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Abstract

This paper tackles the problem of the computation of a planar polygonal curve
from a digital planar curve, such that the digital data can be exactly retrieved
from the polygonal curve. The proposed transformation also provides an analytical
modelling of a digital plane segment as a discrete polygon composed of a face, edges
and vertices. A dual space representation of lines and planes is used to ensure that
the computed curve remains inside the digital curve, and this tool enables to define
a very efficient algorithm. Applied on the digital plane segments resulting from
the decomposition of a digital surface, this algorithm provides a set of polygons
modelling exactly the digital surface.

Key words: discrete polygon, 3D, vectorisation, modelling.

1 Introduction

Digital objects are defined as sets of grid points in Z
n. Those objects carry

redundant geometrical information due to their discrete structure: an object
in represented as a set of elementary cells (called pixels in 2D, voxels in 3D).
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Indeed, consider for instance the representation of a cube of size n. On one
hand, in the continuous space, this object is totally defined by six square faces,
whatever the size of the cube. On the other hand, about 6n2 voxels are needed
to represent the surface of this object in the discrete space: each point has
to be stored. We see that exploiting geometrical properties of digital surfaces
would lead to important advances in digital objects modelling, representation,
compression for instance.

The first natural geometrical properties to study are linearity and coplanarity.
Indeed, if we draw a parallel with the classical continuous space, one of the
most widely used model for 3D objects representation is the polyhedral model,
where an object’s surface is defined as a set of polygons, edges and vertices.

The definition of digital linear structures like digital lines [1] and digital planes
[2,3] originated a lot of works dealing with the decomposition of the contour
of a digital object into digital linear primitives [4–6] or according to other
geometrical properties [7]. Such a decomposition actually apprehends global
geometrical properties of those objects. The result of a decomposition algo-
rithm is usually a labelling of the surface voxels according to the digital plane
segment (DPS for short) they belong to. These DPS define digital faces as in
the continuous case. Nevertheless, a complete analytical modelling of a sur-
face requires an analytical definition of the boundary of those DPS as a set of
digital edges and vertices.

In the 2D case, this problem is similar to the classical vectorisation issue with
an additional constraint: the digital curve must be exactly retrieved from the
computed polygonal one. This constraint is actually necessary to ensure that
the algorithm computes an analytical model of the digital curve. An algorithm
using digital geometry has been proposed to solve this problem in [8], and
similar tools are used in the algorithm we propose for the 3D case.

In this paper, we deal with the 3D case and the problematics is stated as
follows: given a digital planar curve C, compute a polygonal curve which
provides an analytical representation of C. If the curve C is the boundary of
a digital plane segment and since the voxels of C are coplanar, the DPS is
analytically defined by the digital plane containing C and the boundary by
the computed polygonal curve.

Parts of this work have been presented in [9]. Main differences include some
definitions, proofs, technical details, complexity issues, and application ex-
amples. It is composed of six sections. In Section 2, we present the general
framework of our algorithm, defining the notions of digital lines and planes
and their dual representation. The third section deals with the precise descrip-
tion of our algorithm. Complexity issues, both theoretical and experimental,
are presented in Section 4. Modelling results provided by our algorithm are
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presented in Section 5, which also presents image results about the application
of this algorithm on 3D objects digital surfaces, and first thoughts on using
this approach for lossless compression.

2 Digital lines, planes and their dual representation

2.1 Digital curve, line and plane definitions

First of all, we define the framework used in this paper. The objects we are
dealing with are sets of cells of the three-dimensional regular grid Z

3. Those
grid cells are called voxels, by analogy with the 2D term pixel. These objects
will be called digital or discrete objects in the rest of the paper. We first recall
classical definitions.

Definition 1 (Connectivity) Two discrete cells (pixels in 2D, voxels in 3D
for instance) of Z

n are k-connected if they share a cell of dimension k (k < n).
For instance, in 3D, two voxels are 0-connected if they share a vertex, 1-
connected if they share an edge, and 2-connected if they share a face.

Definition 2 (k-curve) Given a k-connectivity relationship, a set of discrete
cells {pi}i=0...n is a k-curve if and only if for all i, pi has exactly two k-
neighbours.

In the following, we deal with 2-curves in 3D, that we will call digital curves.
Instead of considering the discrete cells we will sometimes consider the discrete
points (grid points), centre of the cells.

As in the continuous space, straight lines and planes are well defined in the
digital space. We provide here the general definition of a discrete hyperplane
which covers the 2D (discrete lines) and 3D (discrete planes) cases.

Definition 3 (Discrete hyperplane [10]) A discrete hyperplane of dimen-
sion n and normal vector N ∈ R

n is defined as the set of lattice points X ∈
Z

n such that:

A ≤
n∑

i=1

NiXi < B

with A, B ∈ R.

The value B − A is called thickness of the hyperplane and usually depends
on the normal vector N . The discrete hyperplane connectivity depends on the

definition of B and A and for our application, we set B =
∑n

i=1
|Ni|

2
and A =
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−B. Moreover, we assume that there exists j such that Cj > 0 and for all i < j,
Ci = 0. Those settings define the so called standard hyperplane. Topologically,
standard hyperplanes are the thinnest (n− 1)-connected hyperplanes without
hole: any connected path joining the two background sides of a hyperplane
contains at least one point of the hyperplane. An illustration of a standard
plane in dimension 3 is given in Figure 1(a).

