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Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients

Introduction and settings

We consider the elliptic operator A formally defined by -∂ x (c∂ x ) on L 2 (Ω) in the onedimensional bounded domain Ω = (0, 1) ⊂ R. The diffusion coefficient c is assumed to be of bounded variations (BV). The domain of A is given by

D(A) = {u ∈ H 1 0 (Ω); c∂ x u ∈ H 1 (Ω)},
i.e., we consider Dirichlet boundary conditions.

We let T > 0. We shall use the following notations Q = (0, T ) × Ω, Γ = {0, 1}, and Σ = (0, T ) × Γ.

We shall first study the following linear parabolic problems,

       ∂ t y ± Ay = f in Q, y(0, x) = y 0 (x) (resp. y(T, x) = y T (x)) in Ω, for y 0 ∈ L 2 (Ω) and f ∈ L 2 (Q).

Here, we show that we can achieve global Carleman estimates for the operators ∂ t ± A, in Q, with an interior observation region (0, T ) × ω, where ω ⋐ Ω with a non-empty interior, and such that c is of class C 1 in some open subset of ω.

With a Carleman estimate for ∂ t + ∂ x (c∂ x ) at hand, we treat the problem of the null controllability for semi-linear parabolic systems of the form

             ∂ t y -∂ x (c∂ x y) + G (y, ∂ x y) = 1 ω v in Q, y(t, x) = 0 on Σ, y(0, x) = y 0 (x) in Ω, (2) 
where G : R 2 → R is locally Lipschitz and G (0, 0) = 0. In this case, we have G (y 1 , y 2 ) = y 1 g(y 1 , y 2 ) + y 2 G(y 1 , y 2 ), y 1 , y 2 ∈ R.

with g and G in L ∞ loc (R 2 ). We shall assume Assumption 1. The functions g and G satisfy lim Under such an assumption we shall prove the complete null controllability for system (2), i.e., that for all positive time T and for all y 0 ∈ L 2 (Ω), there exists a control v ∈ L ∞ (Q) such that the solution satisfies y(T ) = 0. We also prove the controllability of system (2) in the case where the control acts through one of the boundary conditions, at 0 or 1. Then, we need not require the coefficient c to be of class C 1 in some inner region of Ω. More generally, we can address the question of the controllability to the trajectories.

A null controllability result for a linear parabolic equation with BV coefficients was proven in [START_REF] Fernández-Cara | On the null controllability of the one-dimensional heat equation with BV coefficients[END_REF]. The proof relies on Russell's method [START_REF] Russell | A unified boundary controllability theory for hyperbolic and parabolic partial differential equations[END_REF]. However, the question of the existence of a Carleman-type observability estimate was open. The present article, providing a Carleman estimate allows to treat the case of semilinear equations following the (fix-point) method of [2,[START_REF] Fernández-Cara | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF] (generalized in [START_REF] Doubova | On the controllability of parabolic systems with a nonlinear term involving the state and the gradient[END_REF]). For a review of the role played by Carleman estimates in establishing controllability results for parabolic equations we refer to [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems application to controllability[END_REF].

Carleman estimates for parabolic equations in several dimensions with smooth coefficients were proven in [START_REF] Fursikov | Controllability of evolution equations[END_REF]. The proof is based on the construction of suitable weight functions β whose gradient is non-zero in the complement of the observation region. In particular the function β is chosen to be smooth. In [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF], the authors treat the case of piecewise regular coefficients and introduce non-smooth weight functions assuming that they satisfy the same transmission condition as the solution. To obtain observability, they have to add some assumption on the monotonicity of the coefficients. In the one-dimensional case, this monotonicity assumption was relaxed in [START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications[END_REF][START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF], by introducing additional requirements on the non-smooth weight function β. In several dimensions, the existence of a Carleman estimate when the monotonicity condition is not satisfied is an open question.

The Carleman estimates derived here for the operator ∂ t ± ∂ x (c∂ x ) are obtained through a limiting process from the Carleman estimates associated for ∂ t ±∂ x (c ε ∂ x ), for c ε piecewise constant converging to c. The main issue in this limiting process is to keep both the weight functions and constants in the Carleman estimate under control. Section 2 of the present article is devoted to this question.

The approximation of the BV coefficient c by some piecewise coefficient c ε is closely related to numerical methods. The techniques developed here could also be applied in the numerical analysis of discrete type estimates of the form of Carleman estimates.

The outline of the article is as follows. In Section 1, we recall the Carleman estimate obtained in [START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications[END_REF][START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF] for piecewise continuous coefficients (Theorem 1.2) and especially the form of the weight functions in the estimate (Lemma 1.1). (The results of this section are not essential as we revisit the arguments used to prove them in the following section.) In Section 2, we construct limit weight functions by approaching the BV coefficient c by piecewise constant coefficients c ε (Lemma 2.3). In Theorem 2.8, we prove a Carleman estimate associated to ∂ t ± ∂ x (c∂ x ) by proving that the constants in the Carleman estimate of ∂ t ± ∂ x (c ε ∂ x ) can be taken uniform with respect to the parameter ε (Proposition 2.4) and passing to the limit in each term of the estimate. In Section 3, we derive a Carleman estimate for the linear system (1) with the r.h.s., f , in L 2 (0, T, H -1 (Ω)). This estimate is needed for the analysis of the controllability of the semilinear system (2), which is carried out in Section 4.

In this article, when the constant C is used, its value may change from one line to the other. If we want to keep track of the value of a constant we shall use another letter. We denote the jump of a function ρ, at some point x ∈ (0, 1), by [ρ] 

x := ρ(x + ) -ρ(x -), with the conventions [ρ] 1 = -ρ(1 -) and [ρ 0 ] = ρ(0 + ).

Carleman estimate in the case of a piecewise C coefficient

In the case of a piecewise-C 1 diffusion coefficient c, we denote its singularities by a 1 , . . . , a n-1 , with 0 = a 0 < a 1 < a 2 < • • • < a n-1 < a n = 1. We first introduce a particular type of weight function to be used in the Carleman estimate. Let j ∈ {0, . . . , n -1} be fixed in the sequel and ω 0 ⋐ O ⋐ (a j , a j+1 ) be non-empty open sets. We have the following lemma [START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications[END_REF][START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF].

Lemma 1.1. There exists a function

β ∈ C (Ω) satisfying β | [a i ,a i+1 ] ∈ C 2 ([a i , a i+1 ]), i = 0, . . . , n -1, β > 0 in Ω, β = 0 on Γ, ( β | [a j ,a j+1 ] ) ′ 0 in [a j , a j+1 ] \ ω 0 , ( β | [a i ,a i+1 ] ) ′ 0, i ∈ {1, . . . , n}, i j, β ′ > 0 on the l.h.s. of ω 0 , β ′ < 0 on the r.h.s. of ω 0 ,
and the function β satisfies the following trace properties, for some α > 0,

(A i u, u) ≥ α|u| 2 , u ∈ R 2 , (1.1)
with the matrices A i , defined by

A i = [ β ′ ] a i β ′ (a + i )[c β ′ ] a i β ′ (a + i )[c β ′ ] a i β ′ (a + i )[c β ′ ] 2 a i + [c 2 ( β ′ ) 3 ] a i , i = 1, . . . , n -1.
Figure 1 illustrates a typical shape for the function β.

a j+1 β ι a 1 0 a 2 a j ω a n-1
Figure 1: Sketch of a typical shape for the function β for an 'observation' in (a j , a j+1 ).

Choosing a function β, as in the previous lemma, we introduce

β = β + K with K = m β ∞ and m > 1.
For λ > 0 and t ∈ (0, T ), we define the following weight functions [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF], [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems application to controllability[END_REF]). We next set

(1.2) ϕ(x, t) = e λβ(x) t(T -t) , η(x, t) = e λβ -e λβ(x) t(T -t) , with β = 2m β ∞ (see
ℵ = q ∈ C (Q, R); q | [0,T ]×[a i ,a i+1 ] ∈ C 2 ([0, T ] × [a i , a i+1 ]), i = 0, . . . , n -1,
q | Σ = 0, and q satisfies (TC n ), for all t ∈ (0, T ) ,

with q(a - i ) = q(a + i ), c(a - i )∂ x q(a - i ) = c(a + i )∂ x q(a + i ), i = 1, . . . , n -1. (TC n )
The following global Carleman estimate is proven in [START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications[END_REF][START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF]. Theorem 1.2. Let ω 0 ⋐ O ⋐ (a j , a j+1 ) be non-empty open sets. There exists λ 1 = λ 1 (Ω, O) > 0, s 1 = s 1 (λ 1 , T ) > 0 and a positive constant C = C(Ω, O) so that the following estimate holds

(1.3) s -1 Q e -2sη ϕ -1 (|∂ t q| 2 + |∂ x (c∂ x q)| 2 ) dxdt + sλ 2 Q e -2sη ϕ |∂ x q| 2 dxdt + s 3 λ 4 Q e -2sη ϕ 3 |q| 2 dxdt ≤ C s 3 λ 4 (0,T )×O e -2sη ϕ 3 |q| 2 dxdt + Q e -2sη |∂ t q ± ∂ x (c∂ x q)| 2 dxdt , for s ≥ s 1 , λ ≥ λ 1 and
for all q ∈ ℵ.

Remark 1.3. By a density argument, we see that the Carleman estimate (1.3) remains valid for q (weak) solution to

             ∂ t q ± ∂ x (c∂ x q) = f in Q, q = 0 on Σ, q(T, x) = q T (x) (resp. q(0, x) = q 0 (x)) in Ω,
with f ∈ L 2 (Q) and q T (resp. q 0 ) in L 2 (Ω).

