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Abstract

We derive global Carleman estimates for one-dimensional linear plaramua-
tions d; + d«(Cdx) with a codficient of bounded variations. These estimates are
obtained by approximating by piecewise constant cfiients,c,, and passing

to the limit in the Carleman estimates associated to the operators definec with
Such estimates yields observability inequalities for the considered linestvqiar
equation, which, in turn, yield controllability results for classessefmi-linear
equations.

AMS 2000 subject classification93B05; 93B07; 35K05; 35K55.
Keywords: Carleman estimate, observability, non-smoothfiécients, parabolic
equations, control.

Introduction and settings

We consider the elliptic operatdxformally defined by-dy(cdyx) on L?(Q) in the one-
dimensional bounded domaih= (0, 1) c R. The difusion codficientcis assumed to
be of bounded variation8Y/). The domain ofA is given by

D(A) = {u € H3(Q); caxu e HY(Q)},

i.e., we consider Dirichlet boundary conditions.

We letT > 0. We shall use the following notatior3 = (0,T) x Q, I" = {0, 1}, and
>=(0,T)xT.

We shall first study the following linear parabolic problems
(1) ) ) .
¥(0.%) = yo(x) (resp.y(T,X) = yr(x)) inQ,

*LATP, 39 rue F. Joliot-Curie, 13453 Marseille cedex 13.

{Bty +Ay=f in Q,




for yo € L2(Q) andf € L?(Q).

Here, we show that we can achieylebal Carleman estimates for the operatdys A,
in Q, with an interior observation region,(D) x w, wherew € Q with a non-empty
interior, and such thatis of class¢™ in some open subset of

With a Carleman estimate f@k + d«x(cdy) at hand, we treat the problem of the null
controllability for semi-linear parabolic systems of thogrh
Oty — 0x(COxY) + 4 (v, dyxy) = 1,v inQ,
2) y(t,x) =0 onz,
(0, %) = Yo(X) inQ,
where? : R? — R is locally Lipschitz and#(0, 0) = 0. In this case, we have

G(Y1.¥2) = Y1 9(Y1.¥2) + Y2 G(y1.Y2), Y1.¥2 €R.
with g andG in L (R?). We shall assume

Assumption 1. The functiongg andG satisfy

l9(y1. y2)| 3 . IG(y1, y2)| B
(3) 3/2 =0, 12 -
Iyry2)l=eo INZ4(1 + |y1] + |y2l) Iyy2)l=eo INY4(1 + |yq| + |y2l)

Under such an assumption we shall prove the complete nutratability for sys-
tem (2), i.e., that for all positive tim& and for allyy € L?(Q), there exists a control
v € L®(Q) such that the solution satisfigf') = 0. We also prove the controllability of
system (2) in the case where the control acts through oneedfghindary conditions,
at 0 or 1. Then, we need not require the fi@&éntc to be of classs™ in some inner
region ofQQ. More generally, we can address the question of the coaititly to the
trajectories.

A null controllability result for alinear parabolic equation witlBV codficients was
proven in [12]. The proof relies on Russell's method [19].wéwer, the question of
the existence of a Carleman-type observability estimateap&n. The present article,
providing a Carleman estimate allows to treat the case oilise@r equations follow-
ing the (fix-point) method of [2, 11] (generalized in [7]). reoreview of the role played
by Carleman estimates in establishing controllabilitytessfor parabolic equations we
refer to [10].

Carleman estimates for parabolic equations in severalriioes with smooth cdk-
cients were proven in [13]. The proof is based on the constmuof suitable weight
functionspB whose gradient is non-zero in the complement of the observaggion.

In particular the functior is chosen to be smooth. In [8], the authors treat the case
of piecewise regular cdigcients and introduce non-smooth weight functions assuming
that they satisfy thesame transmission condition as the solutiofo obtain observ-
ability, they have to add some assumption on the monotgnitithe codficients. In

the one-dimensional case, this monotonicity assumptiohnetaxed in [4, 3], by in-
troducing additional requirements on the non-smooth wtefighction 5. In several
dimensions, the existence of a Carleman estimate when thetordcity condition is

not satisfied is an open question.

The Carleman estimates derived here for the opefatod,(cdy) are obtained through
a limiting process from the Carleman estimates associatéifo4(c.dy), for c. piece-
wise constant converging © The main issue in this limiting process is to keep both



the weight functions and constants in the Carleman estiomader control. Section 2
of the present article is devoted to this question.

The approximation of th&V cosdficientc by some piecewise cfiicientc, is closely
related to numerical methods. The techniques developeddueld also be applied in
the numerical analysis of discrete type estimates of tha fufrCarleman estimates.

