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Mikolaj Bojańczyk and Igor Walukiewicz

October, 2006

Abstract: If in a transformation semigroup we assume that the set being
acted upon has a semigroup structure, then the transformation semigroup can
be used to recognize languages of unranked trees. This observation allows us to
examine the relationship connecting languages of unranked trees with standard
algebraic concepts such as aperiodicity, idempotency, commutativity and wreath
product. In particular, we give algebraic characterizations of first-order logic,
chain logic, CTL* and PDL. These do not, however, yield decidability results.

1 Introduction

There is a well-known decision problem in formal language theory:

Decide if a given a regular language of finite binary trees can be de-
fined by a formula of first-order logic with three relations: ancestor,
left and right successor.

If the language is a word language (there is only one successor relation in this
case) the problem is known to be decidable thanks to fundamental results of
Schützenberger [16] and McNaughton and Papert [13]. The problem is also de-
cidable for words when only the successor relation is available [19, 1]. However,
no algorithm is known for the case of tree languages, see [12, 15, 3, 2] for some
results in this direction.

There is a large body of work on problems of the type: decide if a given
regular word language can be defined using such and such a logic [6, 14, 17,
20, 21, 23]. Most of the results have been obtained using algebraic techniques
of semigroup theory. Recently, there has even been some progress for tree lan-
guages [22, 11, 4, 2]. There is, however, a feeling that we still do not have
the right algebraic tools to deal with tree languages. In this paper we propose
an algebraic framework, called unranked tree algebras, and study the notion of
recognizability in this framework. We wanted it to be as close to the word case
as possible to benefit from the rich theory of semigroups. The main result of the
paper serves as an example of this close connection. We show how the notion
of wreath product of transformation semigroups allows to capture different tree
logics.
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Forest algebras are defined for unranked trees, where a node may have more
than two successors, which are ordered. This more general (more general than,
say, binary trees) setting is justified by cleaner definitions, where semigroup
theory can be used more easily.

We begin our discussion of forest algebras with the free forest algebra. Just
as the set of nonempty words is the free semigroup, the free forest algebra is
going to be the set of (nonempty) forests. For finite words, there is one natural
semigroup structure: concatenation of words. For unranked, ordered, finite
forests there are two natural semigroups:

• Horizontal free semigroup. Forests with concatenation.

• Vertical free semigroup. Contexts – forests with a single hole in some
leaf – along with context composition.

The two semigroups are linked by an action of contexts on forests: if θ is a
context and ~t is a forest then θ(~t) is a forest obtained by substituting ~t in the
hole of θ (see Figure 1).

In the case of words, a language of finite words induces a congruence, the
Myhill-Nerode equivalence relation, which has finite index if the subset is regu-
lar. The same concepts apply to forest algebras, except that we get two congru-
ences: one for the vertical semigroup and one for the horizontal semigroup. A
regular language of finite forests can be thus seen as one where both congruences
are of finite index.

An important property of a forest algebra is that it is a special case of a
transformation semigroup. Recall that a transformation semigroup is a semi-
group along with an action over a set. In the forest algebra, the acting semigroup
is the set of contexts, while that set acted upon is the set of forests (which itself
is equipped with a semigroup structure).

There is a well-developed theory of transformation semigroups that is useful
in classifying regular word languages. We hope that this theory might extend
to the case of trees. The point of this paper is to present some preliminary
results in this direction. We show how logical properties of a tree language,
such as being definable in first-order logic, correspond to algebraic properties of
the language’s tree algebra.

Acknowledgments We would like to thank Olivier Carton, Jean-Eric Pin,
Thomas Schwentick, Luc Segoufin, Howard Straubing and Pascal Weil for their
helpful comments.

1.1 Preliminaries

For trees, we use an alphabet with two types of letters: letters A for leaves and
letters B for inner nodes.

Definition 1 Trees and forests over (A,B) are defined as follows:

• Every a ∈ A is a tree (and therefore also a forest);
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• If ~s,~t are forests, then ~s+ ~t is a forest; moreover + is associative.

• If ~s is a forest, then b~s is a tree (and also a forest) for every b ∈ B.

The above definition is peculiar in several respects. Note first that all forests are
nonempty. Second, we use + to denote the (non-commutative) concatenation
of forests. We do this to be consistent with standard semigroup notation.

We denote trees by s, t and u. We denote forests by ~s, ~t and sometimes ~u.
It will be convenient to interpret a tree as a partial function t : N

∗ → A∪B
with a finite domain. Elements of this finite domain are called nodes of t. This
function assigns to each node its label. If x, y are two nodes of t, we write x ≤ y

(x < y) if x is a (proper) prefix of y (i.e x is closer to the root). If x is a maximal
node satisfying x < y, then we call x the parent of y and we call y a successor of
x. (Each node has one parent, but may have many successors.) Two nodes are
siblings if they have the same parent. A leaf is a node without successors. The
subtree of t rooted in the node x, denoted t|x, assigns the label t(x · y) to a node
y. The successor forest of a node is the forest of subtrees rooted in that node’s
successors. We extend the notion of nodes to forests in a natural manner.

An (A,B)-context is an (A ∪ {∗}, B)-forest, where ∗ is a special symbol not
in A. Moreover, ∗ occurs in exactly one leaf, which is called the hole. Moreover,
we require the hole to have a parent (the hole cannot be a root in the forest).
We use letters θ, η to denote contexts. A tree context is one with only a singe
tree. When θ is a context and ~t is a forest, θ~t is the forest obtained from θ by
replacing the hole with ~t (see Figure 1). Similarly we define the composition of
two contexts θ, η – this is the context θ · η that satisfies (θ · η)~t = θ(η~t).

b

a * b

a a

A context θ

c

c

c

A forest ~t

b

a c

c

c b

a a

The result-
ing forest θ~t

Figure 1: Application of context to a forest

1.2 The road not taken

For words, one can use either monoids or semigroups to recognize word lan-
guages. In the first case, the appropriate languages are of the form L ⊆ A∗,
while the second case disallows the empty word, and only languages L ⊆ A+

are considered.
For forests, the number of choices is much greater. Not only do we have two

sorts (forests and contexts) instead of just one (words), but these sorts are also
more complex. We would list here some of the choices that can be made:
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• Is the empty forest a forest? Here, we say no.

• Is the empty context a context? Here, we say no.

• Even if the empty context is not allowed, can the hole be in the root (but
with some nonempty trees as siblings)? Here, we say no.

• Can the hole have siblings? Here, we say yes.

Each combination of answers to the above questions gives rise to an appropriate
definition of forest algebra, as long as the correct axioms are formulated. We
do not lay any claim to the superiority of our choices. The others are just as
viable, but we want to fix one set of definitions for this paper.

1.3 Forest algebras

In this section we formally define a forest algebra. We give some examples and
explore basic properties.

A forest prealgebra (H,V, act) is a pair of semigroups along with an action
act : H×V → H of V on H. We require faithfulness here, i.e. that each element
of V induces a different function on H, in other words: for every two distinct
v, w ∈ V there is some h ∈ H such that act(h, v) 6= act(h,w). In other words,
a forest prealgebra is a transformation semigroup where the set acted upon is a
semigroup. We call V the vertical semigroup and H the horizontal semigroup.
We will denote the semigroup operation of V multiplicatively (v ·w or even vw,
for v, w ∈ V ) and the semigroup operation of H additively (g+ h for g, h ∈ H).
Instead of writing act(v, h), we write vh. Recall that the definition of an action
requires that:

(vw)(h) = v(w(h))

and hence it is unambiguous to write vwh. Most of the time we will omit the act

coordinate from (H,V, act) and write (H,V ), just as we identify a semigroup
with its carrier set.