Carleman estimates in the case of a BV coefficient

To obtain a Carleman estimate in the case of more general non-smooth coefficients, such as BV coefficients, we shall first revisit the conditions imposed on the weight function β in Lemma 1.1. Since the conditions imposed on β will only make use of its derivative, we shall sometimes employ β in place of β here, as they only differ by a constant (see the definition of β in (1.2) above). We shall use a limiting process to obtain a Carleman estimate in the case of a BV coefficient making use of estimate (1.3) in the case of a piecewise-C 1 coefficients.

We first consider a piecewise-C 1 diffusion coefficient, c, with a discontinuity at a ∈ (0, 1). Defining a function β, as in the Lemma 1.1, we then define the matrix A as

A = [β ′ ] a β ′ (a + )[cβ ′ ] a β ′ (a + )[cβ ′ ] a β ′ (a + )[cβ ′ ] 2 a + [c 2 (β ′ ) 3 ] a .
This symmetric matrix is positive definite if and only if [β ′ ] a > 0 and det(A) > 0. We now set

Y = c(a + ) c(a -) , X = β ′ (a -) β ′ (a + ) ,
and write

A = β ′ (a + )(1 -X) c(a -)(β ′ (a + )) 2 (Y -X) c(a -)(β ′ (a + )) 2 (Y -X) c 2 (a -)(β ′ (a + )) 3 (Y -X) 2 + (Y 2 -X 3 )
, which yields det(A) = c 2 (a -)(β ′ (a + )) 4 P Y (X) with

P Y (X) = (1 -X)(Y 2 -X 3 ) -X(Y -X) 2 .
In the case Y = 1, there is actually no discontinuity for the coefficient c at the considered point. An inspection of the proof of the Carleman estimate (1.3) in [START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF] shows that with X = 1, i.e. ∂ x β continuous at a, the integrals over (0, T ) at the point a vanish in the course of the proof of the estimate.

We now place ourselves in the case Y 1 and β ′ < 0, i.e., on the r.h.s. of the open set ω 0 (see Lemma 1.1). There, [β ′ ] a > 0 is equivalent to X > 1. The polynomial function P Y can be made positive for X sufficiently large, since its leading coefficient is positive.

Here, we shall in fact give explicit sufficient conditions on X for this to be satisfied.

Observe that P Y (Y) = Y 2 (1 -Y) 2 .
In the case Y > 1, we can thus choose X = Y and the desired conditions on the function β are satisfied. This choice corresponds to that made in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] since in this case we have c(a

-)∂ x β(a -) = c(a + )∂ x β(a + ).
In the case Y < 1, the previous choice, X = Y, is not possible as it would yield a negative definite quadratic form A. Observe, however, that

P Y (2 -Y) = Y 2 (1 -Y) 2 .
In the case 0 < Y < 1, we can thus choose X = 2 -Y. Observe also that P Y (1/Y) > 0, which makes X = 1/Y an alternative choice.

Remark 2.1. Note that the proposed choices are not optimal but yield easy-to-handle conditions to compute an adapted weight function β. We can actually show that there exists g(Y) ≥ 1, defined for Y > 0, with In the case β ′ > 0, i.e., on the l.h.s. of the open set ω 0 , we now need 0 < X < 1 to satisfy [β ′ ] a > 0. We can make the following choices: 3 compares the proposed solution to the optimal one (here P Y (X) > 0 if and only if 0 < X < h(Y) for some function h satisfying h(Y) < 1 if Y 1). Note that X = Y 2Y-1 , actually yields 1 X = 2 -1 Y , which makes the connexion with the proposed choice in the case β ′ < 0 above. In fact, we have

g(Y) > 1 if Y 1 such that P Y (X) > 0 if and only if X > g(Y).
X = Y if Y < 1 and X = Y 2Y-1 if Y > 1. Figure
P Y ( Y 2Y-1 ) = Y 2 (Y-1) 2 (2Y-1) 4 .
We now consider a diffusion coefficient c, of bounded variations, yet

C 1 on O, with O an open subset of Ω, O ⋐ Ω.
We also assume 0 < c min ≤ c ≤ c max . Without any loss of generality we may assume O = (x 0 , x 1 ), with 0 < x 0 < x 1 < 1. We also let ω 0 ⋐ O. We denote the total variations of c on [0, x 0 ] and [x 1 , 1] by ϑ 0 = V x 0 0 (c), and

ϑ 1 = V 1 x 1 (c). Let ε > 0.
There exists a function c ε , piecewise-constant on (0, x 0 )∪(x 1 , 1), and smooth on O such that (see e.g. [START_REF] Bressan | Hyperbolic Systems of Conservation Laws: The One Dimensional Cauchy Problem[END_REF])

c -c ε L ∞ (Ω) ≤ ε, V x 0 0 (c ε ) ≤ ϑ 0 , and V 1 x 1 (c ε ) ≤ ϑ 1 , c ε -c C 1 (O) ≤ ε.
We denote by a 1 , . . . , a n the points of discontinuity of c ε in the interval [x 1 , 1]. We then have

n i=1 |c ε (a + i ) -c ε (a - i )| ≤ ϑ 1 . Let Y i = c ε (a + i )/c ε (a - i )
and X i , i = 1, . . . , n, be defined according to what is described above, i.e.,

X i = Y i , if Y i > 1, and X i = 2 -Y i , if Y i < 1,
as we are on the r.h.s. of ω 0 . We define the piecewise-constant function γ 1,ε as

γ 1,ε (x) := γ 1,ε (1) x<a j X j , x {a 1 , . . . , a n }, (2.1) for some fixed γ 1,ε (1) < 0. Observe that X i = γ 1,ε (a - i ) γ 1,ε (a + i ) , i = 1, . . . , n.
In a similar fashion, if a n+1 , . . . , a n+k are the discontinuities of c ε on [0, x 0 ], we build the piecewise-constant function γ 0,ε on [0, x 0 ] as

γ 0,ε (x) := γ 0,ε (0) x>a j 1 X j , x {a n+1 , . . . , a n+k }, (2.2)
for some fixed γ 0,ε (0) > 0 and with X n+1 , . . . , X n+k defined as described above, i.e.,

X i = Y i , if Y i < 1, and X i = Y i 2Y i -1 , if Y i > 1, i = n + 1, . . . , n + k.
We then have

X i = γ 0,ε (a - i ) γ 0,ε (a + i ) , i = n + 1, . . . , n + k.
We define the functions β 1,ε (x) := x 1 γ 1,ε (y) dy and β 0,ε (x) := x 0 γ 0,ε (y) dy, and we define a continuous function

β ε by β ε (x) = β 0,ε (x) in [0, x 0 ] and β ε (x) = β 1,ε (x) in [x 1 , 1]
, and C 2 on O, such that β ′ ε does not vanish outside ω 0 . The precise definition of β ε on O will be given below.

We observe that β ε satisfies the conditions listed in Lemma 1.1. Hence, we obtain Carleman estimate (1.3) for the operator ∂ t ± ∂ x (c ε ∂ x ) with the associated weight functions η ε and ϕ ε : we introduce

β ε = β ε + K ε with K ε ≥ m β ε ∞ and m > 1. For λ > 0 and t ∈ (0, T ), we define (2.3) ϕ ε (x, t) = e λβ ε (x) t(T -t) , η ε (x, t) = e λβ ε -e λβ ε (x) t(T -t) , with β ε = 2K ε .
We now wish to pass to the limit in the Carleman estimate as c ε converges to c in L ∞ (Ω). The remaining of this section is devoted to this question. We first need to control the behavior of β ε , or rather its derivative, as ε goes to zero.

Lemma 2.2.

There exists K > 0 and ε 0 > 0 that depend solely on the diffusion coefficient c ∈ BV(0, 1) such that, for all

0 < ε ≤ ε 0 , V x 0 0 (γ 0,ε ) ≤ K γ 0,ε (0) and V 1 x 1 (γ 1,ε ) ≤ K |γ 1,ε (1)|. Proof. We have V 1 x 1 (γ 1,ε ) = |γ 1,ε (x 1 ) -γ 1,ε (1)| since γ 1,ε is a non-decreasing function. Thus V 1 x 1 (γ 1,ε ) = (X 1 . . . X n -1)|γ 1,ε (1)|. We have i∈I 1 |c ε (a + i ) -c ε (a - i )| + i∈I 2 |c ε (a + i ) -c ε (a - i )| ≤ ϑ 1 , with i ∈ I 1 if c ε (a + i ) > c ε (a - i ) and i ∈ I 2 if c ε (a + i ) < c ε (a - i ). Dividing by c ε (a - i ) or c ε (a + i ) accordingly, we obtain i∈I 1 (Y i -1) + i∈I 2 ( 1 Y i -1) ≤ ϑ 1 /(c min -ε 0 ).
(Recall that c ≥ c min > 0; here we take 0

< ε ≤ ε 0 < c min .) Note that if 0 < Y < 1 then X = 2 -Y < 1/Y. We thus obtain n i=1 (X i -1) ≤ ϑ 1 /(c min -ε 0 ). Finally, since X 1 , . . . , X n > 1, we write X 1 . . . X n ≤ e X 1 -1 . . . e X n -1 = e n i=1 (X i -1) ≤ e ϑ 1 /(c min -ε 0 ) , which concludes the proof for γ 1,ε . For γ 0,ε we have V x 0 0 (γ 0,ε ) = ( 1 X n+1 ...X n+k -1)γ 0,ε (0). This time, if Y > 1 then 1 X -1 = 2Y -1 Y -1 = Y -1 Y < Y -1.
Thus, we obtain n+k i=n+1 ( 1