Geometrically, the standard digitization of a hyperplane is very close to the
supercover digitization [11,12] which states that any grid cell crossed by the
object belongs to the digitized object. But supercovers may contain “bubbles”,
i.e. many digitization grid cells for one point (points with half-integer coordi-
nates for instance). To cope with that problem, an orientation convention is
defined and leads to the standard digitization scheme we use. Our algorithm
uses the following well-known property of digital standard hyperplanes, that
we set out in the 3D case:

Proposition 4 Let V be a set of voxels in a digital standard plane. Then
there exists a plane p crossing all the voxels of V . p is called a carrier plane
of V .

To end with standard model properties, it has nice geometrical consistency
properties which enable to define discrete polygons. This definition was pro-
posed by Andres in [10] and gives an analytical definition of a discrete polygon
(a set of linear constraints defining the discrete face, edges and vertices). Our
algorithm uses this definition in order to compute a polygonal curve for a
given digital curve.

We can now formally define the digital planar curves that are of interest in
this work:

Definition 5 (DPC) A set of voxels V = {vi}i=0...n is a digital planar curve
if and only if V is a 2-curve and all the vi belong to the same standard digital
plane.

From Proposition 4, there exists a carrier plane for the voxels of a DPC.
Similarly to the continuous case, modelling a DPC is done through the de-
composition of the DPC into 3D digital line segments. 3D digital lines are also
well-defined in the digital space according to the standard model:

Definition 6 Consider a 3D straight line of directional vector (a, b, c), and
going through the point (x0, y0, z0). Then the standard digitization of this line
is the set of integer points fulfilling the conditions given by the following double
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(a) (b)

x

y
z

(c)

Fig. 1. Example of (a) a 2D discrete standard straight line and (b) a discrete stan-
dard plane and (c) a 3D standard digital line with its three projections.

inequalities:

− |a|+|b|
2
≤ bx− ay + ay0 − bx0 <

|a|+|b|
2

− |a|+|c|
2
≤ cx− az + az0 − cx0 <

|a|+|c|
2

− |b|+|c|
2
≤ cy − bz + bz0 − cy0 <

|b|+|c|
2

where (b > 0 or (b = 0 and a > 0)) and (c > 0 or (c = 0 and a > 0)) and
(c > 0 or (c = 0 and b > 0)) (otherwise, the strict and large inequalities of
those equations are switched, see [10]).

From this definition, we derive that a necessary condition for a set of voxels
V to be a 3D standard segment is that the three projections of V are 2D
standard segments (see Definition 3).

2.2 Parameter spaces and preimages

2.2.1 Parameter spaces

Detection of collinearity is of great importance in this algorithm. Since 3D
digital lines definition is based on 2D digital lines definition, our main concerns
is about 2D collinearity, and the tools we use are presented in this context.

Many algorithms exist to decide if a set of pixels is a digital segment or not,
and three classes of so called recognition algorithms may be defined: chain
codes based algorithms (for instance [13,14]), arithmetical algorithms [15] and
preimage algorithms [16–18]. Our application needs an online algorithm (pixels
may be added one by one), together with the computation of the whole set of
lines containing the pixels in their digitization. This last requirement is derived
from the fact that the recognition process is constrained in our algorithm (see
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Section 3.1). Preimage based algorithms are the only ones fulfilling those two
conditions. They use a transformation in a parameter space that we present
in the following, and the preimage itself is presented in the next paragraph.

The main idea is that a line in the Cartesian space is represented by a point
in the parameter space, and conversely, a point in the Cartesian space corre-
sponds to a line in the parameter space. We say that the point is the dual of
the line.

This parameter space is similar to the one defined by the Hough Transform
[19] which is classically used in image analysis for shape detection problems.
The main difference between the Hough Transform and the transform we use is
that the uncertainty induced by the discrete nature of the data is not handled
during a quantification step but during the transform itself (see next section
on preimages).

An illustration of this mapping is given in Figure 2. Note that in this figure,
the dual space is defined according to a normalization along the y direction
(lines x = a cannot be represented in this parameter space). Consequently,
two parameter spaces can be defined in the 2D space, one for each direction.

C−1 C

(α, β)

αx − y + β = 0

y

x

α

β

(x, y)

y

x

α

β

y

1

2

3
4

x

β
αx − y + β = 0

2
3

1

4 α

Cartesian space C

Dual space P

Fig. 2. Representation of the links between the Cartesian (top) and the parameter
spaces (bottom) for elementary geometric objects.

Similarly, three parameter spaces (0αβγ) can be defined in 3D. Using the
notations of [8], we denote those parameter spaces by Px, Py and Pz according
to the normalization variable. When no particular parameter space is meant,
we use P . One plane in the Cartesian space is represented by one point in each
parameter space and conversely. We also consider the intersection between
those 3D spaces and the planes α = 0 and β = 0. For instance, Pxz is equal
to Px ∩ (α = 0). Those spaces can be considered either as restrictions of 3D
spaces or as two-dimensional parameter spaces. Thus, one point in Pxz can
be considered either as a plane perpendicular to y = 0 or as a 2D line in
(0xz) (see [8] for more details and illustrations). Moreover, a 3D line in the
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Cartesian space C is represented by another 3D line in the parameter space
P .

In the following, we denote by C (or Cx, Cy, Cz when a particular parameter
space is meant) the operator which transforms one element of the parameter
space into its corresponding element in the Cartesian space.

The representation in the parameter space of a 3D line embedded in a plane
is a key point of our algorithm. It is actually easy to see that since a 3D
line l maps to another 3D line C−1(l) (each point of C−1(l) corresponds to a
plane containing l), and since a plane P maps to the point C−1(P ), then l is
embedded in P if and only if C−1(l) goes through C−1(P ) (see Figure 3).

y

x

z

P

l

E

(a)

β

α

γ

P

C−1(P )

C−1(l)

(b)

Fig. 3. Representation of a 3D line embedded in a plane in the Cartesian (a) and
the parameter (b) spaces.