The outline of the article is as follows. In Section 1, we tettee Carleman estimate
obtained in [4, 3] for piecewise continuous @dgents (Theorem 1.2) and especially
the form of the weight functions in the estimate (Lemma 1.@he results of this
section are not essential as we revisit the arguments ugedie them in the following
section.) In Section 2, we construct limit weight functidmg approaching théV
codficientc by piecewise constant cfiientsc, (Lemma 2.3). In Theorem 2.8, we
prove a Carleman estimate associatedta: dy(cox) by proving that the constants
in the Carleman estimate & + d«(c.0x) can be taken uniform with respect to the
parametek (Proposition 2.4) and passing to the limit in each term ofdsmate. In
Section 3, we derive a Carleman estimate for the linear syét¢ with the r.h.s.f, in
L2(0, T, H™1(Q)). This estimate is needed for the analysis of the contuiity of the
semilinear system (2), which is carried out in Section 4.

In this article, when the consta@tis used, its value may change from one line to the
other. If we want to keep track of the value of a constant wél sisa another letter.
We denote the jump of a functign at some poink € (0, 1), by [o]x := p(x*) — p(X7),
with the conventionsd]; = —p(17) and Jog] = p(0*).

1 Carleman estimate in the case of a piecewise % coefficient

In the case of a piecewisé? diffusion codicientc, we denote its singularities by
a,...,a-1, With0O = a9 < &y < a < -+ < @p-1 < &, = 1. We first introduce
a particular type of weight function to be used in the Carlereatimate. Letj €
{0,...,n—1} be fixed in the sequel andy € O € (a;, aj,1) be non-empty open sets.
We have the following lemma [4, 3].

Lemma 1.1. There exists a functiof € ¥(Q) satisfying

Blamy € €@ a1), i=0....n-1,

B>0inQ, B=0onT, (,E‘[aj‘ajﬂ])’ # 0in [aj,aj,1] \ wo,
Blasy) #0. i€l on) iz ],

B >0onthel.h.s.ofus, B <O0ontherh.s. ofu,

and the functiors satisfies the following trace properties, for some 0,
(1.1) (Au,u) > u?, ueR?
with the matrices A defined by

ao(Bh RO )
B@)NBa B @B +[B)la ) ’

Figure 1 illustrates a typical shape for the functin
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Figure 1: Sketch of a typical shape for the functifor an ‘observation’ in &, aj+1).

Choosing a functiofB, as in the previous lemma, we introdyge= 8 + K with K =
m|Bll. andm > 1. ForA > 0 andt € (0, T), we define the following weight functions

B elB _ B
BEUEC ARG =

(1.2) o(x,t)
with 8 = 2m||8ll (see [8],[10]). We next set

8 ={q€ C(QR); Ugrpa,y € €20, TI x[@,a4]), i =0,...,n-1,
q. =0, andqsatisfies (TG), forallt € (0,T)},
with
(TCn) a@) = a@), c@)oxa(a) = c@)oxa@), i=1,....,n-1
The following global Carleman estimate is proven in [4, 3].

Theorem 1.2. Letwy € O € (aj,aj.1) be non-empty open sets. There exigts=
11(Q,0) > 0, 5y = 5(11,T) > 0 and a positive constant G C(Q,0) so that the
following estimate holds

(1.3) st [ [Q 251,71 (1,2 + 1x(cOx) ) dxalt
+ st f f &2 10,2 dxdt+ $22° f f e 21,3 |2 dxdt
Q Q

<C [53/14 f e 2914% |g)? dxdt+ ff €725 |9,q + Oy (CAxq)I? dxdt|,
(0,T)xO Q

fors> s, 1 > A; and for all ge N.

Remark 1.3. By a density argument, we see that the Carleman estimaferéhriains
valid for g (weak) solution to

atq + (9X(06XCI) =f in Q,
g=0 onzx,
A(T. %) = ar(X) (resp.q(0,x) = do(X)) N Q,

with f € L?(Q) andgr (resp.gp) in L2(Q).



2 Carleman estimates in the case ofa BV coefficient

To obtain a Carleman estimate in the case of more generabmaoth cofficients,
such asBV codfticients, we shall first revisit the conditions imposed on thedgiut
function 8 in Lemma 1.1. Since the conditions imposedgwill only make use of
its derivative, we shall sometimes empléyn place of3 here, as they only dier by

a constant (see the definition gfin (1.2) above). We shall use a limiting process to
obtain a Carleman estimate in the case B\acodticient making use of estimate (1.3)
in the case of a piecewisé? codficients.

We first consider a piecewisé? diffusion codficient, ¢, with a discontinuity af e
(0, 1). Defining a functiors, as in the Lemma 1.1, we then define the mafrias

A=( [£]a B@)[#a )
BENPla B @B +EEa )

This symmetric matrix is positive definite if and only @[, > 0 and detd) > 0. We
now set

P Co W (Cy

Tc@) T p@EY
and write
A [ BE@HA-X) c(@)(B (@)Y - X) )
“\ @)@ @)Y -X) @) @) ((Y - X)?+ (Y2 - X)) )’

which yields detd) = c2(a™)(8'(a*))* Py(X) with

Py(X) = (1 - X)(Y? = X3) = X(Y — X)2.

