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Amplitude-modulated acoustic radiation force experienced
by elastic and viscoelastic spherical shells in progressive waves

F.G. Mitri a,*, Z.E.A. Fellah b

a Mayo Clinic College of Medicine, Department of Physiology and Biomedical Engineering, Ultrasound Research Laboratory,

200 First Street SW, Rochester MN 55905, USA
b Laboratoire de Mécanique et d’Acoustique, CNRS-UPR 7051, 31 Chemin Joseph Aiguier, Marseille 13009, France

The dynamic acoustic radiation force resulting from a dual-frequency beam incident on spherical shells immersed in an inviscid fluid is
examined theoretically in relation to their thickness and the contents of their interior hollow regions. The theory is modified to include a
hysteresis type of absorption inside the shells’ material. The results of numerical calculations are presented for stainless steel and absorb-
ing lucite (PolyMethyMethacrylAte) shells with the hollow region filled with water or air. Significant differences occur when the interior
fluid inside the hollow region is changed from water to air. It is shown that the dynamic radiation force function Yd deviates from the 
static radiation force function Yp when the modulation size parameter dx = jx2 � x1j (x1 = k1a, x2 = k2a, k1 and k2 are the wave vectors of 
the incident ultrasound waves, and a is the outer radius of the shell) starts to exceed the width of the resonance peaks in the Yp curves.

Keywords: Acoustic scattering; Amplitude-modulated radiation force; Nonlinear acoustics

1. Introduction

The acoustic radiation force is a phenomenon associated
with the propagation of acoustic waves from one medium
to another [1] as a result of nonlinear (second-order) effects.
It is caused by a transfer of momentum from the wave to
the medium, arising either from absorption or reflection
of the wave in or at the second medium. This momentum
transfer results in the application of a force in the direction
of wave propagation and in another transverse to it [2]. The
magnitude of this force is dependent upon both the med-
ium properties and the acoustic beam parameters. The
duration of the force application is determined by the tem-
poral profile of the acoustic wave. Generally speaking,
radiation force is a mean steady force [3–8] which, under

the conditions at which it is measured, depends on the dif-
ference in the energy densities on the two sides of the tar-
get. A detailed theoretical study on a rigid sphere was
developed [9] and extended [10] to include the effect of
the sphere’s compressibility. Later, Hasegawa and Yosioka
[11] provided theoretical and experimental work on the
radiation force experienced by an isotropic elastic sphere
in a plane progressive wave. Moreover, theories were devel-
oped to study the acoustic radiation force due to progres-
sive [12–14] and standing [15–17] plane waves on elastic
and viscoelastic spherical, cylinders, and cylindrical shells
as well as on coated spheres [18].

Interesting studies revealing new effects of the amplitude
modulated acoustic radiation force (for standing waves) on
drops and bubbles were performed [19,20] and found to be
useful in acoustic levitation applications.

The stress resulting from the acoustic radiation force in
solids was examined theoretically [21] and experimentally

* Corresponding author. Tel.: +1 507 2848810; fax: +1 507 2660561.
E-mail addresses: mitri@ieee.org, mitri.farid@mayo.edu (F.G. Mitri).

1

mailto:mitri@ieee.org
mailto:mitri.farid@mayo.edu


[22]. In those studies, it was found that the radiation stress
depends on both the acoustic nonlinear parameter, which
characterizes the stress nonlinearity in the object, and the
energy density of the acoustical wave.

The influence of dissipative effects, such as viscosity and
heat-conduction, were also studied and it was found that
they drastically influence the acoustic radiation force; its
magnitude and sign become different from those predicted
by the classical theories neglecting losses [23].