A morphism between two forest prealgebras (H,V ) and (G,W ) is a pair α
of semigroup morphisms

αH : H → G αV : V →W

that is compatible with the action:

αV (v) αH(h) = αH(vh) .

To simplify notation, we will write α(h) instead of αH(h) and α(v) instead of
αV (v). Hence, the above equation becomes α(v) α(h) = α(vh).

A forest algebra is a forest prealgebra (H,V ) that satisfies the insertion

axioms. These postulate that for each v ∈ V and h ∈ H one can find elements

act l(v, h), actr(v, h), act l(v, h), actr(v, h) ∈ V
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whose actions on H are defined by:

act l(v, h) g = h+ vg

actr(v, h) g = vg + h

act l(v, h) g = v(h+ g)

actr(v, h) g = v(g + h)

for each g ∈ H. Note that these elements are unique by the assumption on
faithfulness. Note also that the insertion axioms are preserved under morphic
images of forest prealgebras.

Example 1 Let H be any semigroup. Let V be the set HH of all transfor-
mations of H into H, with composition as the operation. To obtain a forest
algebra from (H,V ) it suffices to add the action. The action of V on H is just
function application. The insertion axioms are clearly satisfied.

Given two alphabets A,B, we define the free forest algebra over A,B, which
is denoted by (A,B)∆, to be:

• The horizontal semigroup is the set of forests over (A,B).

• The vertical semigroup is the set of contexts over (A,B)

• The action is the substitution of forests in contexts.

Recall that our definition of forests excludes the empty forest, and the hole
cannot be a root in contexts. The following lemma shows that free forest algebra
is indeed free in the sense of universal algebra.

Lemma 1 The free forest algebra (A,B)∆ is a forest algebra. Moreover, for
every forest algebra (H,V ), any functions fA : A → H, fB : B → V can be
uniquely extended to a morphism α : (A,B)∆ → (H,V )

Proof
That (A,B)∆ is a forest algebra can be easily verified.

We now proceed to the second part. Let fA : A → H and fB : B → V

be the appropriate mappings. We first define the morphism over forests. The
definition is by induction on the size of the forest:

α(a) = fA(a)

α(t1 + · · · + tn) = α(t1) + · · · + α(tn)

α(b(t1 + · · · + tn)) = fB(b)α(t1 + · · · + tn) .

We now proceed to define the morphism α for contexts. We start with contexts
of the form b(~t1 + ∗+~t2), i.e. a tree with root b ∈ B which has a hole as one of
its sons. We put:

α(b(~t1 + ∗ + ~t2)) = actr(act l(fB(b), α(~t1)), α(~t2)) .
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For contexts where either ~t1 or ~t2 is empty we just omit the component that is
empty in the definition above. Function α is extended to bigger contexts exactly
in the same way as for forests. Directly from the definition it follows that α
is a unique possible extension of fA and fB to a homomorphism. A relatively
straightforward calculation shows that α is indeed a homomorphism. �

Note 1 The above lemma shows why we consider trees with special labels for
leaves and special labels for inner nodes: otherwise we wouldn’t get the free
forest algebra. Another solution would be to expand the signature with a special
operation forestize : V → H which would make a forest out of a context
(intuitively, by removing the hole). Under suitable axioms for the operation
forestize, we would only need to supply generators for contexts. We chose
however, to keep the forest algebra definition simple, and live with two types
(A,B) of labels.

We now proceed to define languages recognized by forest algebras.

Definition 2 A set L of (A,B)-forests is said to be forest-recognized by a sur-
jective morphism α : (A,B)∆ → (H,V ) if L is the inverse image α−1

1 (G) of
some G ⊆ H. The morphism (α, β) is said to forest-recognize L, the set G is
called the accepting set and L is said to be forest-recognized by (H,V ).

Generally we are interested in the case when (H,V ) is finite; in this case
we say that L is forest-recognizable. We use the term forest-recognizable to
avoid confusion with a different notion, called tree-recognizable, which will be
introduced later on.

Example 2 Consider the set L of forests with an even number of nodes. We
present here a finite forest algebra (H,V ) forest-recognizing L. Both H and V
are {0, 1} with addition modulo 2. The action is also addition, the insertion
axioms are clearly satisfied. The forest-recognizing morphism maps a context
(resp. forest) onto 0 if it has an even number of nodes. The accepting set is {0}.

Example 3 A language L of (A,B)-forests is called label-testable if the mem-
bership ~t ∈ L depends only on the two sets of labels: the set of A-labels of
leaves and the set of B-labels of internal nodes of ~t. The appropriate forest
algebra is defined as follows. Both H and V are the same semigroup: the set
P (A)×P (B) with coordinate-wise union as the operation. The first coordinate
keeps track of the labels in the leaves, while the second coordinate keeps track
of the labels in the inner nodes. This determines the actions, which must also
be coordinate-wise union.
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1.4 Universal algebra viewpoint

Another way to look at a forest algebra is from the point of view of universal
algebra. In this setting, a forest algebra is a two-sorted algebra (with the sorts
being H and V ) along with seven operations: (i) semigroup operations in H

and V , (ii) the action vh of V on H and (iii) the four insertion axioms act l,
actr, act l, actr, each one of the form H × V → V . Forest algebras are defined
equationally by: (i) associativity for the semigroup operations in H and V , (ii)
an equation saying that act is an action, (iii) equations for the insertion axioms.
In this setting, a homomorphism is a morphism.

The universal algebra viewpoint gives us definitions of such concepts as sub-
algebra, cartesian product, free algebra, quotient, morphism. The only problem
in this setting is the requirement on faithfulness which is not preserved by homo-
morphic images and quotients. This implies that every time we take a quotient
we will be forced to check if the result is a faithful algebra.

1.5 Syntactic algebra for forest languages

Our aim now is to establish the concept of a syntactic forest algebra of a forest
language. This is going to be a forest algebra that forest-recognizes the language,
and one that is optimal among those that do. Here we will define “fat” syntactic
algebra. Later we will define a “slim” version which will be adapted to recognize
languages of trees.

Definition 3 We associate with a forest language L two equivalence relations
on the free forest algebra (A,B)∆:

• Two (A,B)-forests ~s, ~t are L-equivalent if for every context θ, either both
or none of the forest θ(~s), θ(~t) belong to L; and additionally we require
that ~t ∈ L iff ~s ∈ L.

• Two (A,B)-contexts θ, η are L-equivalent if for every nonempty forest ~t,
the forests θ(~t) and η(~t) are L-equivalent.

Lemma 2 Both L-equivalence relations are congruences with respect to the
operations of the forest algebra (A,B)∆.

Proof
We first show that L-equivalence for forests is a congruence with respect to
concatenation of forests. We start with concatenation to the right. We show
that if ~s and ~t are L-equivalent, then so are the forests ~s+ ~u and ~t+ ~u, for any
forest ~u. Unraveling the definition of L-equivalence, we must show that for any
tree context θ we have: θ(~s + ~u) ∈ L iff θ(~t + ~u) ∈ L. Let η be the context
obtained from θ by putting ~u to the right of the hole; so θ(~s + ~u) = η(~s) and
similarly for ~t. We get:

θ(~s+ ~u) ∈ L ⇐⇒ η(~s) ∈ L ⇐⇒ η(~t) ∈ L ⇐⇒ θ(~t+ ~u) ∈ L .
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where the middle equivalence follows from L-equivalence of ~s and ~t. The proof
for the concatenation to the left is analogous.