2.2.2 Preimages

The definition we present for the 2D case of pixel sets can be directly extended
in 3D for voxel sets. Consider a set of pixels ε and a digitization scheme. We
call preimage (or domain) of ε the set of Cartesian lines containing ε in there
digitization. This set is represented as a set of points in the parameter space
defined previously.

Let us consider for instance the line l defined by ax− by + r = 0 where a > 0
and b > 0. Then, the standard digitization of l is the set of discrete points
(x, y) fulfilling the inequalities − a+b

2
≤ ax − by + r < a+b

2
(see Definition

3). Therefore, the lines αx − y + β = 0 containing the point (x0, y0) in their
digitization fulfill the inequalities −α+1

2
≤ αx0−y0+β < α+1

2
. Thus, a discrete

point defines two half-spaces in the parameter space, and the intersection of
those half-spaces represents the set of lines containing this discrete point in
their digitization. Given a set S of discrete points, the preimage of S is the
convex polygon in P defined by the intersection of the half-spaces related to
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the discrete points of S (see Figure 4).

3 Reversible vectorisation of a planar 3D discrete curve

In this section, we present an algorithm to compute a polygonal planar curve
from a 3D discrete planar curve (DPC) in a reversible way. The outline of this
algorithm is briefly presented in Section 3.1 in order to introduce the three
key points detailed in the following sections. The overall algorithm is then
summarized in Section 3.5.

3.1 Outline of the algorithm

From Proposition 4, there exists a carrier plane p crossing all the voxels of
a given DPC. The overall algorithm consists in computing a polygonal line
included in p and crossing all the voxels of the DPC.

To compute a polygonal curve from a DPC, we propose the following outline,
that we presented in [8] in the case of 2D discrete curves and non coplanar
3D discrete curves. For the sake of clarity and continuity, the notations used
in this paper are similar to the ones used in [8].

Consider a DPC described as an ordered set of voxels {V1, V2, . . . Vn}, and a
carrier plane p crossing each Vi. A Cartesian point r1 is chosen inside the first
voxel V1 and the plane p, and the voxels are added one by one (they define
a discrete segment s1) while there exists a Cartesian line going through r1,
through all the voxels of s1 and embedded in the carrier plane p. In other
words, s1 is incrementally extended while:

(1) s1 is a 3D discrete segment;
(2) among the lines containing s1 in their digitization, there exists at least

one line that is embedded in p and that goes through the fixed point r1.

When one of those two conditions does not hold anymore, the first Carte-
sian segment endpoint r2 is computed as an intersection point between the
computed line and s1’s last voxel. The fixed extremity of the next Cartesian
segment is set to r2 and this process starts over.

This synopsis points out three key points: the recognition of a 3D discrete
segment, the control of the planarity of the polygonal curve computed, and
the choice of a vertex as starting point of the polygonal curve.
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3.2 Recognition of a 3D standard segment

The first step is to define an algorithm to recognize a 3D standard segment,
i.e. the standard digitization of a 3D line segment. To do so, we use Definition
6 which provides an analytical model for a 3D digital line. We saw that a
necessary condition for a set of voxels to be a 3D standard digital segment is
that the three projections are 2D standard digital segments.

To ensure this property, and following Section 2.2.2, we compute the preimages
of the sets of pixels of the three projections. If the three preimages are not
empty, then this condition is fulfilled, otherwise, the set of voxels is not a 3D
standard segment. Moreover, we said in Section 3.1 that a Cartesian point is
fixed inside one voxel before the recognition process. Thus, we do not consider
the whole set of solution lines, but only the lines going through this fixed point.
As illustrated in Figure 4(a), the projections of this fixed point p onto the
three coordinate planes define three points px, py and pz that are represented
by three lines in the parameter spaces. Thus, the preimages we work on are
no more polygons but simply segments denoted by Ix, Iy and Iz (see Figure
4(b)).

x

y
z

px

p

py

pz

(a)

β

α

dz

α

β

α

dx

β

dy

Iz
Ix

Iy

(b)

Fig. 4. Recognition of the three projections of a given set of voxels with a fixed
point p: when a point p is fixed in the first voxel, the sets of solution lines for the
projections are reduced to segments denoted by Ix, Iy and Iz.

Nevertheless, this condition over the three projections is not sufficient to define
a 3D standard segment since the projection parameters are not independent:
indeed, choosing any three 2D digital lines as projections do not define a 3D
digital line. A compatibility condition between the parameters of the three
projections needs to be added (see [8]), but we do not go on further details
about this particular point since this condition is ensured while considering
the embedding of the curve into a plane.
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3.3 Ensuring coplanarity

3.3.1 General case

In the following, we consider the general case where the carrier plane p is
defined by the equation ax + by + cz + µ = 0, with a, b and c not equal to
zero.

It is easy to see that any of the three preimage segments Ix, Iy and Iz can be
represented in two out of the three parameter spaces Px, Py and Pz. Indeed,
those preimage segments are embedded in the planes α = 0 or β = 0 in those
parameter spaces. For instance, consider the parameter space Px where the
two segments Iz and Iy can be represented. In this space, the carrier plane
P is represented by a point C−1(p). Thus, the 3D lines l embedded in p and
containing the set of voxels considered in their digitization are those such that
C−1(l) crosses C−1(p), Iy and Iz.