In the caseY = 1, there is actually no discontinuity for the d¢heientc at the consid-
ered point. An inspection of the proof of the Carleman estinfa.3) in [3] shows that
with X = 1, i.e.d,8 continuous ah, the integrals over (O') at the pointa vanish in
the course of the proof of the estimate.

We now place ourselves in the cage: 1 andB’ < 0, i.e., on the r.h.s. of the open set
wp (see Lemma 1.1). Therg®’], > 0 is equivalent toX > 1. The polynomial function
Py can be made positive fot suficiently large, since its leading cfigient is positive.
Here, we shall in fact givexplicit suficient conditions orX for this to be satisfied.

Observe thaPy(Y) = Y2(1 - Y)2. In the caser > 1, we can thus choosé = Y and
the desired conditions on the functi@rare satisfied. This choice corresponds to that
made in [8] since in this case we has@ )oxs8(a”) = c(a")oxs(a").

In the caseY < 1, the previous choiceX = Y, is not possible as it would yield a
negative definite quadratic ford Observe, however, th&(2 - Y) = Y2(1 - Y)2. In
the case < Y < 1, we can thus choos¢ = 2 — Y. Observe also th&y(1/Y) > 0,
which makesX = 1/Y an alternative choice.

Remark 2.1. Note that the proposed choices are not optimal but yield-eaéyandle
conditions to compute an adapted weight funcfforwe can actually show that there
existsg(Y) > 1, defined fory > 0, withg(Y) > 1if Y # 1 such thaPy(X) > 0 if and
only if X > g(Y). Figure 2 compares the proposed solution to the optimal one
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Figure 2: Graph of the optimal solutigftY) (thick) and graph of the proposed solution
(thin) in the casg’ < 0.
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Figure 3: Graph of the optimal solutidnfY) (thick) and graph of the proposed solution
(thin) in the casg’ > 0.



In the casg®’ > O, i.e., on the l.h.s. of the open se§, we now need (< X < 1to
satisfy B']a > 0. We can make the following choiceX:= Y if Y < 1 andX = ﬁ if

Y > 1. Figure 3 compares the proposed solution to the optima(lwerePy (X) > 0O if
and only if 0< X < h(Y) for some functiorh satisfyingh(Y) < 1 if Y # 1). Note that

X = 5=, actually yields: = 2 — £, which makes the connexion with the proposed

choice in the casg < 0 above. In fact, we havBy(z) = 0.

We now consider a diusion codicientc, of bounded variations, y&t* on 0, with O
an open subset @, O € Q. We also assume € Cyin < C < Cmayx. Without any loss of
generality we may assuni= (Xp, X1), with 0 < X < x; < 1. We also letvg € O. We
denote the total variations ofon [0, xo] and [x1, 1] by g0 = V;°(c),  andd, = Vy, (c).

Lete > 0. There exists a functiar),, piecewise-constaimn (0 xg) U(Xz, 1), and smooth
onO such that (see e.g. [5])

lc—Celiie@ < & Vg°(Ce) <o, andVy(c.) <9, ice =l < &

1

We denote by, ..., a, the points of discontinuity of, in the interval ki, 1]. We then
have

n
Dle(@) - co(@)] < va.
i=1
LetY; = c.(&")/c.(a7) andX;, i = 1,...,n, be defined according to what is described
above, i.e.,
Xi=Y,ifY,>1 andX=2-Y,ifY <1,

as we are on the r.h.s. ah. We define theiecewise-constaiitinctiony; . as

(2.1) 710 =y | [ X x¢ (@, al,

X<aj

for some fixedy; (1) < 0. Observe thaX; = Zi—g; i=1,...,n

In a similar fashion, ifay,1, ..., an.k are the discontinuities af, on [0, xg], we build
the piecewise-constaritinctionyg,. on [0, Xo] as

1
(22) 70:09 =700 [ [ 5. X# (8. .. B0,

) b
xa; )

for some fixedyo(0) > 0 and withXp.1, ..., Xn:k defined as described above, i.e.,

. Y, . .
Xi=Y, ifYi<1 andX :—ZYI 1 ifYi>1 i=n+1,...,n+k
-

We then haveX; = ZEEZ;I =n+1,...,n+k

We define the functiongi.(x) := [ y1..(Y) dy andBo.(X) = J& vo.(y) dy, and we
define a continuous functiof, by B.(X) = Bo:(X) in [0, %] and B.(X) = B1:(X) in
[xa, 1], and%2 on0, such thaﬁ; does not vanish outsidey. The precise definition of
B- onO will be given below.