We now proceed to show that L-equivalence for contexts is a congruence
with respect to concatenation. We need to show that if two contexts θ and θ′

are L-equivalent, then so are the contexts θη and θ′η for any context η (and
similarly for the concatenation to the left). We need to show that for every
forest ~t and every context ζ,

ζ(θη(~t)) ∈ L ⇐⇒ ζ(θ′η(~t)) ∈ L .

The above equivalence follows immediately from the L-equivalence of θ and θ′:
it suffices to consider η(~t) as a tree that is plugged into the contexts θ and θ′.

Finally, we need to show that L-equivalence is a congruence with respect to
the action act(θ,~t) = θ(~t). The proof is similar to the ones above. �

Definition 4 The fat syntactic forest algebra for L is the quotient of (A,B)∆

with respect to L-equivalence, where the horizontal semigroup HL consists of
equivalence classes of forests over (A,B), while the vertical semigroup V L con-
sists of equivalence classes of contexts over (A,B). The fat syntactic morphism

αL assigns to every element of (A,B)∆ its equivalence class in (HL, V L).

The above lemma guarantees that the quotient is well defined. This quotient
is faithful (by definition of L-equivalence over contexts) and satisfies the inser-
tion axioms (as a quotient of a forest algebra), hence it is a forest algebra. We
claim that this forest algebra satisfies the properties required from the syntactic
forest algebra of L.

Proposition 5 A language L of (A,B)-forest is recognized by a the fat syn-
tactic morphism αL. Moreover, any morphism β : (A,B)∆ → (H,V ) that
forest-recognizes L can be extended by a morphism γ : (H,V ) → (HL, V L) so
that γ ◦ β = αL.

Proof
The first part follows immediately by taking as an accepting set the set of L-
equivalence classes of all the elements of L. The second statement follows from
the observation that if two (A,B)-forests or contexts have the same image under
β then they are L-equivalent. �

Note that in the the syntactic forest algebra may be infinite. Clearly, if L is
forest-recognized by some finite forest algebra, then its syntactic forest algebra
must be finite by the above proposition.

1.6 Forest algebras and tree languages

Forest algebras give a natural definition of recognizable forest languages (Defi-
nition 2). This is all very fine, but the more studied object is tree languages. In
this section we describe how a forest algebra can be used to recognize a language
of unranked trees.
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Definition 6 Given a tree language L over (A,B) and a letter b ∈ B, the b-
quotient, denoted b−1L, is the set of forests ~t that satisfy b~t ∈ L. A language L
of (A,B)-trees is tree-recognized by a morphism α : (A,B)∆ → (H,V ) if b−1L

is forest-recognized by α for all b ∈ B.

Note that the above definition does not say anything about trees with only
one (root-leaf) node; but these are finitely many and irrelevant most of the
time. In particular, regular languages are closed under adding or removing a
finite number of trees.

Example 4 A tree language of the form: “the root label is b ∈ B” is tree-
recognized by any forest algebra. This because all the quotients c−1L for c ∈ B

are either empty (when c 6= b) or contain all forests (when c = b).

The above definition of recognizability induces a definition of syntactic for-
est algebra for a tree language L. Consider the intersection of all (b−1L)-
equivalences for b ∈ B. This is a congruence on (A,B)∆ as it is an intersection
of congruences. Call this congruence tree-L-equivalence.

Definition 7 The slim syntactic forest algebra for a tree language L, denoted
(HL, VL), is the quotient of (A,B)∆ with respect to tree-L-equivalence. The syn-
tactic morphism αL : (A,B)∆ → (HL, VL) assigns to every element of (A,B)∆

its equivalence class in (HL, VL).

We will often omit qualifier slim and just say syntactic forest algebra. By
contrast we will always refer to fat syntactic forest algebras by their full name.
An immediate corollary of Proposition 5 is the similar result for tree-recognition.

Proposition 8 A language of (A,B)-trees is recognized by the slim syntac-
tic morphism αL. Moreover, any morphism β : (A,B)∆ → (H,V ) that tree-
recognizes L can be extended by a morphism γ : (H,V ) → (HL, V L) so that
γ ◦ β = αL.

Note 2 There is an alternative definition of tree-recognizability. In the alter-
native definition, we say that a tree language L is tree-recognized by a forest
algebra (H,V ) if there is a forest language K forest-recognized by (H,V ) such
that L is the intersection of K with the set of trees. Under this alternative
definition, there is no correct notion of syntactic algebra. For instance, the tree
language “trees whose root label is b” can be tree-recognized by two forest al-
gebras that have no common quotient tree-recognizing this language. Indeed,
these may be forest algebras for two different forest languages that agree on
trees.

Note 3 Yet another alternative definition of tree-recognizability says that L is
tree-recognized iff it is forest-recognized. In this case, the forest-algebra must
keep track of what is a single tree, and what is a forest. This leads to some
pollution in the syntactic forest algebra. For instance, the syntactic algebra of
the language “there is some leaf labeled by a” does not satisfy h+ h = h.
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1.7 Automata over trees

We would like to show that our definition of recognizability is equivalent with
the standard notion of regular tree languages. There are numerous presentations
of automata on finite unranked trees; here we will use one that matches well
our algebraic definitions.

A tree automaton over the pair of alphabets (A,B) is a tuple

A = 〈(Q, ·), A, B, δ : (A→ Q) × (B ×Q→ Q), F ⊆ Q〉

where (Q, ·) is a semigroup; intuitively a set of states with a semigroup structure.
The automaton assigns to every tree t a value tA ∈ Q; that is defined by

induction as follows:

• If t consists of a single leaf labelled a then tA = δ(a);

• otherwise t = b(s1 + · · ·+sn), and we put tA = δ(b, sA1 ·sA2 · · · sAn ); observe
that the multiplication is done in (Q, ·).

A tree t is accepted by A if tA ∈ F .
Actually, the above automata can also accept forest languages. Indeed one

can define ~tA for a forest ~t = t1 + · · ·+ tn as tA1 · · · tAn ; where the multiplication
is done in (Q, ·).

Proposition 9 A tree language is tree-recognized by a finite forest algebra if
an only if it is the language of trees accepted by some tree automaton.

Proof
Take a tree language L tree-recognized by a morphism α : (A,B)∆ → (H,V ).
We show how it can be recognized by an automaton. For each b ∈ B take the
automaton Ab = 〈H,A,B, δ, Fb〉 where H is the horizontal semigroup, Fb ⊆ H

is the accepting set for b−1L, and δ is defined as follows:

δ(a) = α(a) δ(b, h) = act(α(b), h) .

By induction on the size of the forest one can show that ~tA = α(~t). Thus Ab

recognizes the language of forests b−1L. Combining all Ab together it is not
difficult to construct an automaton recognizing L.