β

γ

α

l2

l1

Pxz

Pxy

Px

Iz
Iy

C−1

x
(p)

Fig. 5. Reduction of the dual segment Iy according to the dual of the carrier plane p

and to Iz. The remaining part of Iy after the reduction is depicted between brackets.

A reduction process of the segments Iz and Iy according to C−1(p) is done, as
illustrated in Figure 5. The grey cone drawn on this figure represents all the
lines going through one point of Iz and the point C−1(p). Thus, the points
of Iy which do not belong to this cone (out of brackets on Figure 5) must be
deleted since there does not exist a line going through Iz, C−1(p) and those
points. After the reduction of Iy, the reduction of Iz is computed.

Let us detail this reduction process. In the following, we use the generic indices
i, j and k to denote any of the space coordinates x, y and z. The basic operation
of this reduction process is the computation of the image of an interval point
through the C−1(p). Using the notations depicted in Figure 6(a), this function
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is simply defined as follows:

Red((αj, 0, γj), (pα, pβ, pγ)) = (0, βk, γk)

where βk =
αjpβ

αj−pα
and γk = αj

αj−pα
(pγ − γk) + γj. From a geometrical point

of view, and in the primal Cartesian space, this equation corresponds to the
computation of one the parameters of one projection (the point (0, βk, γk) in
the parameter space) of a 3D line defined by another projection (the point
(αj, 0, γj) in the parameter space) and a plane (given by (pα, pβ, pγ) in the
parameter space).

In order to simplify the computation of these reductions, it is actually possible
to do all these operations in the 2D space (0αβ). This projection is one-to-one
and onto since the γ coordinate is defined by the plane C−1(r) (r is the point
fixed before the reconstruction), which is by definition not orthogonal to the
plane (0αβ) (see Figure6(b)). Thus, each preimage I is uniquely defined by a
one-dimensional interval.

β

γ

α

Pi

Pik

Pij

(αj , 0, γj)
(0, βk, γk)

(pα, pβ, pγ)

(a)

β

α

(pα, pβ)

(0, βk)

(αj , 0)

(b)

Fig. 6. (a) Dual representation of a 3D line, a plane containing this 3D line (the
point (pα, pβ , pγ)) and two of its projections (the points (αj , 0, γj) and (0, βk, γk));
(b) Same representation in a 2D space.

Using the Red function previously defined, the three cases depicted in Figure
7 may occur during the computation of the image of an interval I = [AB]
through a point:

• case (a): if pα is strictly lower than A or strictly greater than B the image
of I is a closed interval;
• case (b): if pα is equal to A or B then the image of I is a half-open interval;
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• case (c): if pα is strictly between A and B, then the image of I is made of
two half-open intervals.

β

αIk BA

(pα, pβ)

Red(Ik)

(a)

Red(Ik)

(pα, pβ)

β

αIkA B

(b)

(pα, pβ)

Red(Ik)

β

αIkA B

(c)

Fig. 7. Three possible cases for the computation of the image Red(Ik) of a dual
segment Ik according to a carrier plane which parameters are (pα, pβ).

Thus, the reduction of a preimage Ik according to another preimage Ij is done
in two steps in the parameter space Pi:

• compute the image of Ij using the reduction function defined previously;
• compute the intersection between this image and Ik: the resulting interval

is the new preimage Ik.

To complete the reductions in parameter space Pi, the reverse operation (re-
duce Ij according to Ik) is performed using a reduction function similar to the
one defined previously. This pair of reductions is computed in each parameter
space Px, Py and Pz, such that each preimage Ix, Iy and Iz is reduced twice.
Finally, we have the following result:

Proposition 7 After the six reductions presented above, the preimages of the
three projections of the set of voxels S represent exactly the set of 3D lines
solution for S and embedded in the carrier plane.

PROOF. The key point of the proof is that any point of the preimages I

uniquely defines a 3D line in the Cartesian space. Indeed, since we assumed
that the normal vector of the carrier plane has no zero coordinates, the couple
made of a projection and the carrier plane defines a unique 3D line. Consider
the preimage Ix of the projection of the set of voxels S onto the plane (0yz),
and the following reductions:

(1) Ix is reduced according to Iy: the points in Ix (and those in Iy) define
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the 3D lines embedded in the carrier plane, and which projections are
solutions for the projections of S onto (0yz) and (0xz);

(2) Ix is reduced according to Iz: the points in Ix (and those in Iz) define
the 3D lines embedded in the carrier plane, and which projections are
solutions for the three projections of S onto (0yz), (0xz) and (0xy).

Eventually, the last pair of reductions (Iy and Iz) will only result in a reduction
of Iy (Iz will remain unchanged) which defines at this point the 3D lines
solutions for only two out of the three projections (unchanged after step (1)).
After this cycle of six reductions, each preimage I is finally the set of 3D
lines embedded in the carrier plane and whose projections are solutions for
the three projections of S. Â

This proposition moreover proves that these reductions ensure the projection
preimages compatibility, i.e. that there exists a 3D line which projections
contain the projected sets of pixels in their standard digitization (see Section
3.2).

3.3.2 Particular case when some components of the plane normal vector are
zero

For any finite set of voxels, thus for any digital planar curve, a carrier plane
with non-zero normal vector components can always be found. Therefore, the
general case always holds. Nevertheless, using planes with zero normal vec-
tor components, when possible, can lead to nicer solutions (for a cube for
instance).