X i -1) ≤ ϑ 0 /(c min -ε 0 ), and accordingly 1 X n+1 . . . X n+k ≤ e 1 X n+1 -1 . . . e 1 X n+k -1 = e n+k i=n+1 ( 1 X i -1) ≤ e ϑ 0 /(c min -ε 0 )
. By Helly's theorem [START_REF] Kolmogorov | Eléments de la théorie des fonctions et de l'analyse fonctionnelle[END_REF][START_REF] Bressan | Hyperbolic Systems of Conservation Laws: The One Dimensional Cauchy Problem[END_REF], up to a subsequence, the functions γ 0,ε (resp. γ 1,ε ) converge everywhere to a function γ 0 (resp. γ 1 ) as ε goes to 0. (We take for instance ε = 1 n+1 but shall not write it explicitly for the sake of concision.) Moreover, these two functions satisfy

V x 0 0 (γ 0 ) ≤ K γ 0,ε (0) = Kγ 0 (0), and V 1 x 1 (γ 1 ) ≤ K |γ 1,ε (1)| = K |γ 1 (1)|.
The functions γ 0,ε (resp. γ 1,ε ) are bounded in L ∞ (0, x 0 ) (resp. L ∞ (x 1 , 1)) uniformly w.r.t. ε. Thus, by dominated convergence, the associated functions β 0,ε and β 1,ε converge everywhere to the continuous functions β 0 (x) := x 0 γ 0 (y)dy, and

β 1 (x) := x 1 γ 1 (y)dy. We define β on Ω by β(x) = β 0 (x) in [0, x 0 ], β(x) = β 1 (x) in [x 1 , 1]
, and we design β ε and β to be C 2 on O and such that

| β ′ ε (x)| ≥ min( β ′ (0), | β ′ (1)|), and | β ′ (x)| ≥ min( β ′ (0), | β ′ (1)|), in Ω \ ω 0 , (2.4) and such that β ε| O converges to β | O in C 2 (O).
We have thus obtained the following lemma.

Lemma 2.3. Let ω 0 ⋐ O ⋐ Ω, be open sets, O = (x 0 , x 1 ). Let c in BV(Ω) be of class C 1 in O with 0 < c min ≤ c ≤ c max . Let c ε be piecewise-constant on Ω \ O, and smooth on O such that c -c ε L ∞ (Ω) ≤ ε, V x 0 0 (c ε ) ≤ ϑ 0 , and V 1 x 1 (c ε ) ≤ ϑ 1 , c ε -c C 1 (O) ≤ ε.
There exist weight functions β ε that satisfy the properties listed in Lemma Proof. We treat the case of the operator

∂ t + ∂ x (c ε ∂ x ). The proof is similar for ∂ t - ∂ x (c ε ∂ x ). Call a 1 , . . . , a n-1 the discontinuities of c ε , with a 0 = 0 < a 1 < . . . , a n-1 < a n = 1. We choose 0 < ε 0 < c min and thus 0 < c min -ε 0 ≤ c ε ≤ c max + ε 0 .
In the derivation of Carleman estimate (1.3) (see [START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF]) we consider s > 0, λ > 1 and q ∈ ℵ ε with

ℵ ε = q ∈ C (Q, R); q | [0,T ]×[a i ,a i+1 ] ∈ C 2 ([0, T ] × [a i , a i+1 ]), i = 0, . . . , n -1,
q | Σ = 0, and q satisfies (TC ε,n ), for all t ∈ (0, T ) ,

with q(a - i ) = q(a + i ), c ε (a - i )∂ x q(a - i ) = c ε (a + i )∂ x q(a + i ), i = 1, . . . , n -1. (TC ε,n )
We set ψ ε = e -sη ε q. Since q satisfies transmission conditions (TC n ) we have

ψ ε (t, a - i ) = ψ ε (t, a + i ), (2.5) [c ε ∂ x ψ ε (t, .)] a i = sλϕ ε (t, a i ) ψ ε (t, a i )[c ε β ′ ε ] a i , i = 1, . . . , n -1. (2.6) In each (0, T ) × (a i , a i+1 ), i = 0, . . . , n -1, the function ψ ε satisfies M 1 ψ ε + M 2 ψ ε = f s , with M 1 ψ ε = ∂ x (c ε ∂ x ψ ε ) + s 2 λ 2 ϕ 2 ε (β ′ ε ) 2 c ε ψ ε + s(∂ t η ε )ψ ε , M 2 ψ ε = ∂ t ψ ε -2sλϕ ε c ε β ′ ε ∂ x ψ ε -2sλ 2 ϕ ε c ε (β ′ ε ) 2 ψ ε , f s = e -sη ε f + sλϕ ε (c ε β ′ ε ) ′ ψ ε -sλ 2 ϕ ε c ε (β ′ ε ) 2 ψ ε .
We have

M 1 ψ ε 2 L 2 (Q ′ ) + M 2 ψ ε 2 L 2 (Q ′ ) + 2(M 1 ψ ε , M 2 ψ ε ) L 2 (Q ′ ) = f s 2 L 2 (Q ′ ) . (2.7)
where

Q ′ = (0, T ) × Ω ′ , with Ω ′ = (∪ n-1 i=0 (a i , a i+1 )). With the same notations as in [8, Theorem 3.3], we write (M 1 ψ ε , M 2 ψ ε ) L 2 (Q ′ )
as a sum of 9 terms I i j , 1 ≤ i, j ≤ 3, where I i j is the inner product of the ith term in the expression of M 1 ψ ε and the jth term in the expression of M 2 ψ ε above. For the computation of the terms I i j see [START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF].

The term I 11 follows as

I 11 = 1 2 sλ n-1 i=1 T 0 ∂ t ϕ ε (t, a i )[c ε β ′ ε ] a i |ψ ε (t, a i )| 2 dt
The term I 12 follows as

I 12 = sλ 2 Q ′ ϕ ε (β ′ ε ) 2 |c ε ∂ x ψ ε | 2 dxdt + X 12 + sλ n i=0 T 0 ϕ ε (t, a i ) [β ′ ε |c ε ∂ x ψ ε | 2 (t, .)] a i dt,
where

X 12 = sλ Q ′ ϕ ε (β ′′ ε ) |c ε ∂ x ψ ε | 2 dxdt.
The term I 13 follows as

I 13 = 2sλ 2 Q ′ |c ε ∂ x ψ ε | 2 ϕ ε (β ′ ε ) 2 dxdt + X 13 ,
with

X 13 = 2sλ 2 n-1 i=1 T 0 ϕ ε (t, a i )ψ ε (t, a i ) [(β ′ ε ) 2 c 2 ε ∂ x ψ ε (t, .)] a i dt + 2sλ 3 Q ′ c 2 ε (∂ x ψ ε )ψ ε ϕ ε (β ′ ε ) 3 dxdt + 2sλ 2 Q ′ c ε (∂ x ψ ε )ψ ε ϕ ε (c ε (β ′ ε ) 2 ) ′ dxdt.
The term I 21 follows as

I 21 = -s 2 λ 2 Q ′ c ε ϕ ε (∂ t ϕ ε )(β ′ ε ) 2 |ψ ε | 2 dxdt.
The term I 22 follow as

I 22 = 3s 3 λ 4 Q ′ ϕ 3 ε (β ′ ε ) 4 |c ε ψ ε | 2 dxdt + s 3 λ 3 n-1 i=1 T 0 ϕ 3 ε (t, a i )|ψ ε (t, a i )| 2 [c 2 ε (β ′ ε ) 3 ] a i dt + X 22 , with X 22 = s 3 λ 3 Q ′ ϕ 3 ε (c 2 ε (β ′ ε ) 3 ) ′ |ψ ε | 2 dxdt.
The terms I 23 and I 31 follow as

I 23 = -2s 3 λ 4 Q ′ ϕ 3 ε (β ′ ε ) 4 |c ε ψ ε | 2 dxdt, I 31 = - s 2 Q ′ (∂ 2 t η ε )|ψ ε | 2 dxdt.
The terms I 32 is given by

I 32 = s 2 λ 2 Q ′ ϕ ε (β ′ ε ) 2 c ε (∂ t η ε )|ψ ε | 2 dxdt -s 2 λ 2 Q ′ ϕ ε (∂ t ϕ ε )(β ′ ε ) 2 c ε |ψ ε | 2 dxdt + s 2 λ Q ′ ϕ ε (c ε β ′ ε ) ′ (∂ t η ε )|ψ ε | 2 dxdt + s 2 λ n-1 i=1 T 0 ϕ ε (t, a i )(∂ t η ε )(t, a i )|ψ ε (t, a i )| 2 [c ε β ′ ε ] a i dt.
Finally, the term I 33 follows as

I 33 = -2s 2 λ 2 Q ′ ϕ ε c ε (∂ t η ε )(β ′ ε ) 2 |ψ ε | 2 dxdt.
Adding the nine terms together to form (

M 1 ψ ε , M 2 ψ ε ) L 2 (Q ′ ) in (2.7) leads to (2.8) M 1 ψ ε 2 L 2 (Q ′ ) + M 2 ψ ε 2 L 2 (Q ′ ) + 6sλ 2 Q ′ ϕ ε (β ′ ε ) 2 |c ε ∂ x ψ ε | 2 dxdt + 2s 3 λ 4 Q ′ ϕ 3 ε (β ′ ε ) 4 |c ε ψ ε | 2 dxdt + 2sλ n i=0 T 0 ϕ ε (t, a i ) [β ′ ε |c ε ∂ x ψ ε | 2 (t, .)] a i + [c 2 ε (β ′ ε ) 3 ] a i |sλϕ ε (t, a i )ψ ε (t, a i )| 2 dt = f s 2 L 2 (Q ′ )
-2(I 11 + X 12 + X 13 + I 21 + X 22 + I 31 + I 32 + I 33 ). The terms I 11 , . . . , I 33 on the r.h.s. are terms to be 'dominated'. The 'dominating' volume and surface terms are the terms we kept on the l.h.s. of (2.8).