For the proof in the other direction suppose that we are given an automaton
A = 〈(Q, ·), A,B, δ, F 〉. We consider a tree algebra (H,V ) where H is (Q, ·) and
V is the function space H → H with the function composition as the operation;
the action is the function application. It is easy to see that (H,V ) is a forest
algebra. Consider the unique homomorphism α : (A,B)∆ → (H,V ) such that:

α(a) = δ(a) α(b) = δ(b) ;

observe that δ(b) is a function from H to H. By induction on the height of the
forest one can show that ~tA = α(~t). In order to recognize b−1L we take all the
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set Fb of all q such that δ(b, q) ∈ F . We have that b−1L = α−1(Fb), i.e, b−1L is
recognized by α with Fb as an accepting set. �

Actually, the above notion of automaton can be refined to a notion of (H,V )
automaton for any forest algebra (H,V ). Such an automaton has a form:

A = 〈H, A, B, δ : (A→ H) × (B → V ), F ⊆ Q〉

thus the only change is that now states are from H and δ(b) is an element of
from V and not a function from Q → Q. We can do this because using the
action act of the forest algebra, each v ∈ V defines a function act(v) : Q→ Q.

It is easy to see that every language accepted by a (H,V ) automaton is
recognized by (H,V ) and vice versa: for every language recognized by (H,V )
there is an automaton accepting it. This equivalence shows the essential dif-
ference between algebras and automata. Algebras do not depend on alphabets,
while alphabets are explicitly stated in the description of an automaton. More
importantly, the structure of vertical semigroup is not visible in automaton: in
automaton we see generators of the vertical semigroup.

One may ask, what would happen if we remove explicit mention of alphabets
in automata. In this case we obtain a pair (H,Z) where Z is just a set and not
a semigroup, but still be have an action of Z on H. For such objects we do
not need to require insertion axioms as these axioms talk about the structure
of the vertical semigroup which is not present here. All the theory could be
developed in this setting but we refrain from doing this because we think that
the structure of the vertical semigroup is important.

2 EF

In this section we show how forest algebras can be used to give a decidable
characterization of a known temporal logic for trees.

2.1 The logic EF

EF is a temporal logic that expresses properties of trees. The name EF is due to
the only temporal operator in the logic — EF — which stands for Exists (some
path) Finally (on this path). Formulas of EF are defined as follows:

• If a is a letter, then a is a formula true in trees whose root label is a.

• EF formulas are closed under boolean connectives.

• If ϕ is an EF formula, then EFϕ is an EF formula true in trees with a
proper subtree satisfying ϕ.

Restricting to proper subtrees in the definition of EF gives us more power,
since the nonproper operator can be defined as ϕ ∨ EFϕ. To be consistent with
the forest algebra definitions, we stay with the distinction between labels A for
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leaves and labels B for inner nodes. This is not really important for EF, since
one can easily verify if a node is an inner node (EFtrue).

In this section, we present three equations and show that a language can be
definable by an EF formula if and only if its syntactic forest algebra satisfies
these equations. In particular, it is decidable if a regular tree language can be
defined in EF.

Theorem 10
A tree language is definable in EF if and only if its slim syntactic forest algebra

satisfies the following equations, called the EF equations:

vh = h+ vh

g + h = h+ g

h+ h = h .

The proof of this theorem is split across the following two subsections.

2.2 Correctness

In this subsection we show that each tree language definable in EF must satisfy
the EF equations.

Assume then that a tree language L is defined by an EF formula ϕ. Given
a forest t1 + · · · + tn, let Iϕ(t1 + · · · + tn) be the set of (not necessarily proper)
subformulas of ϕ that are satisfied in some tree ti. The following lemma follows
by an easy induction on the size of ϕ.

Lemma 3 Two forests have the same values under Iϕ are L-equivalent.

Corollary 11 The last three EF equations are satisfied.

Proof
Using Lemma 3, we can define a forest algebra (H,V ) where H is the set of
possible values of Iϕ and V is a set of functions H− > H that are “induced” by
contexts. This way (H,V ) will satisfy the equations. Using the last lemma it is
easy to recognize L with this algebra. Since the syntactic forest algebra of L is
a morphic image of (H,V ), then it must also satisfy the last three equations. �

2.3 Completeness

In this section we show that if a forest algebra satisfies the three EF equations,
then any tree language tree-recognized by this algebra can be defined in EF. This
is gives the desired result, since the syntactic algebra of L tree-recognizes L.

From now on we fix a forest algebra (H,V ) that tree-recognizes a tree lan-
guage L via a morphism

α : (A,B)∆ → (H,V ) .
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We assume that the forest algebra (H,V ) satisfies the three EF equations. We
will show that L can be defined using an EF formula.

We first show that the EF equations imply a fourth one:

w(vw)ω = (vw)ω .

(This is L-triviality of the context semigroup). We need to explain the ω nota-
tion, though. In each finite semigroup S, there is a power n ∈ N such that all
elements s ∈ S satisfy sn = snsn. We refer to this power as ω, and use it in equa-
tions. In particular, every finite semigroup satisfies the equation: sω = sωsω.
The reader is advised to substitute “a very large power” for the term ω when
reading the equations.

Lemma 4 For each v, w ∈ V , we have w(vw)ω = (vw)ω

Proof
First we show that the EF equations imply aperiodicity for the context semi-
group:

vω = vvω .

Indeed, by applying the first equation repeatedly to vωvω, we obtain:

vω = vωvω = vω + vvω + vvvω + · · · + vωvω

Likewise for vvωvω:

vvω = vvωvω = vvω + vvvω + vvvvω + · · · + vωvω + vvωvω

If we cancel out vvωvω = vvω, and use idempotency and commutativity, we
obtain the desired equality vω = vvω.

We now proceed to show the statement of the lemma.

w(vw)ω = (vw)ω + w(vw)ω = vw(vw)ω + w(vw)ω = vw(vw)ω = (vw)ω .

In the first and third equation we use vh = h + vh, while in the second and
fourth we use aperiodicity. �

Note 4 The reader may be alarmed by this lemma. For words, the analogous
equation would be u(vw)ω = uw(vw)ω; that is, the left and right side are equal
in any nonempty context u. The reason why we can loose the nonempty context
u in trees and still have a valid equation is the peculiarity of our definition of
tree-recognizability: the syntactic forest algebra of a tree language can only
distinguish forests by placing them in nonempty contexts.

The main idea of the proof is to do an induction with respect to what forests
can be found inside other forests. Given h, g ∈ H, we write h ≤ g if h = g or
there is some context u ∈ V such that g = uh. We write h ∼ g if ≤ holds both
ways.
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Lemma 5 If g ≤ h then g + h = h.

Proof
If g = h then we use idempotency. If g 6= h we use the second EF equation. �

Lemma 6 If g ∼ h then g = h. In particular, ≤ is a partial order.

Proof
Assume that g 6= h. If g ∼ h then there are contexts v, w such that h = wg and
g = vh. Iterating this process ω-times we obtain

h = wvh = (wv)ωh

But then, by applying Lemma 4, we get

h = (wv)ωh = w(vw)ωh = g .

�

The typeset of a forest t1 + · · ·+ tn is defined to be the set of values α(s) for
(not necessarily proper) subtrees of t1, . . . , tn.

Lemma 7 If the typesets of forests ~t, ~s have the same maximal elements (with
respect to ≤) then α(~t) = α(~s).

Proof
Let ~t = t1 + . . . + tn. Note that each maximal element in the typeset of t is
represented by one of the trees ti, since bigger trees have bigger values α(s). If
for some i, j we have α(ti) ≤ α(tj), we can use commutativity and Lemma 5 to
remove tj . This way we make sure that only maximal values are represented in
t1, . . . , tm. Then using equations 3 and 4 we can make sure that each element
is represented exactly once. If we apply the same transformation to ~s, we get
the desired result. �

The following proposition is the main induction in the completeness proof:

Proposition 12 For each h, g ∈ H, there are EF formulas ϕ<h
g and ϕh where

for each tree t, we have

• t |= ϕ<h
g iff α(t) = g and all proper subtrees s of t satisfy α(s) < h.