Let us consider a plane p defined by ax + by + cz + µ = 0. If two out of
the three parameters a, b, c are zero, two out of the three projections of the
lines embedded in p are fixed. Suppose for instance that a and b are equal
to zero. Then, the two dual segments Ix and Iy are reduced to single points.
On the other hand, the third dual segment Iz is defined as previously, and no
reduction between the three projection preimages is required. This case can
actually be handled as a 2D case.

Now consider that only one parameter is zero, say a = 0. In this case, one pro-
jection is fixed and the dual segment Ix is then again reduced to a single point.
The other two dual segments shall be reduced accordingly. As in the general
case, these reductions can be performed in a 2D space, and each projection is
uniquely defined by its slope. The only parameter space in which both Iy and
Iz can be represented is Px. However, the plane p cannot be represented in this
parameter space and the general case reduction process cannot be applied. In
this context, the idea is to perform the reduction process according to the
fixed projection induced by p. Given the slopes αz and αy of two projections
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respectively in Pxy and Pxz, the slope of the third projection is equal to −αy

αz

in Pyz. Now if Ix is reduced to a fixed single point Ax, Iy and Iz must be re-
duced in order to fulfil the following condition: for all αy ∈ Iy and all αz ∈ Iz,
−αy

αz
= Ax. This reduction process is illustrated in Figure 8.

Iy

Iz αz

αy = −Axαz

αy

Fig. 8. Reduction of the projection dual segments Iy and Iz in the case of a carrier
plane with one zero component (one projection is fixed): Iy and Iz are represented
as thick segments, the part removed after reduction is dashed.

3.4 Choice of fixed extremities

Our algorithm is initialized with a point belonging both to the first voxel of
the curve and to the carrier plane p (see Section 3.1). This point belongs to
the intersection between a voxel and a Cartesian plane. From the definition of
standard plane, we know that the voxels cut by a given plane are exactly the
voxels of the standard digitization of this plane. The geometry of this intersec-
tion has been studied by Reveillès [20] and Andres et al. [21] who show that
the only five intersection polygons possible are a triangle, a trapezoid, a pen-
tagon, a parallelogram or an hexagon (Figure 9). They moreover characterize
the shape of the intersection between a plane and a voxel according to the
position of the voxel in the corresponding standard plane. In [20], Reveillès
gives the arithmetical expression of intersection vertices coordinates. Thus, the
initial point chosen in our algorithm is simply the barycentre of the vertices
computed thanks to Reveillès [20] and Andres et al. [21] results.

Fig. 9. The five possible intersections between a voxel and a plane.

3.5 Overall algorithm

Algorithm 1 finally presents the overall vectorisation algorithm for a 3D dig-
ital planar curve. In step 2, a first fixed point v1 is chosen (see Section 3.4).
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Variables i and k respectively count the number of voxels processed and the
number of segments computed during the vectorisation algorithm. Steps 6 to
8 initialize the 2D preimages for the three projections of the new discrete seg-
ment sk. The while loop between steps 9 and 15 processes the addition of a
new voxel to sk: on step 12, the three preimages are updated according to
the new point (ensures that the projections are 2D discrete segments, see Sec-
tion 3.2) and step 14 ensures the coplanarity thanks to the reduction process
described in Section 3.3. Finally, when the voxel Vi cannot be added to the
current segment sk (one out of the three preimages is empty), we choose a
solution line, compute a new fixed point and the process starts over.

Algorithm 1 Vectorisation of a 3D digital planar curve

Vectorisation planar 3Dcurve(ordered set of voxels V , carrier plane p)
1: i← 1, k ← 1
2: Let v1 be a point in the first voxel V1 and lying into the plane P . {Section

3.4}
3: while (i ≤ n) do
4: sk ← {Vi} {sk is the current discrete segment}
5: r1

k ← vk

6: Ix = Pyz ∩ C−1
y (vk)

7: Iy = Pxz ∩ C−1
x (vk)

8: Iz = Pxy ∩ C−1
x (vk)

9: while (Ix 6= ∅ and Iy 6= ∅ and Iz 6= ∅ and i ≤ n) do
10: i ← i+1
11: sk ← sk ∪ {Vi}
12: Compute the reductions of the three intervals according to the con-

straints induced by the three projections of Vi. {Section 3.2}
13: if (Ix 6= ∅ and Iy 6= ∅ and Iz 6= ∅) then
14: Compute the six reductions of the intervals according to the plane

p. {Section 3.3}
15: end if
16: end while
17: if (Ix = ∅ or Iy = ∅ or Iz = ∅) then
18: sk ← sk − {Vi} and reset Ix, Iy and Iz as before adding Vi.
19: i← i− 1
20: end if
21: Choose a 3D solution line lk in the preimages I.
22: Choose a point vk+1 in Vi belonging to the line lk.
23: r2

k = vk+1

24: k ← k + 1
25: end while
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4 Complexity Issues

4.1 Theoretical study

Let us study the theoretical complexity of this algorithm. The algorithm is
greedy and each voxel of the curve is processed only once. For each voxel,
the reductions of the preimage intervals on line 12 can be done in constant
time (intersection between two lines), but the simplification of the rational
coordinates of the preimage extremities requires a linear time in the size of
the rational numerators and denominators. The complexity of reduction steps
according to the carrier plane (step 14) depends on the number of connected
components of the preimages I. Indeed, we saw in Section 3.3 Figure 7(c) that
the image of an interval through a point may be composed of two infinite
parts, and consequently, the intersection between this image and a preimage
could be made of more than one connected part. Nevertheless, we have the
following proposition which ensures that the preimages I are made of one
single connected part.

Proposition 8 Given a 3D discrete segment S and a carrier plane p which
cuts all the voxels of S, the set of 3D lines lying in p and crossing all the voxels
of S is a connected set.

