 sinh(ℓ)
[5(u1 − u6) + 3(u2 − u5) + (u3 − u4)]

−ρ
cosh(ℓ)

144(cosh2(ℓ) − 1)
[25(u1 − u6) − 9(u2 − u5) − 7(u3 − u4)]

+O(ρ2) (60)

Again, observe that edge 12, in terms of the edges of the original graph, has direct
neighbors 1 and 6, the next level is 2 and 5 and finally we have 3 and 4. One realizes
a consequent scaling. Also note that a

ρ
i = 0 if ui are all equal. This shows that the

coefficients b
ρ
i in that case are independent of ρ and thus the energy will not change

for this limiting case.

5 The topological derivative

We are now in the position to define the topological derivative of an elliptic
problem on a graph.

Let G be a graph, and let vJ ∈ JM be a multiple node with edge degree dJ . Let

Gρ be the graph obtained from G by replacing vJ with a cycle of length
dJ
∑

i=1

ciρ with

vertices v1
J , . . . vdJ

J of edge degree 3 each, such that the distance from vJ to vi
J is

equal to ρ. Thus, the number nρ of edges of Gρ is n + dJ . Let J : G → R be a
functional on the edges of G

J(G) :=
n
∑

i=1

ℓi
∫

0

F (x, ri, r
′
i) (61)

and let

J(Gρ) :=

n+dJ
∑

i=1

ℓ
ρ
i
∫

0

F (x, r
ρ
i , (r

ρ
i )

′) (62)

be its extension to Gρ. Assume we have an asymptotic expansion as follows

J(Gρ) = J(G) + ρT (vJ) + O(ρ2) (63)
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then we define the topological gradient of J(Gρ) with respect to ρ for ρ = 0 at the
vertex vJ as follows.

T (vJ) = lim
ρ→0

J(Gρ) − J(G)

ρ
(64)

We first consider the energy functional. There are five such functionals relevant
for the analysis of this paper: E0(r) on the entire graph G , Eρ(rρ) on the entire
graph with the hole Gρ , ECS(r) on the graph G\SJ0

, where the star-graph without
hole SJ0

has been cut out along edges ei, i ∈ IJ0 , E0
S(r; v) on the star-graph without

hole, and E
ρ
S(r; v) on the star-graph with hole. Obviously

E0
S(r; u) = 〈S0u, u〉, (65)

E
ρ
S(r; u) = 〈Sρu, u〉, (66)

E0(r) = ECS(r) + E0
S(r, r), Eρ(rρ) = ECS(rρ) + E

ρ
S(rρ, rρ), (67)

where it is understood that in E
ρ
S(rρ, ·) and E0

S(r, ·) we insert ui = rρ(ℓi) and ui =
r0(ℓi), respectively. Thus

Eρ(rρ) − E0(r) = 〈Sρ(r̃), r̃〉 − 〈S0(r̃), r̃〉, (68)

where r̃ solves the problem on G \SJ0

and ui = r̃i(ℓi), i ∈ IJ0 . Thus the asymptotic
analysis of the last section carries over to the entire graph. As we have done the
complete asymptotic analysis up to order 2 in the homogeneous case only, we conse-
quently dwell on this case now,the more general case will be subject of a forthcoming
publication.

5.1 Homogeneous graphs

In order to find an expression of the topological gradient in terms of the solutions
r at the node vJ0, the one that is cut out, we need to express the solution in terms
of the data ui.

Example 5.1 We consider the star-graph as above with 3 edges. Obviously

ui −
1

3

3
∑

j=1

uj = sinh(ℓ)r′i(0),
1

3

3
∑

j=1

uj = cosh(ℓ)ri(0). (69)

Thus using the fact that
3
∑

i=1

‖ui − 1
3

3
∑

j=1

uj‖2 =
3
∑

i=1

‖ui‖2 − 1
3
(‖

3
∑

i=1

‖)2 we can express

the bilinear expression 〈Sρ(u), u〉 in terms of ‖r0(0)‖2 and ‖(r0)′(0)‖2 (where we
omit the index 0) as follows

〈Sρ
i (u), u〉 = 〈S0

i (u), u〉
+ρ

{

(1 − 1
3
σ)

3
∑

i=1

‖r′i(0)‖2 + (σ − 1)
3
∑

i=1

‖ri(0)‖2

}

(70)
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This says that the energy function in the homogeneous case, when cutting out a
symmetric hole e.g. σi = σ =

√
3, i = 1, 2, 3, we have

TE(r, vJ0) =

{

(1 − 1

3
σ)

3
∑

i=1

‖r′i(0)‖2 + (σ − 1)

3
∑

i=1

‖ri(0)‖2

}

(71)

The situation will be different for such vertices having a higher edge-degree as
6, and those having non-symmetric holes. We expect that such networks are more
likely to be reduced to edge-degree 3 by tearing a hole. But this has to be confirmed
by more detailed studies.
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