• t |= ϕh iff α(t) = h.

Before we proceed with the proof of this proposition, we show how it concludes
the completeness claim. Indeed, once we have a formula ϕh for each h ∈ H,
we can easily write an EF formula that describes the language L. For trees
with a single node, we write separate formulas (EF can detect that a tree has
only one node). If a tree is of the form b~t, then we need to verify if ~t belongs
to the quotient b−1L. By assumption on tree-recognizability, this quotient is
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recognized by the morphism α. By Lemma 7, the value α(~t) depends only on
the typeset of ~t. Since the modality EF looks at proper subtrees, we can easily
describe the typeset of the successor forest ~t with an EF formula.

Proof (of Proposition 12)
The proof is by induction on the depth of h in the order ≤, i.e. number of f
satisfying f < h.

Consider first the base case, when h is minimal for ≤. In this case the
formulas ϕ<h

g are all vacuous, the only interesting one is ϕh. How can a tree
t satisfy α(t) = h? First of all, all leaves need to have labels a ∈ A satisfying
α(a) = h; this can be easily tested in EF. Second, all internal nodes need to
have labels b ∈ B satisfying α(b)h = h; this can also be tested in EF. These
conditions are clearly necessary, but thanks to idempotency h+h = h, they are
also sufficient.

We now proceed with the induction step. We take some h ∈ H and assume
that the proposition is true for all f < h. The formula ϕ<h

g is constructed by
using Lemma 7. This formula is a disjunction of statements of the form

The typeset of the successor forest is G and the root label is b

over all possible b ∈ B and G ⊆ {f : f < h} such α(b~t) = g holds for some
forest t whose typeset is G. Since only f < h are involved in G, saying that the
typeset is G can be done thanks to the induction assumption.

We now proceed to define the formula ϕh. The general idea is that h must
appear somewhere for the first time (which can be detected by ϕ<h

h ), and then
it must be preserved up until the root. We define ϕh as the conjunction of the
following three properties:

1. At least one (not necessarily proper) subtree satisfies ϕ<h
h .

2. Every node with a proper subtree satisfying ϕ<h
h has a label b ∈ B that

satisfies α(b)h = h.

3. For each f > h, no (not necessarily proper) subtree satisfies ϕ<h
f .

We now prove a tree t satisfies the above three properties if and only if α(t) = h.
We prove both implications separately:

• Left to right. If t satisfies the first property, than α(t) ≥ h. Assume then
that α(t) > h. We will show that a contradiction follows. Let

s = b(s1 + . . .+ sn)

be a minimal subtree of t with α(s) > h. By minimality of s, we have
α(si) ≤ h for all i = 1, . . . , n. If all si satisfy α(si) < h, then ϕ<h

α(s) must

hold in s, a contradiction with the third conjunct of ϕh. Otherwise some
si satisfies α(si) = h. But then α(s1 + · · ·+ si) = α(si) holds by repeated
application of Lemma 5. In particular we obtain a contradiction with the
second conjunct of ϕh.
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• Right to left. The first and third conjuncts are obvious. The second
follows from a reasoning similar to the one above.

�

3 Wreath products of forest algebras

The goal of this section is to apply wreath products to forest algebras. We
show that wreath product corresponds to composition of formulas over trees.
Theorem 16 is similar to results of Zoltan Ésik and Szabolcs Iván [8, 7, 9, 10],
which consider ranked trees and cascade products.

3.1 Wreath product

In this section we define the wreath product of two tree algebras. We use the
standard definition of wreath product of transformation semigroups and apply
it to the special case of tree algebras.

Definition 13 (Wreath Product) Let (H,V ) and (G,W ) be two forest al-
gebras. The wreath product (G,W )◦ (H,V ) is the pair (I, U) defined as follows.
The horizontal semigroup I is the product semigroup H × G. The vertical
semigroup U is V G ×W , with multiplication defined:

(ψ,w) ·U (ψ′, w′) = (ψ′′, w ·W w′) where ψ′′(g) = ψ(w(g)) ·V ψ′(g)

The action of U on I is defined as follows:

(ψ,w)(h, g) =(ψ(g)h,wg)

for (ψ,w) ∈ V G ×W , (h, g) ∈ H ×G .

Note that it is not yet clear if (I, U) is a forest algebra; it may not satisfy some
of the requirements (such as faithfulness and the insertion axioms). We will
show this in Lemma 8.

The definition above is the standard definition of wreath product of two
transformation semigroups. We will try to give the reader some intuition about
this construction. The idea is that there are two layers of the forest algebra: one
– (G,W ) – works on the tree first, and then lets the second layer — (H,V ) —
read the output of the first. In the vertical semigroup of the wreath product, this
is encoded on the two coordinates. The forest algebra (I, U) works “business
as usual” on the second coordinate (this choice of coordinates is traditional).
On the first coordinate, there is a function ψ that waits for the result g of the
first layer, and after receiving this result returns the appropriate “second level”
vertical transformation ψ(g) ∈ V . We will expand on this intuition in the next
section.

Lemma 8 The wreath product of two forest algebras is a forest algebra.
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Proof
It is known that the wreath product of two transition semigroups is a transition
semigroup. Therefore, the wreath product of two forest algebras is a transition
semigroup. It is also obvious that the first coordinate of the wreath product,
H ×G is a semigroup. It remains to verify the insertion axioms.

Let then (ψ,w) be an element of the vertical semigroup U = V G ×W and
let (h, g) be an element of the horizontal semigroup H ×G. We only verify one
of the insertion axioms: act l; the other three are done symmetrically. We need
to show that there is an element

act l((ψ,w), (h, g)) ∈ U = V G ×W

whose action on I = H ×G is defined by:

act l((ψ,w), (h, g))(h′, g′) = (ψ,w)(h, g) + (h′, g′) . (1)

We define

act l((ψ,w), (h, g)) = (ϕ, act l(w, g)) ,

where ϕ : G→ V is the mapping

g′ 7→ act l(ψ(g′), h) .

In the above definitions, act l(w, g) is obtained from the insertion axioms in
(G,W ) and act l(ψ(g′), h) is obtained from the insertion axioms in (H,V ).

We now verify that (1) is indeed satisfied. If we unravel the definition of the
left-hand side, we obtain:

(ϕ(g′)h′, act l(w, g)g′) .

Using the insertion axiom in (G,W ) on the second coordinate, this becomes

(ϕ(g′)h′, g′ + wg) .

Unraveling the definition of ϕ, this becomes

(act l(ψ(g′), h)h′, g + wg′) .

Using the insertion axiom in (H,V ) on the first coordinate, this becomes

(h+ ψ(g′)h′, g + wg′) = (h, g) + (ψ(g′)h′, wg′) = (h, g) + (ψ,w)(h′, g′) ,

which completes the proof of (1). �
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3.2 Evaluating the wreath product

In this section we show how to decompose a morphism:

α : (A,B)∆ → (H,V ) ◦ (G,W )

in terms of a relabeling and morphisms to the components. This will allow us
later to show the connections between wreath product and formula composition
on one side and cascade product of automata on the other side.