In all the studies mentioned above, the incident field is
considered to be continuous with constant amplitude, thus
radiation force was defined as a static force. One may define
the dynamic (or amplitude-modulated) radiation force as a
continuous wave whose intensity varies slowly with time
[24]. In such a case, the radiation force on the object will
follow the temporal variations of the incident intensity field.
This can be achieved in various ways. For example, one can
use a single ultrasound beam whose amplitude is modulated
at low frequency, or two interfering ultrasound beams (dual
mode) driven at slightly different frequencies to produce a
dynamic radiation force at their intersection. Using a single
amplitude modulated beam seems to be the simplest means
to produce the oscillatory force. However, such a beam will
exert a radiation force on the transducer itself and on any
object that is present along the beam path, hence, producing
noise. Therefore, the use of the dual mode is advantageous
to produce a field modulation at the intersection region in
a well-confined space.

Actually, dynamic elasticity imaging techniques based
on the dynamic radiation force are the subject of extensive
experimental investigations [25–28]. In materials science
the dynamic radiation force is used in determining reso-
nance frequencies of differently shaped objects [29], evalu-
ating Young’s modulus [30], and estimating porosity [31].
Moreover, it is studied on solid spheres embedded in a vis-
coelastic medium; by causing microspheres to vibrate using
the dynamic radiation force and measuring their resonance
curves (vibrational velocity versus frequency) it was possi-
ble to accurately measure the complex shear modulus
within gel phantoms [32]. The dynamic radiation force is
also applied for medical imaging purposes [33] to control
the brachytherapy metal seed implantation treatment for
prostate cancer [34].

In spite of the wide experimental use of the dynamic
force, only two recent works are done to study the dynamic
radiation force on solid cylinders [35], cylindrical shells [36]
and spheres [37,38] immersed in ideal fluids. Although the
cylinder, sphere and cylindrical shells’ results are useful for
many medical applications (see [34] for example), particu-
lar interest is concentrated on spherical polymer-shelled
contrast agents and micro-bubbles. To the authors’ knowl-
edge, the theory of dynamic radiation force on spherical
shells is not developed yet. The development for the theory
gives a priori knowledge for the dynamic radiation force
magnitude which can be used either non-destructively or
destructively on such shell-type objects. In this work, a the-
oretical study of the dynamic radiation force experienced

by elastic and viscoelastic spherical shells (with hollow)
immersed in a nonviscous fluid is developed. The theory
is restricted to the radiation force along the direction of
wave propagation produced by the dual ultrasound axisym-

metric beams mode (two axial plane waves intersecting in a
small region and producing an amplitude modulated plane
wave beam). Since axisymmetric beams are considered
here, the transverse averaged-force does not contribute to
the total radiation force. In addition, the incident field is
assumed to be moderate so that the scattered field from
the shells is taken to linear approximation and the scatter-
ing of sound by sound (also known as parametric or non-
linear interaction) does not occur. It should be noted here
that Rooney [39] has discussed the coupling effect of non-
linearity with the radiation force for moderate waves. His
results show that the radiation force is independent of fluid
nonlinearity (the magnitude of the variation is within the
error of his experiments). In this region, it is assumed that

the wave numbers are coplanar. Moreover, the shell is con-
sidered to be totally placed within the focal zone (Fig. 1).
Analytical expressions of the dynamic radiation force expe-
rienced by spherical shells are derived. The theory is mod-
ified to include the effect of absorption inside the shells’
material. As an example to illustrate the theory, numerical
results are performed for stainless steel and absorbent
lucite (polymer) spherical shells with emphasis on their
thickness and the nonviscous fluid filling their interior hol-
low spaces.

2. Method

Customarily, radiation force is calculated by integrating
the radiation-stress tensor over the surface of the object. A
simpler approach is to use Yosioka and Kawasima’s for-
mula [10] which enables the calculation of radiation force
from the first-order scattered field over the shell boundary
at its equilibrium position. Therefore, the linear scattered
field should be calculated first in order to compute the radi-
ation force.

2.1. Acoustic scattering of two plane waves from the

spherical shell

The velocity potential of the two plane waves repre-
sented in spherical coordinates (r,h,/) can be written as

/i ¼ A
X

2

m¼1

X

N!1

n¼0

ð2nþ 1Þð�iÞ
n
jnðkmrÞP nðcos hÞe

ixmt

!

