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I. INTRODUCTION

The acoustic characterization of porous materials saturated by air [START_REF] Allard | Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials ͑Chapman and Hall[END_REF][START_REF] Attenborough | Models for the acoustical properties of air-saturated granular media[END_REF] such as plastic foams, fibrous, or granular materials is of great interest for a wide range of industrial applications. These materials are frequently used in the automotive and aeronautics industries and in the building trade. One important parameter that appears in theories of sound propagation in porous materials at a low-frequency range 3,4 is the specific flow resistivity . [START_REF] Delany | Acoustical properties of fibrous materials[END_REF][START_REF] Bies | Flow resistance information for acoustical design[END_REF][START_REF] Embleton | Effective flow resistivity of ground surfaces determined by acoustical measurements[END_REF][START_REF] Brown | The measurement of flow resistance of porous acoustic materials[END_REF][START_REF] Leonard | Simplified flow resistance measurements[END_REF][START_REF] Stinson | Electronic system for the measurement of flow resistance[END_REF][START_REF] Morse | Relation between acoustic impedance and low resistance of porous acoustic materials[END_REF] This parameter is defined as the ratio between the pressure difference across a sample and the velocity of flow of air through that sample per unit cube; the flows being considered are steady and nonpulsating. The permeability k 0 is related to the specific flow resistivity by the relation k 0 = / , where is the fluid viscosity.

Among the various systems that have been developed for the measurement of flow resistance, a distinction can be made between direct and comparative methods. With direct methods, [START_REF] Bies | Flow resistance information for acoustical design[END_REF][START_REF] Brown | The measurement of flow resistance of porous acoustic materials[END_REF][START_REF] Leonard | Simplified flow resistance measurements[END_REF][START_REF] Morse | Relation between acoustic impedance and low resistance of porous acoustic materials[END_REF] the pressure drop across a sample and the rate of air flow through the porous sample are determined separately and the specific flow resistivity is computed as the ratio of the two quantities. With comparative methods, [START_REF] Stinson | Electronic system for the measurement of flow resistance[END_REF][START_REF] Gemant | Frictional phenomena IV[END_REF] a calibrated flow resistivity is placed in series with the porous sample. The ratio of pressure drops across each element is the same as the ratio of the values of flow resistivity, since the volumetric flow of air in the line is the constant.

In this work, we present a simple acoustical method of measuring specific flow resistivity by measuring a diffusive wave transmitted by a slab of air-saturated porous material in a guide ͑pipe͒.

II. MODEL

In the acoustics of porous materials, one distinguishes two situations according to whether the frame is moving or not. In the first case, the dynamics of the waves due to the coupling between the solid skeleton and the fluid is well described by the Biot theory. [START_REF] Biot | The theory of propagation of elastic waves in fluid-saturated porous solid. I. Low frequency range[END_REF] In air-saturated porous media the structure is generally motionless and the waves propagate only in the fluid. This case is described by the model of equivalent fluid, [START_REF] Fellah | Transient acoustic wave propagation in rigid porous media: a time-domain approach[END_REF] which is a particular case of the Biot model, in which the interactions between the fluid and the structure are taken into account in two frequency response factors: the dynamic tortuosity of the medium ␣͑͒ given by Johnson et al. [START_REF] Johnson | Theory of dynamic permeability and tortuosity in fluid-saturated porous media[END_REF] and the dynamic compressibility of the fluid included in the porous material ␤͑͒ given by Allard 1 ͑ is the pulsation frequency͒. In the frequency domain, these factors multiply the density of the fluid and its compressibility, respectively, and represent the deviation from the behavior of the fluid in free space as the frequency changes.

Consider a homogeneous porous material that occupies the region 0 ഛ x ഛ L. A sound pulse impinges normally on the medium. It generates an acoustic pressure field p͑x , t͒ and an acoustic velocity field v͑x , t͒ within the material. In the lowfrequency range, the acoustic fields satisfy the Euler equation and the constitutive equation ͑along the x axis͒:

v͑x,t͒ =- ץp͑x,t͒ ץx , ␥ K a ץp͑x,t͒ ץt =- ץv͑x,t͒ ץx .
In these equations, is the porosity, K a is the bulk modulus of the fluid, and ␥ is the adiabatic constant. The Euler equation is reduced to the Darcy's law, which expresses the balance between the driving force of the wave and the drag forces v, due to the flow resistance of the material. The fields that are varying in time, the pressure, the acoustic velocity, etc., follow a diffusion equation, 4

ץ 2 p͑x,t͒ ץx 2 -D ץp͑x,t͒ ץt =0, ͑1͒
where D = ␥/ K a is the diffusion constant. The of this diffusive equation gives the Green's function of the porous material:

G͑x,t͒ = x ͱ D 2 ͱ 1 t 3/2 expͩ- x 2 D 4t ͪ.

͑2͒

To derive the transmission scattering operator, it is assumed that the pressure field and flow velocity are continuous at the material boundary: p͑0 + , t͒ = p͑0 -, t͒, p͑L -, t͒ = p͑L + , t͒, v͑0 -, t͒ = v͑0 + , t͒, v͑L + , t͒ = v͑L -, t͒, where is the porosity of the medium and the ϯ superscript denotes the limit from left and right, respectively. Assumed initial conditions are p ͉͑x , t͉͒ t=0 = 0 and ͉ץp / ץt͉ t=0 = 0, which means that the medium is idle for t = 0. The incident p i ͑t͒ and transmitted p t ͑t͒ fields are related in the time domain by the transmission scattering operator:

p t ͑x,t͒ = ͵ 0 t T ˜͑͒p i ͩt--͑x -L͒ c 0 ͪd.