We observe th:ﬁ‘E satisfies the conditions listed in Lemma 1.1. Hence, we ol&ai-
leman estimate (1.3) for the operafe- dx(c.dx) with the associated weight functions
n. ande,: we introduces, = B, + K, with K, > m||3,|| andm > 1. Fora > 0 and

t e (0, T), we define

B9 eB. _ glbe(®

@3) =gy )= e

ith B, = 2K,.
(Tt with 5,

We now wish to pass to the limit in the Carleman estimate.asonverges ta in
L*(Q). The remaining of this section is devoted to this questigve first need to
control the behavior g8,, or rather its derivative, asgoes to zero.

Lemma 2.2. There exists K> 0 and gg > 0 that depend solely on thefision
cogficient ¢ € BV(0,1) such that, for all0 < & < &g, V(’)‘O(yo,g) < K 0.(0) and
V):(Ll (71,8) <K |'}’1,s(1)|-

Proof. We havevil(yl,g) = ly1.(X1) — y1.(1)| sincey, . is a non-decreasing function.
ThusVy, (y1e) = (X1... Xn — Dlyr+(1)l. We have

Dlea@) - c(@)l + Y 1c(&) - co@)l < B,
iely i€l,

withi € 11 if c.(&") > c.(a7) andi € 12 if c.(&") < c.(a). Dividing by c.(&) or c.(&)
accordingly, we obtain

-1+ 3~ 1)< 01/ (i~ 0).
iely iel, !

(Recall thatc > cyin > 0; here we take & ¢ < gy < Cmin.) Note thatif O< Y < 1
thenX = 2-Y < 1/Y. We thus obtairy[; (X — 1) < ¢¥1/(Cmin — &0). Finally, since
Xi, ..., Xq > 1, we write

X X< €71 @l 2 @) ¢ gh/(Cnn-eo)
which concludes the proof far .

Foryo. we havevg“’(yo,g) = (s—2— — 1)y0.(0). This time, ifY > 1 then

Xn+1<--xn+k
1 2Y-1 Y-1
x 1Ty tEey<vt

Thus, we obtair{)i”jr',‘ﬂ(xii —1) < 9o/(Cmin — €0), and accordingly

1

< eTj;l_l . emfl — eZErI:+1(7]]_1) < eﬁo/(Cmm—So).
Xn+1 cee >(n+k

By Helly’s theorem [15, 5], up to a subsequence, the funstjgn (resp.y1.) converge
everywhereo a functionyo (resp.y1) ase goes to 0. (We take for instanee= Fll but
shall not write it explicitly for the sake of concision.) Maover, these two functions
satisfy

V2(y0) < K ¥0.(0) = Kyo(0),  andVZ (y1) < K lyrs(1) = K [y2(2)l.



The functionsy . (resp.y1.c) are bounded ih™ (0, xo) (resp.L* (X, 1)) uniformly w.r.t.
. Thus, by dominated convergence, the associated fungéignandp; . converge
everywhere to the continuous functighigx) := fox yo(y)dy, andByi(x) := [7 y1(y)dy.

We defing on Q by B(X) = Bo(X) in [0, Xo], B(X) = B1(X) in [x1,1], and we desigyB.
andg to be¢2 onO and such that

(2.4)  B.(¥)] = min(8'(0), 18'(1))), and|F’ ()| > min(3 (0),|8'(1)), inQ\ wo,

and such thap,, converges g, in 42(0). We have thus obtained the following
lemma.

Lemma 2.3. Letwy € O € Q, be open sets) = (Xo, X1). Let ¢ in BUQ) be of class
€1 in O with 0 < Gin < € < Cmax L€t G be piecewise-constant @\ O, and smooth
onO such that

lic— Ca||L°°(Q) <s V())(O(Cb) < o, and V)%l(cg) <th, |c— C”cgl(ﬁ) <e.

There exist weight functionfé that satisfy the properties listed in Lemma 1.1 for the
associated cggcient ¢, and are uniformly bounded in®l(Q), with derivatives uni-
formly bounded in £2(Q) and piecewise-constant &n\ O. Furthermore, converges
everywhere im to a functiong which is in€(Q) andﬁ% can be chosen uniformly

bounded ir#’2(0) and the functiong, andg satisfy (2.4).

We shall now revisit the proof of Carleman estimate (1.3) ahdck that the con-
stantsC, s; and.3, can be chosen uniformly w.r4.with the properties of; listed in
Lemma 2.3. Note that in the definitions @f andz,, in (2.3), the constants, ands,
can actually be chosen uniformly w.itby Lemma 2.3.