; ð1Þ

where A is the amplitude, k1 and k2 are the wave numbers
(denoted by km, m = 1,2), jn(kmr) is the spherical Bessel
function of the first kind of order nand argument kmr,
and Pn(Æ) are the Legendre polynomials.

The total wave velocity in the core material of the shell is
expressed by [12]

vint ¼ �$/int þ $�Wint; ð2Þ
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where /int and Wint(0,0,Wint) are the scalar and vector
potentials expressed in spherical coordinates by

/int ¼ A
X

2

m¼1

X

N!1

n¼0

ð2nþ 1Þð�iÞ
n
½Am;njnðkm;lrÞ

þBm;nnmðkm;lrÞ�P nðcos hÞe
ixmt

!

;

Wint ¼ A
X

2

m¼1

X

N!1

n¼0

ð2nþ 1Þð�iÞ
n
½Cm;njnðkm;srÞ

þDm;nnnðkm;srÞ�
dðP nðcos hÞÞ

dh
eixmt

!

;

ð3Þ

where km;l ¼
xm

cl
is wave number corresponding to the longi-

tudinal wave, cl is the longitudinal wave velocity, km;s ¼
xm

cs

is the wave number corresponding to the shear wave, cs is
the shear wave velocity, nn(Æ) is the spherical Bessel function
of the second kind, and Am,n, Bm,n, Cm,n, and Dm,n are arbi-
trary coefficients.

The velocity potential in the fluid filling the hollow space
is represented by

/3 ¼ A
X

2

m¼1

X

N!1

n¼0

ð2nþ 1Þð�iÞ
n
Em;njnðkm;3rÞP nðcos hÞe

ixmt

!

;

ð4Þ

where bm,n are unknown coefficients, and km,3 are the wave
numbers of each of the waves within the fluid that fills the
interior shell’s hollow space.

The scattered waves may be expressed as

/s ¼ A
X

2

m¼1

X

N!1

n¼0

ð2nþ 1Þð�iÞ
n
Sm;nh

ð2Þ
n ðkmrÞP nðcos hÞe

ixmt

!

;

ð5Þ

where hð2Þn are the spherical Hankel functions of the second
kind and Sm,n are the scattering coefficients of the first and
second wave respectively, to be determined from the
boundary conditions (see below) and given by

Sm;n ¼
�F m;njnðxmÞ þ xmj

0
nðxmÞ

F m;nh
ð2Þ
n ðxmÞ � xmh

ð2Þ0
n ðxmÞ

; m ¼ 1; 2; ð6Þ

where xm = kma, with a being the outer radius of the shell
(see Fig. 1). We define the coefficients am,n and bm,n as the
real and imaginary parts of Sm,n, respectively.

The coefficients Fm,n are given by

F m;n ¼ �q

km;22 km;23 km;24 km;25 0
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; ð7Þ

where q is the density of the fluid surrounding the shell.
The coefficients km,kl defined in Eq. (7) are determined

by applying the following boundary conditions [12] at
r = a and r = b (Fig. 1); (a and b being the outer and inner
radius of the spherical shell, respectively) (1) The pressure
in the fluid must be equal to the normal component of
stress in the shell at the interface, (2) The normal (radial)
component of displacement (or velocity, respectively) of
the fluid must be equal to the normal component of dis-
placement (or velocity, respectively) of the shell at the
interface, (3) The tangential components of shearing stress
must vanish at the surface of the shell. The coefficients km,kl

are explicitly given in reference [12].
The total velocity potential is then:

/¼/iþ/s

¼A
X

2

m¼1

X

N!1

n¼0

ð2nþ1Þð�iÞn½Um;nðkmrÞþ iV m;nðkmrÞ�P nðcoshÞe
ixm t

!