PROOF. Consider the tiling defined by the intersection of the plane p and
the voxels of S. The tiles are the intersections between a plane and a voxel,
thus this tiling is made of convex polygons (see Section 3.4). Now let l and l′

be two lines lying in p and crossing all the voxels of S. Then l and l′ cross all
the convex polygons of the tiling. Without loss of generality, suppose that l

and l′ are not parallel, they intersect in a point P inside S∩p. Using this point
as a pivot, we can transform continuously l into l′. Let l′′ be a line between l

and l′ according to this transformation. Consider a voxel Vi in S and choose
two points Pi and P ′

i in Vi∩p. The segment [PiP
′
i ] is included in Vi∩p since the

tiles are convex polygons. By construction l′′ crosses [PiP
′
i ], and thus crosses

the tile Vi ∩ p. Â

This proves that the preimages I are composed of one single interval, and thus
that the reductions are done in constant time. Nevertheless, the same remark
concerning the preimage rational coordinates simplification holds in this case,
and the overall complexity for this phase of reductions is also linear in the size
of the numerator and denominator integers.

Consequently, the theoretical complexity of Algorithm 1 is O(n× s) where s

is the size of the biggest integer value in the preimages coordinates. The value
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of s is difficult to bound since it depends on the strategy used to choose the
solution line (step 21) and the new fixed extremity (step 22). Thus we do not
give a theoretical bound on s for a particular strategy but we present some
practical hints on how a good strategy can be fixed.

4.2 Hints on practical behaviour

In practice, we use the multiple precision library GMP [22] to handle the very
large integers that may appear during the reconstruction process. With this
library, we can do exact integer and rational computations along the algorithm,
which prevents from numerical errors that could compromise the reversibility
of the reconstruction. It is nevertheless important to use integer numbers
as small as possible during the reconstruction since all the basic operations
like multiplication, division and simplification (see previous section) get costy
when the size of the numbers increases.

In Algorithm 1, choices of a solution line and a new fixed point (steps 21 and
22) may induce a huge increasing of the numbers’ size. For instance, the basic
idea of choosing the middle point is not satisfactory from this point of view:
indeed, the middle fraction of two fractions a

b
and c

d
is ad+bc

2bd
, which means that

the result’s numerators and denominators are twice longer than those of the
original fractions. In the following, we use the notations of Algorithm 1.

To choose a solution line lk, we have to pick a point in a preimage I, i.e.
we have to choose a fraction between two other fractions. We propose two
strategies:

(1) find the best solution: given two fractions, we look for the fraction in
between with the smallest denominator. This can be done using a binary
tree ordered representation of all rational fractions (called Stern-Brocot
tree [23–25]). In this tree, each node is an irreducible rational fraction,
and the smallest fraction between two fractions is the nearest common
ancestor of the two corresponding nodes. This solution gives good results,
but is very costy if the numbers get big;

(2) find an intermediate solution: in an interval of size 1
d
, d > 1, we can find

a fraction with denominator d. Computing this fraction is really fast and
is on average much smaller than the middle fraction.

Moreover, the new fixed point vk+1 lies in the intersection between line lk and
voxel Vi. The two extremities of this intersection segments lie on Vi’ faces
and then have at least one half-integer coordinate (Figure 10). Consequently,
choosing one of these two points as vk+1 is a reasonable solution in order to
slow integer size increase. Since lk is a solution line for the current 3D discrete
segment sk, and since sk is at least 2 voxels long, then the first extremity of
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the intersection segment lies on the common face of Vi−1 and Vi. Thus, it is
strictly included in the discrete curve and can be chosen as vk+1 (see Figure
10). This property cannot be ensured for the other extremity.

...........

Vi

lk

Vi−1

sk

Fig. 10. Choice of a new fixed point vk+1 on the line lk and inside the voxel Vi:
choosing the point on the interface bewtween Vi−1 and Vi enable a slower increase
of integer sizes.

In the following, we give some results about execution times and size of the
biggest integer. To evaluate the size of the maximum integer used in the re-
construction process, since checking every integer value used would be too
costy, we only point out the size of the fixed point coordinates denomina-
tors : indeed, the fixed point coordinates determines the preimage extremities
initialization, and has therefore an influence on the solution lines, and the
coordinates numerators depend on the image size and the denominators.

Using those strategies, or at least one of the two, improves greatly the execu-
tion time of the algorithm together with the memory needed. Indeed, when
the middle points are chosen both for lk and vk+1, the algorithm is very slow :
for instance, for a sphere of radius 10, it takes only 3.7 seconds and the biggest
integer is 84 bits long to compute polygons for the 73 DPS of the surface with
our strategies, whereas it takes 60.7 seconds and the biggest integer is 126890
bits long if the middle points are chosen. Thus we see that even for very small
volumes, integer size is a very important issue. For bigger volumes (more than
10000 surface surfels for instance) computation times are usually greater than
20 minutes, which is not reasonable.

Table 1 gives some execution time results for a collection of objects together
with the size (in bits) of maximum integers used during the reconstruction
process. Time results reported do not take into account the segmentation pro-
cess, but only the reconstruction of all the discrete faces. Since choosing middle
points for lk and vk+1 gives very bad results, we only report results assuming
than one good solution is used: whether lk is a function of the preimage inter-
val length (lk ← f(length)) or vk+1 belongs to a voxel’s face (vk+1 ← f(1

2
)).