We shall first treat the 'dominated' volume terms and bound them from above uniformly w.r.t. ε.

With β ′

ε piecewise constant outside O, the term X 12 reduces to

X 12 = sλ (0,T )×O ϕ ε (β ′′ ε ) |c ε ∂ x ψ ε | 2 dxdt,
and we have

|X 12 | ≤ sλC (0,T )×O |∂ x ψ ε | 2 dxdt,
with C uniform w.r.t. ε by lemma 2.3. The absolute value of the volume terms in X 13 can be bounded by [START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF][START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF]]

C δ T 4 sλ 4 Q ϕ 3 ε |ψ ε | 2 dxdt + δsλ 2 Q ϕ ε |∂ x ψ ε | 2 dxdt, δ > 0,
with δ arbitrary small, using

ϕ ε ≤ CT 4 ϕ 3 ε ; the constants C δ is uniform w.r.t. ε. (recall that c ε is piecewise constant outside O and c ε -c C 1 (O) ≤ ε.) Noting that [8, equations (89)-(91)] |∂ t ϕ ε | ≤ T ϕ 2 ε , |∂ t η ε | ≤ T ϕ 2 ε , |∂ 2 tt η ε | ≤ 2T 2 ϕ 3 ε ,
we obtain

|I 21 | ≤ s 2 λ 2 CT Q ϕ 3 ε |ψ ε | 2 dxdt, |I 31 | ≤ sCT 2 Q ϕ 3 ε |ψ ε | 2 dxdt, |I 33 | ≤ s 2 λ 2 CT Q ϕ 3 ε |ψ ε | 2 dxdt,
with the constants uniform w.r.t. ε. Similarly we have

|X 22 | ≤ Cs 3 λ 3 Q ϕ 3 ε |ψ ε | 2 dxdt,
with a constant C uniform w.r.t. ε. Finally, the absolute value of the volume terms in I 32 can be estimated from above by

s 2 λ 2 CT Q ϕ 3 ε |ψ ε | 2 dxdt with a constant C uniform w.r.t. ε.
We shall use the properties of β ε listed in Lemma 2.3 to now estimate from above the 'dominated' surface terms. Lemma 2.5. Let δ > 0. There exists C δ > 0 uniform w.r.t. ε such that the absolute value of the surface terms in I 11 , I 13 and I 32 can be bounded by

C δ (sλT 3 + sλ 3 T 4 + (λ + λ 3 )s 2 T 2 ) n-1 i=1 |Y i -1| T 0 ϕ 3 ε (t, a i )|ψ ε (t, a i )| 2 dt + sλδ n-1 i=1 |Y i -1| T 0 ϕ ε (t, a i ) |(c ε ∂ x ψ ε )(t, a - i )| 2 dt.
Proof. Note first that on the r.h.s. of the open set O (β ′ ε < 0) we either have Observing

X = Y if Y > 1 or X = 2 -Y, if Y < 1. In the first case, Y -X = 0 and Y -X 2 = (1 -Y)Y; in the second case X -Y = 2(Y -1) and Y -X 2 = (Y -1)(4 -Y). On the l.h.s. of O (β ′ ε > 0) we either have X = Y 2Y-1 if Y > 1 or X = Y if Y < 1. In the first case, Y -X = 2Y 2Y-1 (Y -1) and Y -X 2 = 4Y 2 -Y (2Y-1) 2 (Y -1); in the second case Y -X = 0 and Y -X 2 = (1 -Y)Y. Hence, in any case, since 0 < c min -ε 0 c max + ε 0 ≤ Y ≤ c max + ε 0 c min -ε 0 , we obtain that |X -Y| ≤ C|Y -1|
that [c ε β ′ ε ] a i = c ε (a - i )β ′ ε (a + i )(Y i -X i ) we obtain |I 11 | ≤ sλCT 3 n-1 i=1 |Y i -1| T 0 ϕ 3 ε (t, a i )|ψ ε (t, a i )| 2 dt,
with C uniform w.r.t. ε by Lemma 2.3.

To estimate the surface terms in X 13 we write, with a being one of the a i , i = 1, . . . , n-1,

2sλ 2 T 0 ϕ ε (t, a)ψ ε (t, a) [(β ′ ε ) 2 c 2 ε ∂ x ψ ε (t, .)] a dt = 2sλ 2 T 0 ϕ ε (t, a)ψ ε (t, a)c ε (a -)β ′ ε (a + ) 2 (c ε ∂ x ψ ε )(a + )Y -(c ε ∂ x ψ ε )(a -)X 2 dt = 2sλ 2 (Y -X 2 )c ε (a -)β ′ ε (a + ) 2 T 0 ϕ ε (t, a) ψ ε (t, a)(c ε ∂ x ψ ε )(a -) dt + 2s 2 λ 3 (Y -X)Yc 2 ε (a -)β ′ ε (a + ) 3 T 0 ϕ 2 ε (t, a) |ψ ε (t, a)| 2 dt,
where we have used transmission condition (2.6). We thus obtain that the absolute value of the surface terms in X 13 can be estimated uniformly w.r.t. ε by

sλ 2 C n-1 i=1 |Y i -1| T 0 ϕ ε (t, a i ) ψ ε (t, a i )(c ε ∂ x ψ ε )(a - i ) dt + s 2 λ 3 C n-1 i=1 |Y i -1| T 0 ϕ 2 ε (t, a i ) |ψ ε (t, a i )| 2 dt ≤ C δ (sλ 3 T 4 + s 2 λ 3 T 2 ) n-1 i=1 |Y i -1| T 0 ϕ 3 ε (t, a i ) |ψ ε (t, a i )| 2 dt + δsλ n-1 i=1 |Y i -1| T 0 ϕ ε (t, a i ) |(c ε ∂ x ψ ε )(t, a - i )| 2 dt,
for δ > 0 arbitrary small, by Young's inequality and using ϕ 2 ε ≤ Cϕ 3 ε T 2 and ϕ ε ≤ Cϕ 3 ε T 4 . Finally, we estimate the absolute value of the surface terms in I 32 uniformly w.r.t. ε by

s 2 λCT n-1 i=1 |Y i -1| T 0 ϕ 3 ε (t, a i )|ψ ε (t, a i )| 2 dt,
which concludes the proof of Lemma 2.5.

Continuation of the proof of Proposition 2.4.

We now pass to the task of estimating from below the volume and surface 'dominating' terms. We first treat the volume terms, restricting the domain of integration to (Ω \ ω 0 ) × (0, T ). Since

|β ′ ε (x)| ≥ min(β ′ ε (0), |β ′ ε (1)|) = min(β ′ (0), |β ′ (1)|) > 0 on Ω \ ω 0 ,
from the construction we gave above, we obtain

6sλ 2 T 0 Ω\ω 0 ϕ ε (β ′ ε ) 2 |c ε ∂ x ψ ε | 2 dxdt + 2s 3 λ 4 T 0 Ω\ω 0 ϕ 3 ε (β ′ ε ) 4 |c ε ψ ε | 2 dxdt ≥ C sλ 2 T 0 Ω\ω 0 ϕ ε |c ε ∂ x ψ ε | 2 dxdt + s 3 λ 4 T 0 Ω\ω 0 ϕ 3 ε |ψ ε | 2 dxdt ,
where the constant C is uniform w.r.t. ε.

As in the proof of the previous lemma, to treat the surface terms, we write a as one of the a i , i = 1, . . . , n -1. The 'dominating' surface terms in (2.8) are sums of terms of the form

µ := 2sλ T 0 ϕ ε (t, a) [β ′ ε |c ε ∂ x ψ ε | 2 (t, .)] a + [c 2 ε (β ′ ε ) 3 ] a |sλϕ ε (t, a)ψ ε (t, a)| 2 dt.
Applying transmission condition (2.6) we obtain

[β ′ ε |c ε ∂ x ψ ε | 2 (t, .)] a = [β ′ ε ] a |c ε (a -)∂ x ψ ε (t, a -)| 2 + s 2 λ 2 ϕ 2 ε (t, a)β ′ ε (a + )[c ε β ′ ε ] 2 a |ψ ε (t, a)| 2 + 2sλϕ ε (t, a)β ′ ε (a + )[c ε β ′ ε ] a (c ε ∂ x ψ ε )(t, a -)ψ ε (t, a), which gives µ := sλ T 0 ϕ ε (t, a) [β ′ ε ] a |(c ε ∂ x ψ ε )(t, a -)| 2 + β ′ ε (a + )[c ε β ′ ε ] 2 a + [c 2 ε (β ′ ε ) 3 ] a |sλϕ ε (t, a)ψ ε (t, a)| 2 + 2β ′ ε (a + )[c ε β ′ ε ] a (c ε ∂ x ψ ε )(t, a -)(sλϕ ε (t, a)ψ ε (t, a)) dt = sλ T 0 ϕ ε (t, a) Au(t, a), u(t, a) dt, with u(t, a) = ((c ε ∂ x ψ ε )(t, a -), sλϕ ε (t, a)ψ ε (t, a)
) t and the symmetric matrix A given by

A = [β ′ ε ] a β ′ ε (a + )[c ε β ′ ε ] a β ′ ε (a + )[c ε β ′ ε ] a β ′ ε (a + )[c ε β ′ ε ] 2 a + [c 2 ε (β ′ ε ) 3 ] a .
The matrix A is positive definite by Lemma 2.3 and Lemma 1.1. However, we need to estimate its eigenvalues from below, which is the object of the following lemma.

Lemma 2.6. The eigenvalues ν 1 , ν 2 of the matrix A satisfy ν i ≥ C|Y -1|, i = 1, 2, with C uniform w.r.t. ε and i ∈ {1, . . . , n}.