;

ð8Þ

Fig. 1. A spherical shell placed in an amplitude modulated sound beam incident from the direction h = p. The amplitude-modulated field is produced by

interfering two confocal sound beams driven at slightly different frequencies.
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where Um,n, Vm,n and their derivatives are defined as

Um;n ¼ ð1þ am;nÞjnðkmrÞ þ bm;nnnðkmrÞ;

U 0
m;n ¼

d½Um;nðkmrÞ�

d½kmr�
;

V m;n ¼ bm;njnðkmrÞ � am;nnnðkmrÞ;

V 0
m;n ¼

d½V m;nðkmrÞ�

d½kmr�
;

ð9Þ

where nn(Æ) is the spherical Bessel function of the second
kind.

From both Eqs. (8) and (9) we have

W ¼ Re½/� ¼ A
X

N!1

n¼0

ð2nþ 1ÞRnP nðcos hÞ; ð10Þ

where Re corresponds to the real part of the complex num-
ber and Rn is expressed by

Rn ¼ Re
X

2

m¼1

ð�iÞ
n
½Um;nðkmrÞ þ iV m;nðkmrÞ�e

ixmt

" #

. ð11Þ

2.2. Dynamic radiation force experienced by the spherical

shell

The radiation force exerted by a modulated-ultrasound
wave is obtained through the short-term time average
[27] to discriminate the slow time-variation. The short-term
time average of an arbitrary function v(t) over the interval
of T at time t, is defined as

hvðtÞi ¼
1

T

Z tþT=2

t�T=2

vðtÞdt; ð12Þ

where 2p
x1þx2

� T � 2p
jx1�x2j

.

Using the formula given by Hasegawa et al. [12] we have

hF zi ¼ hF ri þ hF hi þ hF r;hi þ hF ti; ð13Þ

where the subscript z refers to the direction of wave prop-
agation (Fig. 1). Inserting Eq. (10) into Eq. (13) we obtain
the following components of the force hFzi:

hF ri ¼ �pa2q

Z p

0

oW

or

� �2

r¼a

sin h cos hdh

* +

¼ �4pa2qjAj
2
X

N!1

n¼0

ðnþ 1ÞhR0
nR

0
nþ1ijr¼a

¼ �2pqjAj2
X

N!1

n¼0

ðnþ 1Þ

x21ðU
0
1;nV

0
1;nþ1 � V 0

1;nU
0
1;nþ1Þ þ x22ðU

0
2;nV

0
2;nþ1 � V 0

2;nU
0
2;nþ1Þ

þx1x2ðU
0
1;nU

0
2;nþ1 � U 0

2;nU
0
1;nþ1 þ V 0

1;nV
0
2;nþ1 � V 0

2;nV
0
1;nþ1Þ sinðDxtÞ

þx1x2ðU
0
1;nV

0
2;nþ1 þ U 0

2;nV
0
1;nþ1 � V 0

1;nU
0
2;nþ1 � V 0

2;nU
0
1;nþ1Þ cosðDxtÞ

0

B

@

1

C

A

2

6

4

3

7

5
; ð14Þ

hF hi ¼ pq

Z p

0

oW

oh

� �2

r¼a

sin h cos hdh

* +

¼ 4pqjAj
2
X

N!1

n¼0

nðnþ 1Þðnþ 2ÞhRnRnþ1i

¼ 2pqjAj
2

X

N!1

n¼0

nðnþ 1Þðnþ 2Þ
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þðU 1;nV 2;nþ1 þ U 2;nV 1;nþ1 � V 1;nU 2;nþ1 � V 2;nU 1;nþ1Þ cosðDxtÞ

0

@

1

A

2

4

3

5; ð15Þ

hF r;hi ¼ 2paq

Z p

0

oW

or

� �

r¼a

oW

oh

� �
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sin2
hdh

� �
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X
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0
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and

After replacing Eqs. (14)–(17) in Eq. (13) and manipulating
the result, the expression of the radiation force is reduced
to

hF zi ¼ pa2
1

2
qk21jAj

2

� �

Y p1 þ pa2
1

2
qk22jAj

2

� �

Y p2

þ pa2ðqk1k2jAj
2
ÞC sinðDxtÞ

þ pa2ðqk1k2jAj
2ÞK cosðDxtÞ; ð18Þ

where

where x1 = k1a and x2 = k2a. The first and second terms in
Eq. (18) are the steady components of radiation force
caused by each individual plane wave while (C) and (K)
represent the dynamic component of the radiation force
function at the beating frequency Dx.