Recall that the carrier of (H,V ) ◦ (G,W ) is (H × G,V G ×W ). Thus the
morphism α can be decomposed into two functions:

f :(A,B)∆ → (H,V G)

γ :(A,B)∆ → (G,W )

with the property that

for every forest ~t: α(~t) = (f(~t), γ(~t)) ∈ H ×G ; (2)

and similarly for contexts. To read the equation as above, recall our convention
of using the same symbol for two components of a morphism: so f(~t) ∈ H if ~t is a
forest, but f(v) ∈ V G if v is a context. From the definition of the wreath product
it follows that γ is a morphism, but f need not be one. We can at least show
that f preserves horizontal composition, i.e. f(t1+· · ·+tn) = f(t1)+· · ·+f(tn).
Indeed:

(h, g) = α(t1 + · · · + tn) = α(t1) + · · · + α(tn) =

(h1, g1) + · · · + (hn, gn) = (h1 + · · · + hn, g1 + · · · + gn)

which allows us to conclude as h = f(t1+· · ·+tn) and hi = f(ti) for i = 1, . . . , n.
We are now going to show how to describe f in terms of morphisms and

relabellings. Consider a morphism β : (A,B ×G)∆ → (H,V ) defined by

β(a) = f(a) β(b, g) = f(b)(g) (3)

In order to apply β we need a tree over the alphabet (A,B × G). This can be
produced using the morphism γ. Given a tree t over (A,B), let labγ(t) be a tree
over (A,B × G) whose every internal node v is labeled by (b, γ(t ↓v)); where b
is the label in the node v and t↓v is the forest of trees rooted in sons of v.

The following proposition describes α in terms of γ, β and the relabelling.

Lemma 9 For every forest ~t over the alphabet (A,B):

α(~t) = (β(labγ(~t)), γ(~t)).

Proof
From the equation (2) we have equality for the second component. Hence it
remains to show that f(~t) = β(labγ(~t)). The proof proceeds by induction on
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the size of ~t. If ~t consists of one leaf, the equality follows immediately from the
definitions. If ~t is a forest for a form t1 + · · ·+ tn then the equation follows from
the preservation of the horizontal composition by β, labγ and f .

The last case is when we have a tree t = b(~s). Denote g = γ(~s). We have:

β(labγ(t)) = β(labγ(b(~s)))

= β(b, g)(β(labγ(~s)))

= (f(b)(g))(β(labγ(~s)))

= (f(b)(g))(f(~s))

where the second equation follows from the definition of the labeling, the third
from the definition of β and the forth form the induction hypothesis. Let us
now examine the other hand side

α(b(~s)) = α(b)α(~s)

=
(

f(b), γ(b))(f(~s), γ(~s)
)

=
(

(f(b)(g))f(~s), γ(b)γ(~s)
)

The second equation follows from the definition of f and γ and the third from the
definition of action in the wreath product. We are done as the first component
of the right-hand side is equal to β(labγ(t)). �

4 Wreath product and formula composition

In this section we show that wreath product is the same as composition of
formulas. We want to have as general as possible a concept of formulas, so we
simply use languages. Boolean operations apply just as well to languages as to
formulas, so this is not a problem. However, we need a concept of composition
applied to languages.

4.1 An abstract view of formula composition

Let L1, . . . , Ln be languages over (A,C) and let t be a tree over (A,C). We

t[b1 := L1, . . . , bn := Ln]

to be the fores over (A, {b1, . . . , bn}) obtained from t by relabeling a node v with
the label bi if the subtree t|v belongs to Li. Since the Li may not necessarily be
pairwise disjoint, we use the label corresponding to the first Li that is true. If
none of the languages apply, we use the last label bn (and therefore the actual
language Ln is irrelevant).

This operation can be extended to languages. If L is a language over
(A, {b1, . . . , bn}) and L1, . . . , Ln are as above, then the language composition

is the following set of trees over (A,C):

L[b1 := L1, . . . , bn := Ln] = {t : t[b1 := L1, . . . , bn := Ln] ∈ L} .
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Example 5 Let L1 be the following language over ({a}, {b, c}): “some inner
node has label b and the root label is c”. Let L2 be the complement of L1. Let
t be some tree over ({a}, {b, c}). In the tree

t[b1 := L1, b2 := L2] ,

an inner node x is labeled by b1 if and only if in t, the node x had label c and a
descendant y ≥ x with label b. (Note that the language L2 is irrelevant, so we
could have taken L2 = ∅). In particular, if we set L to be the language: “some
inner node has label b1”, then the composition

L[b1 := L1, b2 := L2]

defines the same language as the EF formula EF(c ∧ EFb).

Definition 14 Given a class of languages L, we denote by 〈L〉 the smallest
class of languages that contains L and is closed under boolean operations and
language composition. In this case, L is called a base of the language class 〈L〉.
(There may be several bases.)

Definition 15 Given a class of forest algebras V, we denote by 〈V〉 the smallest
class of forest algebras that contains V and is closed under wreath product.

Note 5 In the above definition of 〈V〉, one might expect a requirement for
closure under cartesian products, to match closure of 〈L〉 under boolean opera-
tions. Later on we will see that this is redundant, since the wreath product can
simulate cartesian product.

Example 6 Let L be the class of languages of the form

“some non-root node has label a” “the root label is a”

for all alphabets (A,B) and all a ∈ A ∪B. In this case, 〈L〉 is exactly the class
of languages definable in EF.

Note 6 We would like to note here that our abstract definition of languages
as formulas is restrictive in several ways. A language can be seen as a type of
formula ϕ(x) that takes a single variable x (a node) and verifies if the subtree
of this node x satisfies the formula ϕ. In particular, there is no clear way of
modeling multiple free variables in our approach. Moreover, the value of ϕ(x)
depends only on the descendants of x, and not on its ancestors.

4.2 Wreath product is composition

The following theorem shows that wreath product is the same as language com-
position. It is formulated in terms of tree-recognition. Let us remark that
anologous result for frest recognition would require some additional hypothesis
on L.
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Theorem 16
Let L be a class of languages, and let V be a class of forest algebras. If L is

exactly the class of languages tree-recognized by V, then 〈L〉 is exactly the class

of languages tree-recognized by 〈V〉.

We show the two inclusions in the following Lemmas 10 and 11.

Lemma 10 If every language tree recognizable by V belongs to L, then every
language tree recognizable by 〈V〉 is belongs to 〈L〉.

Proof
Take α : (A,B)∆ → (I, U), with (I, U) ∈ 〈V〉. We need to show that any
language tree recognized by α belongs to 〈L〉.

If (I, U) belongs to V then we are done. The other possible case is that
(I, U) = (H,V ) ◦ (G,W ) and that the lemma is true for the two latter algebras.
By definition of recognition, for each b ∈ B there is Fb ⊆ I with b−1L =
α−1(Fb). We will produce for each (h, g) ∈ H × G a language L(h,g) ∈ 〈L〉

containing precisely trees b(~t) with α(~t) = (h, g); i.e., trees such that the forest
~t of descendants of the root evaluates to (h, g). Having this we will be able to
conclude by taking the union of all languages of the form Lb ∧ L(h,g) that are
included in L; where Lb denotes the set of trees with the root labelled by b.
Observe that Lb is in 〈L〉 as it is tree-recognizable by any forest algebra (cf.
Example 4).

Let us decompose α into f(A,B)∆ → (H,V G) and γ : (A,B)∆ → (G,W )
as it is was done in equation (2). We will use the characterisation given by
Lemma 9 which says that α(t) = (β(labγ(t)), γ(t)) ∈ H ×G; where β is defined
by equation (3) and labγ is as described just below this equation.