Proposition 2.4. Let ce BV(0,1) be% in O. Let ¢ andp, be defined as above. The
constant C on the r.h.s. of the Carleman estimate (1.3) feriberatorsd; + dy(c.0x)
and the constants; sand 2; can be chosen uniformly w.r4.for 0 < & < &g, with g
syficiently small.

Proof. We treat the case of the operatr+ dyx(c.dx). The proof is similar forg; —
ox(c.0x). Callay,...,ay1 the discontinuities ot,, withag = 0 < a; < ...,a,1 <
a, = 1. We choose & &g < Cmin and thus 0< Cmin — €0 < C; < Cmax+ £0-

In the derivation of Carleman estimate (1.3) (see [3]) wesatgrs > 0, 4 > 1 and
g € N, with

N: = {0 € CQR); Ugrpiaay € C2(0.TI XA, &), i=0,....n-1,
q. =0, andq satisfies (TCy), for allt € (0, T)},
with
(TCen) a@) = a@).  cs(a)oxa@) = c(a)oxa@), i=1,....n-1
We sety, = e 5=q. Sinceq satisfies transmission conditions (J)@ve have

(2-5) ‘l’s(t’ al_) = wg(t’ ai+),
(2.6) [CoOxe(t, o = SAps(t, &) Yo(t, &)[CBr)a, 1=1,....n—1



Ineach (0T) x (&, a+1),i =0,...,n—1, the functiony, satisfiesM1y, + Moy, = fs,
with

Ml‘!’s = ax(caast) + Sz/lz‘pg(ﬁ"e)zcsl//s + S(atns)l»[/sv
Mayss = B — 2810:CeBdxihe — 25020 Ce(BL) Y
fs = e f + Sﬁ%(%ﬁé)'% - SAZ‘PSCS(B;)ZWs-

We have
27) MWl gy + IM2lif2 ) + 2(Matre, Mot 2@y = 1 dl2 o)

where@Q = (0,T) x &/, with Q' = (U{“:‘()l(a,-,a;+1)). With the same notations as in [8,
Theorem 3.3], we writeNl1y., M2y/:) 12y @s a sum of 9 termlg;, 1 < i, j < 3, where
lij is the inner product of thigh term in the expression &fl;y, and thejth term in the
expression oM.y, above. For the computation of the terfiyjssee [3].

The terml 4 follows as
1 n-1 T
_ = . ’ 2
oI L ICRA N
The terml 5 follows as
noeT
|12 = 8/12 fof ‘,Dg(ﬂ;)z |Cgaxlﬂg|2 dxdt+ X12 + S/IZL QOE(L ai) [:B; |C58X¢’a|2(t’ )134 dt’
i=0
whereXj» = s/lfo, ©:(BY) Ic.0x |2 dxdt The termly3 follows as
o= 250 || e e s dxdt+ Xos,
Q/
with
n-1 T
Xi3 =202 )" fo et @)t &) [(B,)7 20t g dt
i=1

+2s2° ff Cg(ast)¢£¢s(ﬂ;)3dth+ 2512 /f Cs(ast)lpe‘ﬁg(cg(ﬂ;)z)/dth
Q/ Q/

The terml,; follows as
I21 = _52/12 ff Caﬁos(at‘;pa)(ﬂ;)2|we|2 dth
Q/

The terml,, follow as
122 =352 [ g3(6) e Pxal
Q/

-1 .7
#2003 [ Rttt ) [EE) T dt+ X
i=1

10



with Xop = 23 Mo ©3(C2(BL)%) v-|? dxdt The termd,3 andls; follow as

1z5= 250" [ ey axct 1oy == [ GEnu

The termd s, is given by
o2 = S22 | gulpre.@umivel? dxdt= 2 [ (0 )@)c .l dxct
Q Q
Ll [ REXCATCAS AR

+ szﬂ“z; fo ot @)@ ANt AP [l dt
i=
Finally, the terml; follows as
l33 = —25°2° fo ©:Ce () (B;) el dxdlt
Adding the nine terms together to form{y ., May;) 2q) in (2.7) leads to

(2.8) M1z ) + IMaellEz g
+ 651° ff 0s(BL)? [COx1? dxdt+ 25°2 ff @3B cawrs|? dxdt
Q o

N ,T
* 254; fo ¢e(t, @) (B 1C:0x0oP(t. Vo, + [C2(BL)Ta ISt (t @)ve(t @)F) dlt

= ”fs”Ez(Q/) = 2(l11 + X2 + Xyz + |21 + Xoz + I31 + 132+ I33).

The termdyy,...,l33 on the r.h.s. are terms to be ‘dominated’. The ‘dominatirag- v
ume and surface terms are the terms we kept on the 1.h.s.8)f (2.

We shall first treat the ‘dominated’ volume terms and bourehtHrom above uni-
formly w.r.t. e.