Proof. We have several cases to consider. Consider first the r.h.s. of O, that is in the region where β ′ ε < 0. In the case Y > 1, we have made the choice, X = Y and the matrix A then reduces to

A = β ′ ε (a + )(1 -Y) 0 0 c 2 ε (a -)(β ′ ε (a + )) 3 Y 2 (1 -Y)
. and the result follows (recall that 0 < Y min ≤ Y ≤ Y max , Y min and Y max uniform w.r.t. ε and 0

< c min -ε 0 ≤ c ε ≤ c max + ε 0 and |β ′ ε (a + )| ≥ |β ′ ε (1)| = |β ′ (1)| > 0). In the case Y < 1 we have X = 2 -Y. The matrix A is then equal to A = β ′ ε (a + )(Y -1)A, with A = 1 2c ε (a -)β ′ ε (a + ) 2c ε (a -)β ′ ε (a + ) c 2 ε (a -)(β ′ ε (a + )) 2 (Y 2 + 4) . Observe that det(A) = Y 2 c 2 ε (a -)(β ′ ε (a + )) 2 = c 2 ε (a + )(β ′ ε (a + )) 2 thus det(A) ≥ C 1 > 0 and 0 < tr(A) ≤ C 2 .
The constants are uniform w.r.t. ε. We thus obtain that

ν i ≥ β ′ ε (a + )(Y - 1) C 1
C 2 , i = 1, 2, since ν 1 and ν 2 are both positive by Lemma 2.3 and Lemma 1.1. Consider now the l.h.s. of O, that is in the region where β ′ ε > 0. In the case Y < 1 we made the choice X = Y and the result follows as above. In the case Y > 1 we have

X = Y 2Y-1 . The matrix A is then equal to β ′ ε (a + )(Y -1)A with A = X Y 2αX 2αX α 2 (4X 2 (Y -1) + X 3 Y (8Y 2 -4Y + 1))
,

where α = c ε (a -)β ′ ε (a + ). Observe that det(A) = c 2 ε (a + )(β ′ ε (a + )) 2 1 (2Y-1) 4 ≥ C 1 > 0 and 0 < tr(A) ≤ C 2 .
Thus result thus follows as above.

End of the proof of Proposition 2.4. With the estimations provided above we can absorb the 'dominated' terms by the 'dominating' ones, taking the parameters s and λ sufficiently large. More precisely we obtain 

M 1 ψ ε 2 L 2 (Q ′ ) + M 2 ψ ε 2 L 2 (Q ′ ) + sλ 2 Q ϕ ε e -2sη ε |∂ x q| 2 dxdt + s 3 λ 4 Q ϕ 3 ε e -2sη ε |q| 2 dxdt ≤ C e -sη ε f 2 L 2 (Q ′ ) + Csλ 2 T 0 ω 0 ϕ ε e -2sη ε |∂ x q| 2 dxdt + Cs 3 λ 4 T 0 ω 0 ϕ 3 ε e -2sη ε |q| 2 dxdt, for λ ≥ λ 1 = λ 1 (Ω, O, c), s ≥ s 1 = σ 1 (Ω, O, c, λ 1 )(T + T 2 ),
(2.9) sλ 2 T 0 ω 0 ϕ ε e -2sη ε |∂ x q| 2 dxdt ≤ C e -sη ε f 2 L 2 (Q ′ ) + C s 3 λ 4 +s 2 λ 2 (λ 2 T 2 + T ) + sλ 2 (λT 4 + λT 2 + T 3 ) T 0 O ϕ 3 ε e -2sη ε |q| 2 dxdt.
For λ ≥ λ 1 and s ≥ s 1 , we then obtain

M 1 ψ ε 2 L 2 (Q ′ ) + M 2 ψ ε 2 L 2 (Q ′ ) + sλ 2 Q ϕ ε e -2sη ε |∂ x q| 2 dxdt + s 3 λ 4 Q ϕ 3 ε e -2sη ε |q| 2 dxdt ≤ C e -sη ε f 2 L 2 (Q ′ ) + Cs 3 λ 4 T 0 ω 0 ϕ 3 ε e -2sη ε |q| 2 dxdt,
with the constant C uniform w.r.t. ε. To incorporate the higher order terms on the l.h.s. and obtain Carleman estimate (1.3) we follow the classical procedure (see e.g. [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems application to controllability[END_REF]) which can be done uniformly w.r.t. ε.

For c ε defined as above, converging to c in L ∞ , we shall now analyse the convergence of each term in Carleman estimate (1.3), that holds for the operators

∂ t ± ∂ x (c ε ∂ x ),
as |c ε -c| ∞ goes to zero. For this purpose, we define the following weight functions associated to β by

(2.10) ϕ(x, t) = e λβ(x) t(T -t) , η(x, t) = e λβ -e λβ(x) t(T -t) .
The constant β used is the same used in the definition of η ε in (2.3), since β ε can be chosen uniformly w.r.t. ε as mentioned above.

At first, we consider f ∈ C 1 ([0, T ], L 2 (Ω)), with f (0) ∈ H 1 0 (Ω), and q (weak) solution to

             ∂ t q ± ∂ x (c∂ x q) = f in Q, q = 0
on Σ, q(T, x) = q 0 (x) (resp. q(0, x) = q 0 (x)) in Ω.

(2.11)

We also define q ε as the (weak) solution to

             ∂ t q ε ± ∂ x (c ε ∂ x q ε ) = f in Q, q ε = 0 on Σ, q ε (T, x) = q 0,ε (x) (resp. q ε (0, x) = q 0,ε (x)) in Ω.
(2.12)

The final (resp. initial) conditions are chosen such that

∂ x (c∂ x q 0 ) = µ, and ∂ x (c ε ∂ x q 0,ε ) = µ, with µ ∈ H 1 0 (Ω).
Then we find

q 0 -q 0,ε H 1 0 (Ω) ≤ C c -c ε ∞ µ L 2 (Ω) . (2.13)
For the solutions q and q ε we have the following lemma.

Lemma 2.7. The solutions to (2.11) and (2.12) satisfy q(t, .)q ε (t, .)

L 2 (Ω) + ∂ x q -∂ x q ε L 2 (Q) ≤ C c -c ε ∞ ( f L 2 (Q) + µ L 2 (Ω) ), (2.14) for t ∈ [0, T ] and (2.15) ∂ t q(t, .) -∂ t q ε (t, .) L 2 (Ω) + ∂ x (c∂ x q)(t, .) -∂ x (c ε ∂ x q ε )(t, .) L 2 (Ω) ≤ C c -c ε ∞ ( ∂ t f L 2 (Q) + f (0) L 2 (Ω) + µ L 2 (Ω) ), t ∈ [0, T ].
Proof. We treat here the case of the operators ∂ t -∂ x (c∂ x ) and ∂ t -∂ x (c ε ∂ x ). The other case follows similarly. The solution to (2.11) 

satisfies Q t (∂ t qφ + c∂ x q∂ x φ) dxdt = Q t f φ dxdt, φ ∈ L 2 (0, T, H 1 0 (Ω)), for Q t = (0, t) × Ω, t ∈ [0, T ].
We write a similar weak formulation for the solution to (2.12), from which we obtain (2.16)

Q t (∂ t (q -q ε )φ + c ε ∂ x (q -q ε )∂ x φ) dxdt = Q t (c ε -c)∂ x q∂ x φ dxdt, φ ∈ L 2 (0, T, H 1 0 (Ω)), which with φ = q -q ε yields Q t ( 1 2 ∂ t |q -q ε | 2 + c ε |∂ x (q -q ε )| 2 dxdt = Q t (c ε -c)∂ x q∂ x (q -q ε ) dxdt. It follows that 1 2 q(t) -q ε (t) 2 L 2 (Ω) + (c min -δ) ∂ x (q -q ε ) 2 L 2 (Q) ≤ C δ c ε -c 2 ∞ ∂ x q 2 L 2 (Q) + 1 2 q 0 -q 0,ε 2 L 2 (Ω) ,
which yields (2.14) from a classical energy estimate and (2.13).

From the regularity assumption made on f , q and q ε are in C 1 ([0, T ], L 2 (Ω)). In fact, for q, we can write, by Duhamel's formula [18, Chapter 4, Section 2]

q(t) = S (t)q 0 + t 0 S (t -s) f (s) ds,
where S is the semigroup generated by A = ∂ x (c∂ x ). Since q 0 is in the domain of A, the first term is in C 1 ([0, T ], L 2 (Ω)) (see Theorem 2.4.c in [18, Chapter 1, Section 2]).

The second term, q 2 (t), is differentiable w.r.t. t on [0, T ] with

∂ t q 2 (t) = S (t) f (0) + t 0 S (s)∂ t f (t -s) ds,
which is continuous on [0, T ] using the continuity of S (t) and the uniform continuity

of ∂ t f in L 2 (Ω) on [0, T ].
Consider now p = ∂ t q. Then the function p is solution to

             ∂ t p -∂ x (c∂ x p) = ∂ t f in Q, p = 0 on Σ, p(0, x) = µ + f (0)
in Ω.

(2.17)

Similarly p ε = ∂ t q ε is solution to              ∂ t p ε -∂ x (c ε ∂ x p ε ) = ∂ t f in Q, p ε = 0 on Σ, p ε (0, x) = µ + f (0)
in Ω.

(

Thus p(0, .) and p ε (0, .) are in H 1 0 (Ω), since f (0) ∈ H 1 0 (Ω). With the previous procedure we obtain

p(t, .) -p ε (t, .) L 2 (Ω) + ∂ x p -∂ x p ε L 2 (Q) ≤ C c -c ε ∞ ( ∂ t f L 2 (Q) + f (0) L 2 (Ω) + µ L 2 (Ω) ), t ∈ [0, T ],
which yields (2.15).