This table shows that using those strategies enables to work with quite small
integers, and thus to achieve computation times around or under one minute
for volumes 100 × 100 × 100, especially if both improvements are used (last
column).
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vk+1 ← middle vk+1 ← f(1
2
) vk+1 ← f(1

2
)

object # surfels # DPS lk ← f(length) lk ←middle lk ← f(length)

t(s) size t(s) size t(s) size

sphere25 12318 363 25.2 567 22.0 717 21.6 319

torus 26416 723 84.0 705 83.0 5968 75.3 176

hand 10240 1042 34.5 727 31.4 348 29.8 126

fandisk 20058 1113 71.9 1605 63.2 935 62.6 186

Al 21556 1703 67.1 801 67.7 397 66.4 143

Table 1
Comparison of execution times according to different choices for lk and vk+1

5 Results: images, modelling and compression

5.1 Modelling results

The result of this algorithm over a DPC is represented in Figure 11. In (a)
and (c), the voxels are represented by their center, so that the connectivity
is easily visible. Moreover, the discrete points belonging to the same digital
plane as the DPC (for a given carrier plane) are depicted. In this case, the
DPC is the boundary of a given digital plane segment (DPS for short). In (b),
a polygonal curve embedded in a carrier plane of the DPC is computed: the
voxels are represented on this figure to illustrate the inclusion of the polygonal
curve into the discrete curve. Finally, the polygon computed is represented in
(c), together with the set of discrete points of the carrier plane: the standard
digitization of the polygon is exactly the set of discrete points.

(a) (b) (c)

Fig. 11. Different steps of the polygonalization of a discrete face: (a) the DPC
discrete points, (b) computation of the polygonal line, (c) DPC and polygon super-
imposed.

The reconstruction process we present in this paper is based on the standard
digitization scheme as said in Section 2.1. This model, analytically defined
by Andres in [10], is geometrically consistent and well adapted to modelling

19



applications. Indeed, standard simplexes are well defined in this framework,
as a set of linear discrete inequalities for faces, edges and vertices. Then our
reconstruction algorithm for DPC completes the following inverse problem:
given a digital plane segment which boundary is a DPC, find an analytical
description of this set as a discrete polygon. The constraints defining the DPS
are computed directly from the carrier plane, and those defining its bound-
ary are computed from the polygonal curve edges parameters and vertices
coordinates. The construction follows the definition of a standard simplex,
and consists in finding the constraints for each basic element for the three
projections.

An example is presented in Figure 12: on the left (a), a digital plane segment,
its boundary, and the computed polygon are depicted: vertices discrete points
are represented in red, edges discrete points in blue. The plane defines two
inequalities, the six edges define 18 inequalities (one inequality for each edge
and each projection), and the vertices define six inequalities as a bounding
box for the polygon. The convex polyhedron resulting from those constraints
is depicted in (b) and (c), where the constraints related to vertices are in red,
those related to edges in blue, and the two inequalities related to the plane in
light blue. The DPS discrete points are exactly the set of grid points included
in this polyhedron.

(a) (b) (c)

Fig. 12. Analytical description of a DPS: (a) DPS with vertices (in red) and edges
(in blue) discrete points, and reconstructed polygon; (b) analytical view; (c) recon-
structed polygon and analytical view.

5.2 Application on digital surfaces

This algorithm can be used to analytically represent the surface of a digital
object by a set of polygons. The prerequisites to this application are, first,
to set the definition of surface used (surface elements and connectivity), and
next to design an algorithm for the decomposition of the surface into DPS,
such that the boundary of those DPS are digital planar curves. Our algorithm
is then applied on each DPS of the decomposition.
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Concerning the definition of discrete surfaces, two main approaches exist: the
surface elements are either object voxels or object voxels’ faces. In this work,
we define the object surface as the set of voxels’ faces (called surfels, see Figure
1(b)) belonging to an object voxel and a background voxel. In other words,
the surface is composed of the faces visible when the object is displayed. This
definition of surface is well-adapted to our framework that is based on standard
discrete planes: discrete (grid) points are not the object voxels but the vertices
of those voxels (called pointels, see Figure 1(b)). Pointels of a surface form a
2-connected set, which is consistent with the use of standard planes.

Using standard planes also induces the connectivity we consider for the object.
Standard planes have a combinatorial structure of 2-dimensional manifolds
[26,27]. Thus, the discrete surface we work on should have the properties of a
2D combinatorial manifold as well, which implies that 2-connectivity has to
be considered for the discrete object. An example of surfels adjacency using
2-connectivity is depicted in Figure 13 (a)-(b).

A decomposition algorithm consists in labelling each pointel of the surface.
Let P be a set of discrete points of the same DPS (same label), and let p be
a carrier plane of P . Then P must fulfil the following conditions:

• the four pointels adjacent to the same surfel belong to a common DPS;
• the projection of P along its principal direction (direction given by the

maximum parameter of p’s normal vector) is a set of 1-connected discrete
points;
• P is homeomorphic to a topological disk.

These conditions ensure that each DPS is a combinatorial 2-manifold with
boundary, and that this boundary is a DPC. Notice that the first condition
implies that some pointels may belong to several DPS (on the DPS bound-
aries).

These conditions are nevertheless not sufficient to ensure that one pointel
is visited only once during a DPS boundary tracking. Such a pointel may
lead to self-crossing polygonal faces, thus a fourth condition may be added:
DPS should not contain surfels connected only by a pointel or not neighbours
according to the 2-connectivity (see Figure 1(c)-(d)).

Figure 13(a) gives an example of a result we get with a decomposition algo-
rithm fulfilling those four conditions (see [28]). Note that the top of the torus is
decomposed into two DPS instead of one, so that each DPS is homeomorphic
to a disk.