Finally, from Eq. (16), the dynamic force can be rewrit-
ten as

hF di ¼ pa2qk1k2jAj
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2 þ K2
p

cosðDxt � UÞ

¼ pa2hEdiY d cosðDxt � UÞ; ð23Þ

where we define the dynamic energy density and dynamic
radiation force function as

hEdi ¼ qk1k2jAj
2
; ð24Þ

Y d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2 þ K2
p

. ð25Þ

The phase shift of the dynamic radiation force with respect
to the incident field is given by

U ¼ tan�1 C

K

� �

. ð26Þ

hF ti ¼ �
pa2q

c2

Z p

0

oW

ot

� �2
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sin h cos hdh
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n¼0
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þ½jnðx1Þnnþ1ðx2Þ � nnðx2Þjnþ1ðx1Þ�ða2;n þ a2;nþ1Þ

þ½jnðx2Þnnþ1ðx1Þ � nnðx1Þjnþ1ðx2Þ þ jnðx1Þnnþ1ðx2Þ � nnðx2Þjnþ1ðx1Þ�

ða1;na2;nþ1 þ a2;na1;nþ1 þ b1;nb2;nþ1 þ b2;nb1;nþ1Þ

þ½jnðx2Þjnþ1ðx1Þ � jnðx1Þjnþ1ðx2Þ þ nnðx2Þnnþ1ðx1Þ � nnðx1Þnnþ1ðx2Þ�

ða1;nb2;nþ1 þ b2;na1;nþ1 � b1;na2;nþ1 � a2;nb1;nþ1Þ
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Eq. (23) describes the general formula of the dynamic
radiation force. For a known amount of energy hEdi, and
modulation frequency Dx, and for a known target, (i.e.
Sc has a constant value) the only factor that varies and
gives a direct evaluation of the oscillatory force is the
dynamic radiation force factor Yd.

2.3. Special cases

2.3.1. The frequencies of the incident waves are equal

When the frequencies of the incoming plane waves are
identical, x1 = x2 = x, a1,n = a2,n, b1,n = b2,n and the inci-
dent waves are equivalent to a single plane wave with its
amplitude doubled. Consequently, its energy is quadrupled
and hence, the radiation force has a four times higher
amplitude.

Eq. (16) becomes:

hF zi ¼ pa2
1

2
qk21jAj

2

� �

Y p1 þ pa2
1

2
qk22jAj

2

� �

Y p2

þ pa2ðqk1k2jAj
2
ÞK; ð27Þ

Thus, it can be verified that C = 0 and K ¼ Y p1 ¼ Y p2 ¼ Y p

and Eq. (27) becomes

hF xi ¼ 4 pa2
1

2
qk2jAj2

� �

Y p

� 	

; ð28Þ

and the expression of Yp is identical to the one given by
Hasegawa et al. [12].

2.3.2. Viscoelastic shells

The theory previously established, deals with the
dynamic acoustic radiation force on elastic spherical shells.
However, for absorbing materials such as rubber and
polymers, the theory should take into account the sound-
absorption effect that occurs within the shell’s core mate-
rial. Therefore, it is essential to extend the theory to take
into account the attenuation of sound. Sound (or ultra-
sound) absorption in the solid material of the shell can
be included by the standard method of introducing com-
plex wave numbers into the theory [35]. This principle
can be directly applied to allow for compressional and
shear waves’ absorption inside the shell’s material. The
normalized absorption coefficients for the compressional
(i.e. cm,1) and shear waves (i.e. cm,2), respectively, are con-
stant quantities and independent of frequency, as found
in many polymeric materials. In the theory described
above, and for polymer-type materials, the terms xm,1

and xm,2 should be replaced by ~xi;1 and ~xi;2 given by

~xm;1 ¼ xm;1ð1� icm;1Þ;

~xm;2 ¼ xm;2ð1� icm;2Þ.
ð29Þ

3. Numerical results and discussion

Eq. (18) shows that the total radiation force due to dual-
frequency acoustic waves is not the mere linear sum of the

two radiation forces due to the incident waves on the shell.
There is a coupling term between the two waves resulting in
an additional component which is called the dynamic radi-
ation force given in Eq. (23). It is shown from Eq. (23) that
the dynamic radiation force has a time-dependent compo-
nent varying at the difference frequency of the incident
waves. Therefore, in addition to the static radiation forces
due to the incident waves, the shell experiences an addi-
tional dynamic force beating at cos(Dxt � U).