With B, piecewise constant outsidg the termX;, reduces to

Xiz=sU[[  gulB) ool dxt
(0,T)x0
and we have
X12l < SIC f [ B dxdlt
(0. T)xO

with C uniform w.r.t.e by lemma 2.3. The absolute value of the volume termX;in
can be bounded by [3, 8]

CsT4s1? / / @2l dxdt+ §s2? f f ©lOxs|? dxdt 6> 0,
Q Q
with § arbitrary small, using, < CT*%p?; the constant€s is uniform w.r.t.e. (recall

thatc, is piecewise constant outsideand||c, — cllcgl@ < &.) Noting that [8, equations
(89)—(91)]

0wel < T, 10mel < T2, 1020l < 2T%42,

11



we obtain
llpy| < 2A2CT ff Ao dxdt |1l < SCT? ff Gl dxdt
Q Q
llagl < 2A2CT f f G Pdxdt
Q

with the constants uniform w.r4. Similarly we have

Xoal < CS° f fQ &3 .2 dxdt

with a constanC uniform w.r.t.e. Finally, the absolute value of the volume terms in
|32 can be estimated from above BY1°CT [J, 3|:/*dxdtwith a constan€ uniform
w.r.t. e.

We shall use the properties gf listed in Lemma 2.3 to now estimate from above the
‘dominated’ surface terms.

Lemma 2.5. Let§ > 0. There exists €> 0 uniform w.r.t.e such that the absolute
value of the surface terms ims| 113 and L, can be bounded by

n-1 T
CasiT? + BT+ (L+ )T ) 1% - 1 [ it et )i ot
i=1 0

n-1 T
S0 -1 [ gt a) Gt )R dt
i=1

Proof. Note first that on the r.h.s. of the open 6B{3.. < 0) we either haveX = Y if
Y>1orX=2-Y,if Y < 1. Inthe first caseY - X = 0 andY - X2 = (1 - Y)Y; in the
second casE-Y = 2(Y-1) andY - X? = (Y-1)(4-Y). Onthe l.h.s. 00 (8. > 0) we
either haveX = 5 if Y > 1orX = Yif Y < 1. In the first caseY - X = 525(Y - 1)
andY —_X2 = éff‘l\)(z(\(_ - 1); in the second casé - X = 0 andY — X2 = (1 - Y)Y.
Hence, in any case, since

Cmin — €0 Cmax Tt €0
0< ——— _—

<Y< R
Cmax + €0 Cmin — €0

we obtain thatX — Y| < C|Y — 1] and|Y - X?| < C|Y - 1] with the constan€ uniform
w.r.t. e and w.r.t. the considered point of discontinuityopf
Observing thatd,8.]a = c.(&)B.(&")(Y; — Xi) we obtain

n-1 T
I < SICT ) 1% =1 [ gt @)l a)?
i=1

with C uniform w.r.t.e by Lemma 2.3.
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To estimate the surface termsXiz we write, withabeing one of they,i = 1,...,n-1,

:
258 [ gult. )0 @) (B 0t Na
T
= 2s? [0 e (t, At A)Co(a)BL(@")? ((Cedue) (@)Y — (Code)(@)X?) dit
T
= 2s(Y - X)c.(a)B.(a")? fo @e(t, @) (1, @) (C.0x:) (@) dit

+28°23%(Y - X)YZ(a)Bi(a")? fo ' @2(t, @) ly.(t, Q)* dt,

where we have used transmission condition (2.6). We thusiroltihat the absolute
value of the surface terms X3 can be estimated uniformly w.r&.by

n-1

:
SEC YN ~ 11 [ gult.a) va(t @) 0w ) @) d
i=1
n-1 T
3 - 2 ' )12
+ 21 C;m U [ gt . a) o

n-1 T
<CHsPT+ ST Y M -1 [ (k@) et a)? dt
i=1

n-1

]
#051 )= 1 [ gt @) G0t )P d
i=1

for § > 0 arbitrary small, by Young's inequality and usigg < C¢3T2 andg, <
Cp3T4

Finally, we estimate the absolute value of the surface témrhg uniformly w.r.t. & by
n-1 T
SACT Y V-1 [ gt aw.(a)? dt
i=1

which concludes the proof of Lemma 2.5. [

Continuation of the proof of Proposition 2.4Me now pass to the task of estimat-
ing from below the volume and surface ‘dominating’ terms. fivst treat the vol-
ume terms, restricting the domain of integration @\(wo) x (0, T). Since|B.(X)| >
min(B.(0), |B.(1)]) = min(3’(0), |8'(1))) > 0 onQ \ wp, from the construction we gave
above, we obtain

T T
612 f f (B Icodre? dxdt+ 28214 f f BB Cw. dxdt
0JQ\wq 0JQ\wo

T T
> c(sa2 f f ol dxdt+ £2° f f ¢§|¢,8|2dxdt),
0JQ\wo 0JQ\wo

where the constant C is uniform w.ret.