͑3͒

The transmission operator is independent of the incident signal and depends only on the properties of the porous material. Using the relations ͑1͒-͑3͒, we obtain the transmission scattering operator T ˜͑t͒ = D͑t͒ ء G͑L , t͒, where * denotes the time convolution operation. The operator D͑t͒ is given by

D͑t͒ =- 8 B 2 ͩ1+ t B 2 ͪexpͩ t B 2 ͪErfcͩ ͱ t B ͪ + 4 B ͱ t ͩ2 t B 2 +1ͪ, B = 1 ͱ 3 ␥ 3 ,
where erfc is the error function and 0 is the fluid density.

III. INVERSE PROBLEM

The inverse problem is to find value for parameter that minimizes the function U͑͒ = ͐ 0 t ͓p exp t ͑x , t͒p t ͑x , t͔͒ 2 dt, where p exp t ͑x , t͒ is the experimentally determined transmitted signal and p t ͑x , t͒ is the transmitted wave predicted from Eq. ͑3͒. The inverse problem is not solved for the porosity because the transmission is much more sensitive to flow resistivity than to porosity; the effect of the porosity in transmitted mode is negligible, as it has been observed in the asymptotic domain 15 ͑high-frequency range͒. The analytical method of solving the inverse problem using the conventional least-square method is tedious. In our case, a numerical solution of the least-square method can be found that minimizes U͑͒ defined by U͑͒ = ͚ i=1 i=N ͓p exp t ͑x , t i ͒p t ͑x , t i ͔͒ 1. Consider a cylindrical sample of plastic foam M of diameter 5 cm, porosity = 0.9, and thickness 2.5 cm. Sample M was characterized using classical methods [START_REF] Bies | Flow resistance information for acoustical design[END_REF] given = 38 000± 6000 N m -4 s. Figure 2 shows the experimental incident signal ͑solid line͒ generated by the loudspeaker in the frequency bandwidth ͑85-115͒ Hz, and the experimental transmitted signal ͑dashed line͒. After solving the inverse problem numerically for the flow resistivity, we find the following optimized value: = 39 500± 2000 N m -4 s. We present in Fig. 3 the variation of the minimization function U with the flow resistivity . In Fig. 4, we show a comparison between an experimental transmitted signal and simulated transmitted signal for the optimized value of the flow resistivity. The difference between the two curves is slight, which leads us to conclude that the optimized value of the flow resistivity is correct. This study has been carried on, in the frequency bandwidths ͑25-60͒ Hz and ͑130-190͒ Hz and has also given good results.

The classical method 1 using continuous sound can be used only for the intermediary frequencies ͑it means between 1 and 3 or 4 KHz, depending of the radius of the tube͒. However, in this domain of frequency, we cannot use our approximation of very low frequency in which only the flow resistivity ͑or permeability͒ and porosity intervene in the propagation. The advantage of the proposed method is that the measurement can be done at very low frequency ͑less than 100 Hz by taking a long tube of 50 m͒, and thus the flow resistivity can be obtained easily. In the domain of frequency corresponding to measurement in the Kundt Tube ͑continuous sound͒, all physical parameters ͑porosity, tortuosity, viscous, and thermal characteristics lengths, viscous and thermal permeability, etc͒ intervene in the model of propagation. In this case, the inverse problem becomes very difficult to solve. In this proposed method, the use of tran-sient signals ͑having a large spectrum͒ is possible, this is not the case for the classic Kundt tube ͑continuous frequency͒. For transient signals, the temporal approach are more appropriate, we do not need to use the Fourier transform. In our case the inverse problem is solved directly in time domain using the waveform without any transformation in Fourier domain. 

  [START_REF] Attenborough | Models for the acoustical properties of air-saturated granular media[END_REF] , where p exp t ͑x , t i ͒ i=1,2,. . .,N represents the discrete set of values of the experimental transmitted signal and p t ͑x , t i ͒ i=1,2,. . .,N is the discrete set of values of the simulated transmitted signal. The inverse problem is solved numerically by the leastsquare method.Experiments are performed in a guide ͑pipe͒, having a diameter of 5 cm and of length 50 m. This length has been chosen for the propagation of transient signals at low frequency. It is not important to keep the pipe straight; it can be rolled in order to save space without perturbations on experimental signals ͑the cutoff frequency of the tube f c ϳ 4 kHz͒. A sound source Driver unit "Brand" constituted by loudspeaker Realistic 40-9000 is used. Bursts are provided by synthesized function generator Stanford Research Systems model DS345-30 MHz. The signals are amplified and filtered using model SR 650-Dual channel filter, Standford Research Systems. The signals ͑incident and transmitted͒ are measured using the same microphone ͑Bruel&Kjaer, 4190͒ in the same position in the tube. The incident signal is measured without a porous sample, however, the transmitted signal is measured with the porous sample. The experimental setup is shown in Fig.
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 1 FIG. 1. Experimental setup of acoustic measurements.

  Z. E. A. Fellah, M. Fellah, W. Lauriks, and C. Depollier, "Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material," J. Acoust. Soc. Am. 113, 61-73 ͑2003͒.
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 4 FIG. 4. A comparison between the experimental transmitted signal ͑dashed line͒ and the simulated transmitted signal ͑solid line͒ for the sample M.