The dynamic radiation force function Yd is evaluated
numerically by the use of Eq. (25) for stainless steel (Figs.
2 and 3) and absorbent lucite (Figs. 4 and 5) spherical shells
immersed in water. The mechanical properties of these
materials for which graphical results are shown, are listed
in Table 1 [12,35]. The dynamic radiation force function
Yd is a coefficient determined by the scattering and absorp-
tion properties of the shell and its surrounding medium. It
is also a function of x1 = k1a and x2 = k2a.

2-D plots of the Yd function are performed and the
results covered the range by 0.1 6 x1 6 10 for the case
without (dx = jx2 � x1j = 0) and with modulation (dx =
jx2 � x1j = 0.1). So when x1 approaches x2, the expression
of Yd is reduced to the static radiation force function Yp

where only one single sound plane wave is presented. For
the case of the thin shells in Figs. 2,3, and 5, the Yd curves
were plotted versus a small range of x1 = k1a in order to
show clearly the differences that exist when the modulation
is considered and when it does not. The increment is chosen
to be sufficiently small (10�4) to allow capturing the reso-
nance peaks that are very sharp. It is verified that the shape
of the Yd curves does not vary significantly when the incre-
ment value is decreased. It is also essential to extend the
maximum index N in the series in Eqs. (21) and (22) to
greatly exceed the size parameter x1 and x2 to ensure
proper convergence.

The calculations were evaluated for four shell’s thick-
ness values (b/a = 0; 0.5; 0.9; and 0.99) and compared for
particular cases where the hollow region of the spherical
shell is filled with the same fluid (i.e. water) or with a differ-
ent fluid from that of its exterior (i.e. air).

It is found that the dynamic radiation force function
curves for stainless steel (Figs. 2 and 3) have a series of
prominent peaks for cases of a shell structure, while curves
in the case of solid spheres (b/a = 0), the curves have series
of dips. The material’s mechanical properties, the shell
thickness as well as the interior and exterior fluid media
influence the positions and magnitudes of the peaks and
dips that correspond to the resonance vibrational modes.

Results for the case in which the hollow space is filled
with air instead of water show that a series of fine peaks
do disappear and the curves become relatively flat, espe-
cially for thin absorbing lucite shells (Fig. 5; b/aP 0.9).
These results may be applied to benefit acoustic radiometry
[40]. Moreover, one notices the high amplitude values in
the radiation force function curves for very thin shells filled
with air. The explanation for this behavior is that water
inside the hollow region facilitates sound (or ultrasound)
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transmission through the scattered area, while for the case
of air, and since radiation force is proportional to the gra-
dient of the energy density that varies significantly due to
the large discontinuity of acoustic impedance at the solid-

air interface, the sound reflection is higher. Moreover, for
thin shells the surface wave generated along the shell’s
surface does not penetrate into its volume to create the
bulk wave and is reflected. Consequently, the force per

Fig. 3. The same as in Fig. 2 but the shells’ interior hollow spaces are filled with air.

Fig. 2. The dynamic radiation force function curves for spherical stainless steel shells immersed in water. Their interior hollow spaces are also filled with

water. The plots are performed for four thickness (b/a) values. The splitting phenomenon is observed at minima and maxima of the curves especially for

the thin shells (b/aP 0.9). Legend: dashed line (dx = 0, no modulation), and solid line (dx = 0.1).
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Fig. 4. The dynamic radiation force function curve for absorbing lucite spherical shells immersed in water. Their interior hollow spaces are also filled with

water. The plots are performed for four thickness (b/a) values. The splitting phenomenon is observed at minima and maxima of the curves especially for

the thin shells (b/aP 0.9). It is particularly noteworthy that resonance peaks are manifested as maxima compared to the case of thick stainless steel shells

(Fig. 2). One notices also the change in the radiation force function’s amplitude for the thin shells. Legend: dashed line (dx = 0, no modulation), and solid

line (dx = 0.1).