To study the convergence of the term

Q e -2sη ε ϕ 3 ε |q ε | 2 dxdt in the Carleman estimate for the operators ∂ t ± ∂ x (c ε ∂ x ), we write Q e -2sη ϕ 3 |q| 2 dxdt - Q e -2sη ε ϕ 3 ε |q ε | 2 dxdt ≤ Q |e -2sη ϕ 3 -e -2sη ε ϕ 3 ε | |q ε | 2 dxdt + Q e -2sη ε ϕ 3 ε |q| 2 -|q ε | 2 dxdt ≤ Q |e -2sη ϕ 3 -e -2sη ε ϕ 3 ε | |q ε | 2 dxdt + Q e -2sη ε ϕ 3 ε |q -q ε | (|q| + |q ε |)dxdt,
which converges to zero by Cauchy-Schwarz inequalities and dominated convergence.

Recall that β ε converges everywhere to β and thus e -2sη ε and ϕ ε converge everywhere to e -2sη and ϕ.

Similar arguments yield the following convergences, using Lemma 2.7,

lim ε→0 Q e -2sη ε ϕ ε |∂ x q ε | 2 dxdt = Q e -2sη ϕ |∂ x q| 2 dxdt. lim ε→0 Q e -2sη ε ϕ -1 ε (|∂ t q ε | 2 + |∂ x (c ε ∂ x q ε )| 2 ) dxdt = Q e -2sη ϕ -1 (|∂ t q| 2 + |∂ x (c∂ x q)| 2 ) dxdt.
In the case µ ∈ H 1 0 (Ω) and f ∈ C 1 ([0, T ], L 2 (Ω)), with f (0) ∈ H 1 0 (Ω), from the Carleman estimate associated to q ε and the operators ∂ t ± ∂ x (c ε ∂ x ), we thus obtain that (1.3) holds for q and ∂ t ±∂ x (c∂ x ) with the same constants C, s 1 and λ 1 . With such an estimate at hand, we can now relax the assumptions made on the final (resp. initial) condition and on the function f , by a density argument.

Hence, with the convergence results above, Proposition 2.4, Carleman estimate (1.3) and Remark 1.3, we have proven 

λ 1 = λ 1 (Ω, O) > 0, s 1 = s 1 (λ 1 , T ) > 0 and a positive constant C = C(Ω, O) so that Carleman estimate (1.3) holds for s ≥ s 1 , λ ≥ λ 1 and for all q (weak) solution to              ∂ t q ± ∂ x (c∂ x q) = f in Q, q = 0 on Σ, q(T, x) = q 0 (x) (resp. q(0, x) = q 0 (x)) in Ω,
with q 0 ∈ L 2 (Ω) and f ∈ L 2 (Q). The weight functions used are those defined in (2.10) and Lemma 2.3. Remark 2.9. Similarly, for c in BV(Ω), we can obtain a Carleman estimate with a side observation, say in {0}, i.e. an estimate of the form

(2.19) s -1 Q e -2sη ϕ -1 (|∂ t q| 2 + |∂ x (c∂ x q)| 2 ) dxdt + sλ 2 Q e -2sη ϕ |∂ x q| 2 dxdt + s 3 λ 4 Q e -2sη ϕ 3 |q| 2 dxdt ≤ C sλ T 0 ϕ(t, 0)e -2sη(t,0) |∂ x q| 2 (t, 0) dt + Q e -2sη | f | 2 dxdt , for s ≥ s 1 , λ ≥ λ 1 .
The proof is similar and makes use of such a Carleman estimate for a piecewise-C 1 coefficient proven in [START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications[END_REF][START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF]. Note however that to obtain (2.19), we need not assume that c is of class C 1 in some inner region of Ω.

A Carleman estimate for the heat equation with a right-hand side in L 2 (0, T, H -1 (Ω))

Following [START_REF] Imanuvilov | Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications[END_REF], from Theorem 2.8, we can derive a Carleman estimate for (1) in the case of a r.h.s., f , in H -1 . Such a estimate will be used in the next section to obtain controllability results for classes of semilinear parabolic equations.

We set

ℵ ± = q ∈ C ([0, T ], H 1 0 (Ω)); q(t) ∈ D(A) for all t ∈ [0, T ] and ∂ t q ± ∂ x (c∂ x q) = F 0 + ∂ x F 1 with F 0 , F 1 ∈ L 2 (Q) .
In the case of a diffusion coefficient c in BV, yet C 1 in some open region, we have 

(3.1) sλ 2 Q e -2sη ϕ |∂ x q| 2 dxdt + s 3 λ 4 Q e -2sη ϕ 3 |q| 2 dxdt ≤ C s 3 λ 4 (0,T )×O e -2sη ϕ 3 |q| 2 dxdt + Q e -2sη |F 0 | 2 dxdt + s 2 λ 2 Q e -2sη ϕ 2 |F 1 | 2 dxdt , for s ≥ s 2 , λ ≥ λ 2
and for all q ∈ ℵ ± .

The proof can be adapted from the proof given in [10, Lemma 2.1]. We only highlight the main points in the proof.

Proof. We treat the case of q ∈ ℵ + with ∂ t q + ∂ x (c∂ x q) = F 0 + ∂ which is a scalar product on P 0 = C 2 ([0, T ], D(A)) from Carleman estimate (1.3). We denote by P the Hilbert space defined as the completion of P 0 for the norm p P = (κ(p, p)) 1/2 . We find, from Riesz Theorem, that there exists a unique p ∈ P such that κ(p, p ′ ) = l(p ′ ), ∀p ′ ∈ P, (3.3) where l is the continuous form on P defined by l(p ′ ) = -s 3 λ 4 Q e -2sη ϕ 3 qp ′ dxdt. Observe that the elements of P are functions in Q for which the l.h.s. of (1.3) is finite. In particular observe that e -sη p ∈ L 2 (Q) and e -sη ϕ -1/2 L * p ∈ L 2 (Q) .

If we now solve the parabolic problem

             Lẑ = +s 3 λ 4 e -2sη ϕ 3 (p1 O + q) in Q, ẑ = 0 on Σ, ẑ(0) = 0 in Ω,
there is a unique weak solution ẑ ∈ L 2 (0, T, H 1 0 (Ω)) ∩ C ([0, T ], L 2 (Ω)) [START_REF] Lions | Problèmes aux limites non homogènes[END_REF]. We now observe that ẑ = -e -2sη L * p from (3.3). Since e -sη ϕ -1/2 L * p ∈ L 2 (Q), we then have ẑ(T ) = 0, because ẑ ∈ C ([0, T ], L 2 (Ω)). The function p defined above is thus a weak solution to

             L(e -2sη L * p) = -s 3 λ 4 e -2sη ϕ 3 (p1 O + q) in Q, p = 0, e -2sη L * p = 0 on Σ, (e -2sη L * p)(0) = (e -2sη L * p)(T ) = 0 in Ω.
Introducing û = s 3 λ 4 e -2sη ϕ 3 p1 O , and G = s 3 λ 4 e -2sη ϕ 3 q + û, we note that

             Lẑ = G in Q, ẑ = 0 on Σ, ẑ(0) = ẑ(T ) = 0 in Ω.
From the equation satisfied by q ∈ ℵ + we obtain

T 0 G(t), q(t) dt = - T 0 F 0 (t) + ∂ x F 1 (t), ẑ(t) , (3.4) 
where ., . denotes the duality brackets for H 1 0 (Ω) and H -1 (Ω). Noting that the function β, and the weight functions ϕ and η are in W 1,∞ w.r.t. the space variable, we can follow the proof of Lemma 2.1 in [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems application to controllability[END_REF] to prove

(3.5) s -3 λ -4 (0,T )×O e 2sη ϕ -3 |û| 2 dxdt + Q e 2sη |ẑ| 2 dxdt + s -2 λ -2 Q e 2sη ϕ -2 |∂ x ẑ| 2 dxdt ≤ Cs 3 λ 4 Q e -2sη ϕ 3 |q| 2 dxdt, for s ≥ s ′ 2 (T + T 2
) and λ ≥ λ ′ 2 (Inequality (2.20) in [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems application to controllability[END_REF]). From (3.5) and (3.4), we first obtain (see [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems application to controllability[END_REF])

(3.6) s 3 λ 4 Q e -2sη ϕ 3 |q| 2 dxdt ≤ C         s 3 λ 4 (0,T )×O e -2sη ϕ 3 |q| 2 dxdt + Q e -2sη |F 0 | 2 dxdt + s 2 λ 2 Q e -2sη ϕ 2 |F 1 | 2 dxdt         , for s ≥ s ′′ 2 (T + T 2 ) and λ ≥ λ ′′ 2 .
To obtain the first term on the l.h.s. of (3.1) we multiply ∂ t q + ∂ x (c∂ x q) = F 0 + ∂ x F 1 by e -2sη ϕq and we integrate over Q. This then yields

(3.7) - 1 2 Q ∂ t (e -2sη ϕ)|q| 2 dxdt - Q e -2sη ϕc|∂ x q| 2 dxdt - Q ∂ x (e -2sη ϕ)cq∂ x q dxdt = Q F 0 e -2sη ϕq -F 1 ∂ x (e -2sη ϕq) dxdt.
As the function β, and the weight functions ϕ and η are in W 1,∞ w.r.t. the space variable, the integration by part w.r.t. the space variable is justified since q(t, .) ∈ D(A). We observe that

|∂ x (e -2sη ϕ)| = |sλ(∂ x β)ϕ 2 e -2sη + λ(∂ x β)ϕe -2sη | ≤ Csλϕ 2 e -2sη + λϕe -2sη , a.e. in Ω, which yields Q ∂ x (e -2sη ϕ)cq∂ x q dxdt ≤ ε Q ϕe -2sη |∂ x q| 2 dxdt + C ε s 2 λ 2 Q ϕ 3 e -2sη |q| 2 dxdt + C ε λ 2 Q ϕe -2sη |q| 2 dxdt,
for any ε > 0. Next, we estimate the first term on the l.h.s. of (3.7) and the r.h.s. of (3.7), as in [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems application to controllability[END_REF], to obtain