First, as γ is a morphism, by induction assumption for each g ∈ G there is
a language Lg ∈ 〈L〉 consisting of those trees b(t) for which γ(t) = g. We can
also use the induction assumption for β : (A,B × G)∆ → (H,V ). This gives a
for every h ∈ H a language Lh of trees b(t) where β(t) = h.

We claim that the desired language L(h,g) is L′
h ∩ Lg where

L′
h = Lh[(b1, g1) := Lb1 ∩ Lg1

, . . . , (bk, gl) := Lbk
∩ Lgl

] .

Indeed, for a tree t over (A,B), the label of a node x of labγ(t) is (b, g′) iff x

is labelled by b and the forest of the trees below x satisfies g′. So t is in L′
h iff

labγ(t) is in Lh. �

Lemma 11 If every language in L is tree-recognized by V, then every language
in 〈L〉 is tree-recognized by 〈V〉.

Proof
The proof is by induction on the number of times boolean operations and lan-
guage compositions are applied. The induction base follows immediately from
the assumptions on L and V.

The part for boolean operations follows from the following simple claim:
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Claim 1 Any language tree-recognized by (H,V ) × (G,W ) is tree-recognized
by (H,V ) ◦ (G,W ).

Proof
Let L be a language recognized by a morphism

α : (A,B)∆ → (H,V ) × (G,W ) .

We need to define a recognizing morphism

β : (A,B)∆ → (H,V ) ◦ (G,W ) .

Over forests, we can make α and β identical, since the horizontal components in
both forest algebras are the same. Let then θ be a context, with α(θ) = (v, w).
We define

β(θ) = (g 7→ v, w) ,

where the first coordinate is the constant function. One can easily verify that
β is indeed a morphism. �

Let then L1, . . . , Ln ∈ 〈L〉 be languages over (A,C) and let L ∈ 〈L〉 be a
language over (A, {b1, . . . , bn}). We need to show that the language

K := L[b1 := L1, . . . , bn := Ln]

is tree-recognized by a forest algebra in 〈V〉.
By induction assumption we have forest algebras

(H,V ), (H1, V1), . . . , (Hn, Vn) ∈ 〈V〉

and morphisms

α : (A, {b1, . . . , bn})
∆ → (H,V ) αi : (A,C)∆ → (Hi, Vi)

that tree-recognize L and the languages Li. We need to find a forest algebra in
〈V〉 that tree-recognizes the language composition.

In the first step we compose all the (Hi, Vi) into one forest algebra. This is
because the cartesian product

(H1, V1) × · · · × (Hn, Vn)

simultaneously tree-recognizes all the Li. Therefore we can use the claim to
assume without loss of generality that all the languages Li are recognized by
the same morphism

β : (A,C)∆ → (G,W ) ∈ 〈V〉 .

(Although the morphism is the same for all languages L1, . . . , Ln, the accepting
sets are going to be different.)
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We now claim that the wreath product (H,V ) ◦ (G,W ) tree-recognizes the
language composition. We need to define the recognizing morphism

γ : (A,C)∆ → (H,V ) ◦ (G,W )

and the accepting sets. The morphism will satisfy the following property:

γ(t) = (α(t[b1 := L1, . . . , bn := Ln]), β(t)) (4)

We define the morphism only for the generators A ∪ B. Recall that the
wreath product is of the form

(H ×G,V G ×W )

For the leaf generators a ∈ A, the goal (4) leaves us no choice:

γ(a) = (α(a), β(a)) .

For an inner node generator c ∈ C, we need to provide a pair

ψ : G→ V , w ∈W .

Over the second coordinate, we have no choice: w must be β(c). This ensures
that (4) holds over the second coordinate. We now proceed to define the result of
ψ over an element g ∈ G. Since all the languages L1, . . . , Ln are tree-recognized
by β, then the label c along with a value g ∈ G uniquely determines which of
the languages Li contain a tree c~s satisfying β(~s) = g. Therefore, the label c
and the value g ∈ G uniquely determine the root label of a tree

t[b1 := L1, . . . , bn := Ln]

where the root label of t is c and the successor forest of t evaluates to g under
β. If bc,g ∈ {b1, . . . , bn} is this uniquely determined label (depending on c and
g), then the function ψ assigns to g ∈ G the value α(bc,g) ∈ V .

Using the values defined above, one can verify by induction on the size of
the tree t that the property (4) is satisfied. �

5 Characterizing logics

In this section, we use Theorem 16 to show an algebraic characterization of the
temporal logics CTL∗ and PDL.

5.1 The characterization

In this section we state the main result of Section 5, Theorem 17. The point of
this theorem is to provide a base for four tree logics: PDL, CTL∗ , chain logic
and first-order logic.

Before stating the theorem, we need to define the bases, then we state the
theorem. A more extensive explanation of the bases can be found in Sections 5.2
and 5.3. Consider the following three classes of forest algebras:

23



• Let V be the class of forest algebras that satisfy the equations:

h+ h = h for h ∈ H ,

h+ g = g + h for g, h ∈ H ,

v(h+ g) = vh+ vg for v ∈ V, g, h ∈ H .

• Let Vap be the class of forest algebras in V that additionally satisfy:

vω = vωv for v ∈ V .

• Let W be the class of forest algebras that satisfy

hω + h = hω for h ∈ H ,

h+ g = g + h for g, h ∈ H ,

vh = vg for v ∈ V, g, h ∈ H .

We do not define the logics involved in the theorem here, for these the reader
is referred to Theorem 22 for one possible definition:

Theorem 17
• PDL is the class of languages tree-recognizable by 〈V〉.

• CTL∗ is the class of languages tree-recognizable by 〈Vap〉.

• Chain logic is the class of languages tree-recognizable by 〈V ∪ W〉.

• First-order logic is the class of languages tree-recognizable by 〈Vap ∪ W〉.

5.2 Path languages

In this section we describe the classes V and Vap. We show that they correspond
to languages that only look at the set of paths in a tree.

A path in an (A,B)-tree t is a word

t(ǫ) t(v0) t(v0v1) . . . t(v0v1 . . . vn) ∈ B∗(A+ ǫ)

obtained by reading all the labels leading to some node v0 . . . vn. If vn is a
leaf, then the path is called maximal. A language L of unranked trees is called
path-testable if membership t ∈ L depends only on the set of maximal paths in
the tree t.

The following definition provides a link between word languages and tree
languages:

Definition 18 Let K ⊆ B∗A be a word language. We define EK to be the set
of trees t over (A,B) where some maximal path belongs to K.

Proposition 19 For a regular tree language L, the following three conditions
are equivalent:
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1. The language L is path-testable.

2. The slim syntactic forest algebra of L belongs to V.

3. L is definable by a boolean combination of formulas of the form EK.

Proof
The implication from 3 to 1 is obvious.

We begin with the implication from 1 to 2. We show that the syntactic
algebra of a path-testable language must satisfy the equations in the definition
of V. The first two equations are obvious, we only consider the last one. We
need to show that for any forests s, t and any context, the following forests are
L-equivalent:

θ(~s+ ~t) θ~s+ θ~t .

This is quite simple, since both sides of the equation have the same set of paths.
However, it is important that we are only interested in the set of paths. Indeed,
if the hole in the context θ has siblings, then there are more paths in the right-
hand side of the equation than in the left-hand side.

Finally, we show the implication from 2 to 3. Assume that L is tree-
recognized by a morphism

α : (A,B)∆ → (H,V )

and that (H,V ) satisfies the three equations in the definition of V. As there
are only finitely many trees with a root in A we will simply consider only trees
from L with root label in B. Unraveling the definition of tree-recognizability,
for each b ∈ B there is a set Fb ⊆ H such that

b~t ∈ L iff α(~t) ∈ Fb .