Fig. 5. The same as in Fig. 4 but the shells’ interior hollow spaces are filled with air. The results for the thin shells (b/aP 0.9) show that a series of fine

peaks do disappear and the curves become relatively flat as long as the dimensionless size parameter increases (high k1a). These results may be applied to

benefit acoustic radiometry.
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cross-sectional area acting on the shell is of high amplitude,
which is confirmed by the curves.

An interesting noteworthy fact is the low frequency radi-
ation force enhancement for the lucite shells. The enhance-
ment is not removed by the lucite material absorption. This
phenomenon was also observed in acoustic backscattering;
the density of lucite is close to that of water (to some extent)
and this was seen to have a significant effect on the velocity
of Rayleigh waves that produce an acoustic backscattering
enhancement from lucite solid spheres [41]. Subsonic Ray-
leigh waves have lower phase velocities than the bulk waves
in the fluid medium surrounding the shell. The most inter-
esting feature of this type of waves is the presence of energy
leakage in the subsonic range [42]. Acoustic (back)scatter-
ing and radiation force are two different phenomena closely
related, since the acoustic scattering coefficients are used to
calculate the force (see Eqs. (6) and (25)). These calculations
are the first to show this behavior for the case of the
dynamic radiation force on absorbent spherical shells.

It is particularly important to note that in the graph of
the static radiation force function Y dðdx¼0Þ

where the curve
is relatively flat, a very little change in the Y dðdx¼0:1Þ

curves
is perceived, so that Y dðdx¼0:1Þ

can be approximated to
Y pðor Y dðdx¼0Þ

Þ for thick shells (b/a < 0.9). However, when
dx increases, the value of Yd starts to deviate from Yp,
which is clearly shown in the figures at the extrema (max-
ima and minima) of the curves, especially for thin shells
(b/aP 0.9). Calculations not presented here have shown
that the splitting of the resonance peaks increases linearly
while increasing the modulation size parameter dx. It is
particularly noteworthy that the splitting occurs when the
modulation size parameter dx starts to exceed the width
of the resonance peaks in the Yp curves. It is also noticeable
that the splitting in a resonance peak produces two peaks
in the Y dðdx¼0:1Þ

curves which are separated by a dimension-
less frequency shift equal to the modulation dimensionless
frequency (i.e. dx = 0.1). Therefore, the use of the static
radiation force function to approximate the dynamic radi-
ation force function is not accurate to any further extent,
and it is essential to use the expression of the dynamic radi-
ation force function given by Eq. (25).

4. Conclusion

The major achievement of this work was to calculate the-
oretically the dynamic radiation force experienced by elastic

and viscoelastic spherical shells placed in an amplitude-
modulated sound (or ultrasound) field. Analytical equa-
tions that establish relationships between parameters of
the medium and the acoustic field were derived. It was
shown that the radiation force is no longer static but has
a dynamic (oscillatory) component. The results of numeri-
cal calculations were presented indicating how the dynamic
radiation force function Yd was affected by variations in the
material parameters of the shell. As it was also shown in the
figures, the Yd curves can be approximated by the static
radiation force function Yp in the region where the curves
are relatively flat (far from the extrema). However, signifi-
cant changes in the Yd curves occurred at their resonance
extrema (peaks and dips) when the modulation size param-
eter dx has started to exceed the width of the resonance
peaks in the Yp curves. Thus, the use of Yp to approximate
Yd is no longer valid and the expression of the dynamic
radiation force should be used. It was also shown that the
theory developed here is more broad since it includes the
results for solid spheres by simply allowing b/a = 0.
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