Q ∂ t (e -2sη ϕ)|q| 2 dxdt ≤ Cs 2 Q ϕ 3 e -2sη |q| 2 dxdt,
and

Q F 0 e -2sη ϕq -F 1 ∂ x (e -2sη ϕq) dxdt ≤ Cs 2 λ 2 Q ϕ 3 e -2sη |q| 2 dxdt + +ε Q ϕe -2sη |∂ x q| 2 dxdt + Cs -2 λ -2 Q ϕ -1 e -2sη |F 0 | 2 dxdt + (C + C ε ) Q ϕe -2sη |F 1 | 2 dxdt,
for any ε > 0 and for s ≥ C(T + T 2 ). Using 1 ≤ CϕT 2 , and taking ε sufficiently small, we obtain

Q ϕe -2sη |∂ x q| 2 dxdt ≤ C         s 2 λ 2 Q e -2sη ϕ 3 |q| 2 dxdt +s -1 λ -2 Q e -2sη |F 0 | 2 dxdt + s Q e -2sη ϕ 2 |F 1 | 2 dxdt         , for s ≥ s ′′′ 2 (T + T 2 ) and λ ≥ λ ′′′ 2 .
This last estimate, along with (3.6), gives the desired Carleman estimate.

Controllability results

The Carleman estimate proven in Section 3 allows to give observability estimates that yield null controllability results for classes of semilinear heat equations. We let ω ⋐ Ω We first state observability results with L 2 and L 1 observations. We let a and b be in L ∞ (Q) and q T ∈ L 2 (Ω). From Carleman estimate (3.1) we obtain 

             -∂ t q -∂ x (c∂ x q) + aq -∂ x (bq) = 0 in Q, q = 0 on Σ, q(T ) = q T in Ω, (4.1) satisfies q(0) 2 L 2 (Ω) ≤ e CK(T, a ∞ , b ∞ ) (0,T )×ω |q| 2 dxdt, (4.2) where K(T, a ∞ , b ∞ ) = 1 + 1 T + T a ∞ + a 2/3 ∞ + (1 + T ) b 2 ∞ .
The proof of this lemma can be found in [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems application to controllability[END_REF][START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF][START_REF] Doubova | On the controllability of parabolic systems with a nonlinear term involving the state and the gradient[END_REF]. From Lemma 4.1, we can then obtain the following observability results with an L 1 observation, which will yield controls in L ∞ ((0, T ) × ω) below.

Lemma 4.2. The solution q to system (4.1) satisfies 

q(0) 2 L 2 (Ω) ≤ e CH(T, a ∞ , b ∞ ) (0,T )×ω |q| dxdt 2 , (4.3) where H(T, a ∞ , b ∞ ) = 1 + 1 T + T + (T + T 1/2 ) a ∞ + a 2/3 ∞ + (1 + T ) b 2 ∞ . ( 4 

Consider now the following linear

system              ∂ t y -∂ x (c∂ x y) + ay + b∂ x y = 1 ω v in Q, y = 0 on Σ, y(0) = y 0 in Ω, (4.5) 
with a and b in L ∞ (Q) and y 0 ∈ L 2 (Ω). If v ∈ L 2 (Q), we consider its unique weak solution in C ([0, T ], L 2 (Ω)) ∩ L 2 (0, T, H 1 0 (Ω)) [START_REF] Lions | Problèmes aux limites non homogènes[END_REF][START_REF] Brezis | Analyse fonctionnelle[END_REF]. We have the following null controllability result for (4.5) Theorem 4.3. For all T > 0 and for all y 0 in L 2 (Ω), there exists v ∈ L ∞ ((0, T ) × ω), such that the solution y v to (4.5) satisfies y v (T ) = 0. Moreover, the control v can be chosen such that

v L ∞ ((0,T )×ω) ≤ e CH(T, a ∞ , b ∞ ) y 0 L 2 (Ω) , (4.6) with H(T, a ∞ , b ∞ ) as given in (4.4).
The proof of Theorem 3.1 in [START_REF] Doubova | On the controllability of parabolic systems with a nonlinear term involving the state and the gradient[END_REF] can be adapted to the present case. It is based on the argument developed in [START_REF] Fabre | Approximate controllability of the semilinear heat equation[END_REF]. It makes use of the observability result in Lemma 4.2.

For the null controllability of the quasi-linear heat equation we shall need estimates for the solution to the following linear system

             ∂ t y -∂ x (c∂ x y) + ay + b∂ x (y) = f in Q, y = 0 on Σ, y(0) = y 0 in Ω, (4.7) 
with a and b in L ∞ (Q) and y 0 ∈ L 2 (Ω), f ∈ L 2 (Q). We have the following classical estimates.

Lemma 4.4. The solution y to system (4.7) satisfies

(4.8) y(t) 2 L 2 (Ω) + ∂ x y 2 L 2 (Q) + y 2 L 2 (Q) ≤ K 1 (T, a ∞ , b ∞ )( f 2 L 2 (Q) + y(0) 2 L 2 (Ω) ), for 0 ≤ t ≤ T , with K 1 (T, a ∞ , b ∞ ) = e C(1+T +T a ∞ +T b 2 ∞ ) . If y 0 ∈ H 1 0 (Ω) then, y ∈ C ([0, T ], H 1 0 (Ω)) and (4.9) ∂ x y(t) 2 L 2 (Ω) + ∂ t y 2 L 2 (Q) + ∂ x (c∂ x y) 2 L 2 (Q) ≤ K 2 (T, a ∞ , b ∞ )( f 2 L 2 (Q) + y(0) 2 H 1 0 (Ω) ), 0 ≤ t ≤ T, with K 2 (T, a ∞ , b ∞ ) = e C(1+T +(T +T 1/2 ) a ∞ +(T +T 1/2 ) b 2 ∞ ) .
With further regularity on f and y 0 we actually obtain Lemma 4.5. Let f ∈ L ∞ (0, T, L 2 (Ω)) and y 0 ∈ D(A). The solution y to system (4.7) satisfies

∂ x y(t) L ∞ (Ω) ≤ K 3 (T, a ∞ , b ∞ )( f L ∞ (0,T,L 2 (Ω)) + y D(A) ), (4.10) with K 3 (T, a ∞ , b ∞ ) = e C(1+T +(T +l s (T )) a ∞ +(T +l s (T ) 2 ) b 2 ∞ ) , (4.11) 
for l a non-negative increasing function such that l(0) = 0. More precisely, l S (t)

= t 0 ( 1 t + 1 √ t ) s ( 1 √ t ) 1-s dτ with 1 2 < s < 1.
The domain of A = ∂ x (c∂ x ), D(A), is furnished with the norm of the graph denoted by . D(A) . Note that in the proof we make use of the fact that Ω is one-dimensional.

Proof. We first recall some properties of the semigroup S (t) generated by A = ∂ x (c∂ x ).

Consider the system

             ∂ t u -∂ x (c∂ x u) = 0 in Q, u = 0 on Σ, u(0) = u 0 in Ω, (4.12) 
with u 0 ∈ L 2 (Ω). The solution is given by u(t) = S (t)u 0 . Since the semigroup S (t) is analytic, we have [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF][START_REF] Brezis | Analyse fonctionnelle[END_REF] 

u(t) L 2 (Ω) ≤ u 0 L 2 (Ω) , and 
Au(t) L 2 (Ω) ≤ 1 t u 0 L 2 (Ω) , 0 < t ≤ T. We can then write |(Au(t), u(t)) L 2 (Ω) | ≤ 1 t u 0 L 2 (Ω) u(t) L 2 (Ω) ≤ 1 t u 0 2 L 2 (Ω)
, 0 < t ≤ T, which by integration by parts yields The solution to (4.7) can be written by Duhamel's formula [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] y(t) = S (t)y 0 + For the first term in (4.14), y 1 (t) = S (t)y 0 , we have Ay 1 (t) = S (t)Ay 0 [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF], which yields A(y 1 )(t) L 2 (Ω) ≤ A(y 0 ) L 2 (Ω) .

c∂ x u(t) L 2 (Ω) ≤ 1 √ t u 0 L 2 (Ω) , 0 < t ≤ T. As c∂ x u(t) H 1 (Ω) ≤ ( 1 t + 1 √ t ) u 0 L 2 (Ω) , the interpolation inequality [17] φ H s (Ω) ≤ φ s H 1 (Ω) φ 1-s L 2 (Ω) , for 0 ≤ s ≤ 1,
By Lemma 4.4, we have c∂ x y 1 L 2 (Ω) ≤ e C(1+T ) ≤ l s (t) a ∞ K 1 (T, a ∞ , b ∞ ) ( f L 2 (Q) + y(0) L 2 (Ω) ), by Lemma 4.4. Observe that the function l s is increasing. This yields c∂ x y 3 (t) H s (Ω) ≤ e C(1+T +(T +l s (T )) a ∞ +T b ∞ ) ( f L 2 (Q) + y(0) L 2 (Ω) ). (4.17) Finally, for the fourth term, y 4 , in (4.14) we have (4.18) 

c∂ x y 4 (t) H s (Ω) ≤ Cl s (t) b ∞ ∂ x y L ∞ (0,T,L 2 (Ω)) ≤ l s (t) b ∞ K 2 (T, a ∞ , b ∞ )( f L 2 (Q) + y(0) H 1 0 (Ω)
) ≤ e C(1+T +(T +T 1/2 ) a ∞ +(T +l s (T ) 2 ) b 2 ∞ ) .