Algorithm 1 is applied on each DPS boundary of the surface decomposition.
This results in a set of polygons the standard digitization of which is exactly
the surface pointels of the initial discrete object. Figure 14 presents two results
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(a) (b) (c)

Fig. 13. (a)-(b) Surfels adjacency with 2-connectivity : in (c) the two yellow surfels
are neighbours, whereas they are not in (b); (c) Example of a decomposition result
on a torus (DPS boundaries are depicted).

over a torus and the image named “Al” (used for time comparison results
in Section 4.2): the initial discrete object surface decomposed into DPS is
depicted on the left, and the set of polygons computed is represented on the
right. These pictures show that even if the reconstruction process gives an
exact representation of the object’s surface, the visualization is not satisfactory
since the polygons are not linked together. This is nevertheless a compact
representation of an object that preserves its geometry, and we can even go
further on the compression issue as we see in Section5.3.

(a) (b) (c) (d)

Fig. 14. Results of the vectorisation algorithm over complex objects surfaces.

5.3 Prospective work: lossless compression

Decomposing a discrete surface into DPS and then computing a polygonal
face as the exact representation of the DPS enables to reduce the redundancy
induced by the discrete structure of the data. Indeed, a set of coplanar voxels
is now represented by a single polygon. Thus, a natural application of this
work is 3D discrete objects lossless compression. In this section, we propose
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first thoughts about this problem, but this is still a prospective research.

The problem is to find a compact and exact representation of the polygons
computed by our algorithm. The storage of one polygon only requires the
vertices coordinates. Nevertheless, as we said in Section 4.1, the bound on
the size of the rational fractions defining the vertices coordinates is huge,
and this does not lead to an efficient encoding. To overcome this problem,
one could think of rounding the vertices coordinates in order to store floating
point numbers, but in this case, ensuring the reversibility property, and thus
lossless compression is not possible anymore.

Other encoding should then be proposed and a promising idea is to take
advantage of the following properties of digital planes and digital lines:

• DPS normal vector coordinates are bounded by the size of the DPS;
• digital segment normal vector coordinates are bounded by the digital seg-

ment length;
• standard planes are “nearly” functional: at most two voxels have the same

projection pixel along the main direction of the plane (given by the maxi-
mum of normal vector coordinates).

Thus, a DPS may be encoded in the following way:

(1) store the normal vector coordinates of the DPS;
(2) store an encoding of the DPS boundary projection along the main direc-

tion;
(3) for the first extremity of each edge, store a flag pointing out if the 3D

edge extremity is the upper or the lower voxel (in the case of non bijective
projection).

The second step is the encoding of a 2D digital curve decomposed into digital
straight segments, and some encoding schemes have been proposed to solve
this problem [29].

Roughly speaking, if we denote by np the number of DPS, s the maximum
number of points in a DPS, ne the total number of edges, and l the maximum
length (in voxels) of the edges, the number of bits required to store the surface
of an object in a 2n bounding box would be (without any entropy coding):

N =

DPS normal vectors
︷ ︸︸ ︷

(np × 3× log2 s) +

DPS positions
︷ ︸︸ ︷

(np × (log2 s + log2 n)) +
edge directions

︷ ︸︸ ︷

(ne × 2× log2 l) +

edge positions
︷ ︸︸ ︷

(ne × (log2 l + log2 n)) +
correction

︷︸︸︷
ne
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For example, the data collected for a sphere of radius 25 are the following:
n = 52, np = 363, ne = 2907, s = 119 and l = 12. With these values,
N = 61095 bits, i.e. 7.6 kbytes are required to store the surface of the object
using this method. In comparison, the size of the uncompressed raw file is 144
kbytes, and the file compressed with gzip is about 3 kbytes.

These preliminary results are promising especially because many improve-
ments may be proposed, either to encode the polygons as computed by the al-
gorithm presented in this paper, or modifying the algorithm to obtain a better
encoding (taking advantage of the common boundaries of adjacent polygons
for instance). But this is out of the scope of this paper.

6 Conclusion

In this paper we proposed the first algorithm to compute a planar polygonal
curve from a digital planar curve. The computed polygonal curve is an exact
representation of the digital one and also provides an analytical representation
of a digital planar curve. This algorithm also solves the inverse problem of the
description of a digital plane segment as a discrete polygon made of a face,
edges and vertices.

A study of the theoretical complexity of this algorithm is provided, and a
discussion on practical behaviour concerns is proposed.

Setting an adapted but simple framework for the decomposition of a digital
surface into digital plane segments, we also gave some results on the applica-
tion of this algorithm on the boundary of each DPS of a surface. We get a set
of polygons modelling the discrete surface in a reversible way: the standard
digitization of each polygon is exactly a discrete face of the segmentation.

Future works are related both to theoretical improvements and more practi-
cal applications. As we saw in the last part, a first interesting application and
prospective work concerns 3D discrete objects compression. Few methods ded-
icated to this kind of objects exist, and consequently a lot of work remains to
be done. Another interesting application, that would combine this algorithm
and blurred digital planes, concerns digital surface denoising.

Finally, we saw that our algorithm gives an exact analytical modelling of one
digital plane segment. For visualization and modelling purposes of discrete
surfaces, an important future work is to extend this algorithm in order to
get a consistent geometrical description of a discrete surface as a set of faces,
edges and vertices. This should moreover lead to the construction of a hole
and intersection free polygonal surface while preserving the reversibility prop-
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erty. This problem may be related to the polygonal reconstruction of several
adjacent discrete regions in 2D.
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