As in the proof of the previous lemma, to treat the surfaceisewe writea as one of
theag, i = 1,...,n—1. The ‘dominating’ surface terms in (2.8) are sums of teriins o
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the form

T
pi=2s fo @e(t, @) (I8, lecdxre(t, V]a + [C2(8)TalsAee (t @) (t, A)P) dt.
Applying transmission condition (2.6) we obtain

(B Ics0ubel*(t, )]a = [Bilalce(@)dxpe(t, @) + SSA%2(t, A)BL(@7)[CBLIA I (t, @)
+ 25/1‘108(':’ a)lg‘i:(a-'-)[ceﬁ::]a (CgaXW6)(t’ a_)lpe(n a)’
which gives

]
pi= st [ et a) (1B o)t a )P

+(B@DCBIE+ (B a) ISApe(t Awe(t, Q)
+ 28,(a")[CoBLla (Codxe)(t, @) (SApe(t, Q)(t, @))) dlt
T
- fo e(t,2) (Au(t, ), u(t. @) dt,
with u(t, a) = ((C.0xw,)(t, a), slp,(t, Ayw,(t, ) and the symmetric matriA given by
A ( [B:)a B.@)[cBla )
Bu@)ehla Bi@epilz + B a |

The matrix A is positive definite by Lemma 2.3 and Lemma 1.1wkler, we need to
estimate its eigenvalues from below, which is the objecheffollowing lemma.

Lemma 2.6. The eigenvalues,, v, of the matrix A satisfy; > C|Y — 1|, i = 1, 2, with
C uniformw.rteandie {1,...,n}.

Proof. We have several cases to consider. Consider first the rihG. that is in the
region wheres, < 0. In the caser > 1, we have made the choick, = Y and the
matrix A then reduces to

Al ( B@)(1-Y) 0 )
0 @)@ @)~y |

and the result follows (recall that© Ymin < Y < Ymax Ymin @nd Ymax uniform w.r.t.e

and 0< Cmin — €0 < C; < Cmax+ €0 andw;(aJr)' > |,32(1)| =|8'(1) > 0).

In the caser < 1 we haveX = 2 - Y. The matrixA is then equal to

i nao( 2, (a )i @)
AEEIY-TA  wihA= ( 2c,(@)B.(a)  cHa)(B@)AY? +4) ) |

Observe that def) = Y2c2(a")(8.(a%))? = c2(a*)(8.(a*))? thus detd) > C; > 0 and
0 < tr(A) < C,. The constants are uniform w.ket. We thus obtain that > g..(a*)(Y -
1)%, i = 1,2, sincev; andv, are both positive by Lemma 2.3 and Lemma 1.1.

Consider now the |.h.s. @, that is in the region wherg, > 0. In the case/ < 1 we
made the choic& = Y and the result follows as above. In the c&e 1 we have
X= %_1 The matrixA is then equal t@.(a*)(Y — 1)A with
(¥ 2aX
=" ( 20X oP(4X3(Y - 1)+ X (8Y2 - 4Y + 1)) )’
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wherea = c.(a7)B.(a"). Observe that def) = cﬁ(aﬂ(ﬂg(a*))zﬁ >C; >0and

0 < tr(A) < C,. Thus result thus follows as above. [}

End of the proof of Proposition 2.4/\ith the estimations provided above we can ab-
sorb the ‘dominated’ terms by the ‘dominating’ ones, taking parameters and 2
suficiently large. More precisely we obtain

M )+ Mol + ST [ e ™0 dxatr £2° | ol 102 ot

<Cle " f||L2(Q, +Cst ff

wo

e 2%|9,q% dxdt+ Cs*2* f f 3e725%|q2 dxdt

for 1> A1 = 11(Q,0,0), s> s = 01(Q, 0, ¢, 11)(T + T2), with o1, A1 andC uniform
W.r.t. &. As in [8, Estimate (100)], we have the following estimateiformly w.r.t. &,
because of the properties®f on O (see Lemma 2.3)

@9) ¢ [ [ v riaal dxts Cle 1l g, +C(S
wo
§
+SP(PT? + T) + ST + AT2 + T9)) f f ¢2e 2% g dxdt
0JO

ForA > A; ands > s;, we then obtain

IMaelgy + IMat )+ S [ o100 crcte S0 ] 37210 et
< Clle ™ Il o +ng/l4ff 3e727|g” dxdt,
wo

with the constan€ uniform w.r.t.e. To incorporate the higher order terms on the l.h.s.
and obtain Carleman estimate (1.3) we follow the classioatgdure (see e.g. [10])
which can be done uniformly w.r4. [

Forc, defined as above, convergingdan L*, we shall now analyse the convergence
of each term in Carleman estimate (1.3), that holds for theraiprso; + dy(C.9y),
as|c, — Clo goes to zero. For this purpose, we define the following wefighttions
associated tg by

5(x) e _ gl

(2.10) e(x1) = -0 nxt) = EGEE

The constanB used is the same used in the definitionyofin (2.3), sinces, can be
chosen uniformly w.r.ts as mentioned above.