Collecting estimates (4.15), (4.16), (4.17), and (4.18) we obtain c∂ x y(t) H s (Ω) ≤ e C(1+T +(T +l s (T )) a ∞ +(T +l s (T ) 2 ) b 2 ∞ ) ( f L ∞ (0,T,L 2 (Ω)) + y 0 D(A) ). (4.19) Since the space H s (Ω) can be continuously injected in C (Ω) because Ω is one dimensional (see e.g. [START_REF] Lions | Problèmes aux limites non homogènes[END_REF]), for s > 1 2 , the result follows, since c ≥ c min > 0.

We are now ready to prove the null controllability result for system (2) which is based on a fixed point argument. 1. Local null controllability: There exists ε > 0 such that for all y 0 in L 2 (Ω) with y 0 L 2 (Ω) ≤ ε, there exists a control v ∈ L ∞ ((0, T ) × ω) such that the corresponding solution to system (2) satisfies y(T ) = 0.

2. Global null controllability: Let G satisfy in addition Assumption 1. Then for all y 0 in L 2 (Ω), there exists v ∈ L ∞ ((0, T ) × ω) such that the solution to system (2) satisfies y(T ) = 0.

The proof is classical and is along the same lines as those that in [START_REF] Doubova | On the controllability of parabolic systems with a nonlinear term involving the state and the gradient[END_REF][START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] and originates from [2,[START_REF] Fernández-Cara | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF].

Proof. We first assume that g and G are continuous. We let R > 0 and set Z = L 2 (0, T, H 1 0 (Ω)). The truncation function T R is defined as

T R (s) =        s if |s| ≤ R, R sgn(s) otherwise.
For z ∈ Z we consider the following linear system Since g and G are continuous, we see that the functions a z := g(T R (z), T R (∂ x z)) and b z := G(T R (z), T R (∂ x z)) are in L ∞ (Q) and have bounds in L ∞ that only depends on g, G, and R. If y 0 ∈ L 2 (Ω) and if v = 0 for t ∈ [0, δ], δ > 0, we obtain y z,v (δ) ∈ D(A). Without any loss of generality we may thus assume that y 0 ∈ D(A). We apply Theorem 4.3 to system (4.20). We set

T z = min(T, a z -2/3 ∞ , a z -1/3 ∞ , l -1 s ( a z -1/3 ∞ )),
with the function l s defined in Lemma 4.5. Then we have 

e CH(T z , a z ∞ , b z ∞ ) ≤ K, K 2 (T z , a z ∞ , b z ∞ ) ≤ K, K 3 (T z , a z ∞ , b z ∞ ) ≤ K,

|(y 1

 1 ,y 2 )|→∞ |g(y 1 , y 2 )| ln 3/2 (1 + |y 1 | + |y 2 |) = 0, lim |(y 1 ,y 2 )|→∞ |G(y 1 , y 2 )| ln 1/2 (1 + |y 1 | + |y 2 |) = 0. (3)

Figure 2

 2 compares the proposed solution to the optimal one.

1 XFigure 2 :Figure 3 :

 123 Figure 2: Graph of the optimal solution g(Y) (thick) and graph of the proposed solution (thin) in the case β ′ < 0.

  and |Y -X 2 | ≤ C|Y -1| with the constant C uniform w.r.t. ε and w.r.t. the considered point of discontinuity of c ε .

Theorem 2 . 8 .

 28 Let O ⋐ Ω be a non-empty open set and c ∈ BV(Ω) with 0 < c min ≤ c ≤ c max and c of class C 1 in O. There exists

Theorem 3 . 1 .

 31 Let O ⋐ Ω be a non-empty open set and c ∈ BV(Ω) with 0 < c min ≤ c ≤ c max and c of class C 1 in O. There exists λ 2 = λ 2 (Ω, O, c) > 0, s 2 = s 2 (Ω, O, c, λ 2 , T ) > 0 and a positive constant C = C(Ω, O, c) so that the following estimate holds

F 1 .

 1 The other case can be treated similarly. With the notations L = ∂ t -∂ x (c∂ x ) and L * = -∂ t -∂ x (c∂ x ), we define the bilinear form κ(p, p ′ ) = Q e -2sη L * pL * p ′ dxdt + s 3 λ 4 (0,T )×O e -2sη ϕ 3 pp ′ dxdt, (3.2)

  be a non-empty open set and c ∈ BV(Ω) with 0 < c min ≤ c ≤ c max and c of class C 1 on O, with O some open subset of ω.

Lemma 4 . 1 .

 41 The solution q to

. 4 )

 4 Since the coefficient c is C 1 on the open set ω, the proof of [7, Theorem 2.5, Lemma 2.5] can be adapted. See also [8, Proposition 4.2, Lemma 4.3].

t 0 S 0 S 0 S

 000 (tτ) f (τ) dτ -t (tτ) (ay)(τ) dτ -t (tτ) (b∂ x y)(τ) dτ.

  t) dτ f L ∞ (0,T,L 2 (Ω)) = l s (t) f L ∞ (0,T,L 2 (Ω)) . (4.16)For the third term, y 3 , in (4.14) we havec∂ x y 3 (t) H s (Ω) ≤ t 0 c∂ x (S (tτ) (ay)(τ)) H s (Ω) dτ ≤ t 0 h s (t) ay(τ) L 2 (Ω) dτ ≤ l s (t) a ∞ y L ∞ (0,T,L 2 (Ω))

Theorem 4 . 6 .

 46 We let ω ⋐ Ω be a non-empty open set and c ∈ BV(Ω) with 0 < c min ≤ c ≤ c max and c of class C 1 on some non-empty open subset of ω. We assume that G is locally Lipschitz. Let T > 0:

     ∂ t y z,v -∂ x (c∂ x y z,v ) + g(T R (z), T R (∂ x z))y z,v + G(T R (z), T R (∂ x z))∂ x y z,v = 1 ω v in Q, y z,v = 0 on Σ, y z,v (0) = y 0 in Ω,(4.20)

3 ∞ + b z 2 ∞

 32 with K = e (C(T z )(1+ a z 2/)) , for H, K 2 and K 3 the constants in (4.6), (4.9), and (4.11). According to Theorem 4.3, there exists v z in L ∞ (Q) such that v z and the associated solution to (4.20), with v = v z satisfy y z,v (T ) = 0 and(4.21) v z L ∞ ((0,T )×ω) ≤ H y 0 L 2 (Ω) , (4.22) y z,v L ∞ (0,T,W 1,∞ (Ω)) ≤ H y 0 D(A) ,

  with σ 1 , λ 1 and C uniform w.r.t. ε. As in [8, Estimate (100)], we have the following estimate, uniformly w.r.t. ε, because of the properties of β ε on O (see Lemma 2.3)

  yields c∂ x u(t) H s (Ω) ≤ h s (t) u 0 L 2 (Ω) .

	(4.13)	
	with h s (t) = ( 1 t + 1 √ t ) s ( 1 √ on [0, T ].	2 . We choose 1 2 < s < 1. Then h s (t) is integrable t ) 1-s ∼ t→0 t -s+1

  y 0 H 1 0 (Ω) , which gives (4.15)c∂ x y 1 (t) H 1 (Ω) ≤ e C(1+T ) y 0 D(A) .For the second term, y 2 , in (4.14) we have c∂ x y 2 (t) H s (Ω) ≤

t 0 c∂ x (S (tτ) f (τ)) H s (Ω) dτ ≤ t 0 h s (tτ) f (τ) L 2 (Ω) dτ by (4.13). We set l s (t) = t 0 h s (tτ)dτ = t 0 h s (τ)

dτ, and obtain c∂ x y 2 (t) H s (Ω) ≤
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with H of the same form as K, by Lemma 4.4 and Lemma 4.5, making use of the continuous injection H 1 0 (Ω) ֒→ L ∞ (Ω) in the one-dimensional case. Observe also that we have (4.23)

, by Lemma 4.4. We now set

The map z → Λ(z) from Z into P(Z), the power set of Z, satisfies the following properties 1. for all z ∈ Z, Λ(z) is a non-empty bounded closed convex set. Boundedness is however uniform w.r.t. to z (and only depends on R);

adapting the method of [7, pages 811-812] to the present case, we obtain that the map Λ is upper hemicontinuous; the argument uses the continuity of g and G.

These properties allow us to apply Kakutani's fixed point theorem [1, Theorem 1, Chapter 15, Section 3] to the map Λ.

Result 1 follows by choosing ε sufficiently small such that the (essential) supremum on Q of the obtained fixed point is less than R by (4.22).

Result 2 follows if we prove that R can be chosen greater that the (essential) supremum on Q of the obtained fixed point. This is done exactly as in [7, page 813] and makes use of the form of H, estimate (4.22) and Assumption 1 on G .

To treat the case where g and G are not continuous, we adapt the argument of [7, Section 3.2.1] to the present cases, for both the local and global controllability results.

Arguing as in [START_REF] Fursikov | Controllability of evolution equations[END_REF] or e.g. [START_REF] Doubova | On the controllability of parabolic systems with a nonlinear term involving the state and the gradient[END_REF] we can actually prove the following null controllability result with a boundary control from Theorem 4.6 :

Theorem 4.7. We let c ∈ BV(Ω) with 0 < c min ≤ c ≤ c max . We assume that G is locally Lipschitz. Let γ be {0} or {1}. Let T > 0. satisfies y(T ) = 0.

Local null controllability