For each h ∈ H, let

Kh = {b1 · · · bna ∈ B∗A : α(b1 · · · bna) = h} .

We will show that

L =
⋃

b∈B,h1+···+hn∈Fb

(

⋂

h∈{h1,...,hn}

E(bKh) ∩
⋂

h6∈{h1,...,hn}

¬E(bKh)
)

. (5)

Note that the above expression is actually finite, since there are only finitely
many possible nonequivalent expressions within the parentheses. Moreover, one
can easily verify that each of the word languages Kh is regular, as long as (H,V )
is finite.

Let us begin by establishing the right-to-left inclusion in (5). Consider a tree
b~t that satisfies the formula on the right-hand side for some fixed h1 + · · ·+ hn:

b~t ∈
(

⋂

h∈{h1,...,hn}

E(bKh) ∩
⋂

h6∈{h1,...,hn}

¬E(bKh)
)

. (6)
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Consider the transformation, which replaces a subtree of the form b(~s+~t) with a
forest of the form b~s+b~t. This transformation preserves (6), and it also preserves
images under α by the third equation of V. If we apply this transformation
repeatedly to the forest ~t, we obtain a forest t1 + · · · + tm, where in each ti all
inner nodes have degree one. Since t1 + · · · + tm satisfies (6), we must have

{α(t1), . . . , α(tm)} = {h1, . . . , hn} .

by definition of the languages Kh. By using the first two equations defining V,
we obtain

α(t1 + · · · + tm) = h1 + · · · + hn ∈ Fb .

The result then follows, since the left-had side is the same as α(~t), since the
transformation preserved images under α.

The left-to-right inclusion in (5) follows from a similar argument (in fact,
the reasoning above can be reversed). �

Here we just state an analogous description of Vap:

Proposition 20 For a regular tree language L, the following two conditions
are equivalent:

1. The slim-syntactic forest algebra of L belongs to Vap.

2. L is definable by a boolean combination of formulas of the form EK, where
each word language K is definable in first-order logic.

Proof
The proof is the same as in Proposition 19. We obtain that the syntactic semi-
group of each word language Kh satisfies sω = ssω. We apply Schützenberger’s
Theorem to get first-order definability. �

Note 7 A tree language L is truly path-testable if membership t ∈ L only de-
pends on the sequence of maximal paths in the tree (ordered from left to right
with respect to the lexicographical ordering on leaves). For instance, the lan-
guage “the leftmost leaf is a” is truly path-testable. One can find two languages
L,K with the same syntactic forest algebra, but where L is truly path-testable
but K is not. In particular, being truly path-testable cannot be judged based
solely on the syntactic forest algebra.

5.3 Jellyfish algebras

In this section we describe the expressive power of forest algebras in the class W.
The essential idea is that we can only look at the labels in the successors of the
root; these can be counted up to a finite threshold.

For k ∈ N and b ∈ B, a formula E
k
Xb is true in those trees c(t1 + · · · tn)

where at least k of the trees t1, · · · , tn have the root label b. (The formula E
k
Xb

does not care about the root label c.)
The following rather obvious proposition is given without proof:
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Proposition 21 For a regular tree language L over (A,B), the following two
conditions are equivalent:

1. The slim-syntactic forest algebra of L belongs to W.

2. L is definable by a boolean combination of formulas of the forms E
k
Xb

and “the root label is a”; where b ∈ B and a ∈ A ∪B.

5.4 A wreath product characterization

In this section we complete the proof of Theorem 17. To avoid four separate
proofs, we define a temporal logic ETL. The point of this logic is to give a
uniform framework for defining the four logics involved in Theorem 17. We
then use Theorem 16 to characterize the class of languages definable in ETL
and its various fragments.

Formulas of ETL over an alphabet (A,B) for are defined as follows.

• “The root label is a” is a formula, for any label a ∈ A ∪B.

• Boolean combinations of ETL formulas are ETL formulas.

• If ϕ is an ETL formula and k ∈ N, then E
k
Xφ is a formula. This formula

is satisfied in a tree b(t1 + · · ·+ tn) where at least k of the trees t1, . . . , tn
satisfy ϕ.

• If Φ is a finite set of ETL formulas and L ⊆ Φ∗ is a regular word language,
then EL is a ETL formula. This formula is true in a tree t if there exists
a maximal path x1 . . . xn and some word ϕ1 · · ·ϕn ∈ L such for all i =
1, . . . , n the subtree t|xi

satisfies the formula ϕi.

Example 7 The language “some a-labelled leaf is at even depth” is definable
by the PDL formula E(true true)∗a.

The following theorem shows that ETL contains all logics from Theorem 17:

Theorem 22
The following can be found as fragments of ETL:

• Chain logic: these are exactly languages definable in ETL.

• First-order logic: these are exactly languages definable in ETL, where only

first-order definable word languages L are allowed for EL.

• PDL: these are exactly languages definable in ETL, where the operator

E
k
Xφ is not allowed.

• CTL∗ : these are exactly languages definable in ETL, where the operator

E
k
Xφ is not allowed and only first-order definable word languages L are

allowed for EL.
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The last two statements are more or less the same as the definitions of PDL
and CTL∗ . The first two characterisations are also known, we refer the reader
to [5]. Theorem 16 allows to deduce the following corollary that gives the proof
of Theorem 17:

Corollary 23 Let L,Lap and K be the language classes from Propositions 19,
20 and 21.

• Chain logic is exactly 〈L ∪ K〉.

• First-order logic is exactly 〈Lap ∪ K〉.

• PDL is exactly 〈L〉.

• CTL∗ is exactly 〈Lap〉.

6 Further work

We have presented an algebraic characterization of regular languages of finite
trees. We have shown pertinence of this approach by characterizing several
known logics. Unquestionably, there remains a number of basic questions to be
answered.

This work is motivated by decidability problems for tree logics. As men-
tioned in the introduction, surprisingly little is known about them. We hope
that this paper represents an advance, if only by making more explicit the alge-
braic questions that are behind these problems. The characterizations we have
presented make it clear that a theory of wreath product decompositions of tree
algebras would be very useful.

Wherever there is an algebraic structure for recognizing languages, there is
an Eilenberg theorem. It would be interesting to study varieties of tree alge-
bras. What classes of tree algebras can be defined using equations? What are
the appropriate implicit operations – like the ω power – that can be used in the
equations? A related topic concerns C-varieties [18]. This is a notion from semi-
group theory, which — among others — does away with the tedious distinction
between semigroup and monoid varieties. Is there a C-variety of tree algebras?

There are of course classes of tree languages — perhaps even more so in trees
than words — that are not closed under boolean operations like, for instance,
languages defined by deterministic top down automata. In the case of words,
ordered semigroups extend the algebraic approach to such classes. It would be
interesting to develop a similar concept of ordered tree algebras.

The logics considered in this paper do not permit to talk about the order
on siblings in a tree. It would be worth to find the correct equations for logics
with the order relation on siblings.

Finally, it is of course interesting to look at other kinds of trees. One can
ask what is the right concept of tree algebras for languages of infinite trees. It
is also not clear how to cope with trees of bounded branching.
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[20] D. Thérien and T. Wilke. Temporal logic and semidirect products: An ef-
fective characterization of the Until hierarchy. In Foundations of Computer

Science, pages 256–263, 1996.
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