At first, we considerf € ([0, T], L3(€)), with f(0) € H}(®), andq (weak) solution
to

0q + Ox(coxq) = f inQ,
(2.11) gq=0 onz,

(T, x) = do(X) (resp.d(0, x) = gp(X)) N Q.
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We also defing), as the (weak) solution to

0tQe + 0x(C.0xQ;) = f in Q,
(2.12) g:=0 onx,

(T, X) = do.s(X) (resp.qs(0, X) = Go(X)) in Q.

The final (resp. initial) conditions are chosen such that

0x(COxQo) = 1,  andox(C.0xtos) = K,

with € H3(Q). Then we find
(2.13) 1% = Goeellygy < ClIC = Celluollull2q)-

For the solutiong) andqg, we have the following lemma.

Lemma 2.7. The solutions to (2.11) and (2.12) satisfy

(2.14) lia(t, ) — 9e(t, )llz(q) + 110x0 = OxGelliziq) < ClIC = Cello Il Fll o) + llullz(qy)s
fort € [0, T] and

(2.15) 116:q(t, .) — 0tQe(t, )llLaiy + 110x(COxA)(L, -) — Ox(Ce0xQe)(t, Iz
< Cllc = Celloo (10t FllL2(q) + 1T (O)llLoqy + Ikl 2y),  t€ [0, T].

Proof. We treat here the case of the operairs dy(cdy) andd; — dx(c.dx). The other
case follows similarly. The solution to (2.11) satisfies

f f (0106 + CO,dyp) dxdlt= f f fodxdt @ e LX(0,T, H1(Q)).
Q Q

for Q; = (0,t) x Q, t € [0, T]. We write a similar weak formulation for the solution to
(2.12), from which we obtain

@16) |, fQ (00— Q)b + Codx( — 0,)) dxclt
= [ (e - g dxdt ¢ < L0, T. HA(@),
Q
which with¢ = g — g, yields
1
f fq(éath — Q% + Col0x(d — Q)1 dxdt= f fq(cg — €)9x00x(d — 0.) dxdt

It follows that

! t) — 9.0 Cmin — 0)110x(0 — 9)II?

190 = (Ol z(q) + (Cmin = O)IIFx(A — Ce)lliz(g)

1
< Cslics = Al IIdlIEzg) + Sl1do = Qo).

which yields (2.14) from a classical energy estimate anti3(2.
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From the regularity assumption made bng andg, are ing*([0, T], L3(Q2)). In fact,
for g, we can write, by Duhamel’s formula [18, Chapter 4, Sectipn 2

t
o) = S(t)cp + fo S(t- 9(s) ds

whereS is the semigroup generated By= d,(cdx). Sinceqp is in the domain ofA,
the first term is irg’X([0, T], L?(Q)) (see Theorem 2.4.c in [18, Chapter 1, Section 2]).
The second ternup(t), is differentiable w.r.tt on [0, T] with

t
ap(t) = S F(0) + fo S(9af(t—9 ds

which is continuous on [O'] using the continuity ofS(t) and the uniform continuity
of o f in L2(Q) on [0, T].

Consider nowp = d:q. Then the functiorp is solution to

Otp — Ox(Coxp) = af  InQ,
(2.17) p=0 onx,
p(0, x) = u + f(0) inQ.

Similarly p, = d:g. is solution to

0iP: — 0x(C:0xP:) = 0T In Q,
(2.18) p. =0 onz,
p:(0,x) = u + f(0) inQ.

Thusp(0,.) andp.(0,.) are inHé(Q), sincef(0) e Hé(Q). With the previous procedure
we obtain

lIp(t, ) = Pe(t, 2y + 19xP = OxPell 2(q)
< Clic = Celloo (10t Fll2(qy + N1 (O)llz(y + llullz(y).  t€[0, T,

which yields (2.15). .

To study the convergence of the terffy, € 2¢? |q.|* dxdtin the Carleman estimate
for the operator®; + dy(c.dy), we write

’ [ e a2 dxt- [[ 262 0 dxd{
Q Q

< fj(; |3729]<P3 - 872975‘103 |q8|2 dth+ ]](;) 872975(,03 ||q|2 _ |qe|2| dth
< foIEfzs’st73 — & 203 |qu” dxdt+ fo 25042 1= gl (g) + I dxdt

which converges to zero by Cauchy-Schwarz inequalitiesdanginated convergence.
Recall thais, converges everywhere fand thuse?% andg, converge everywhere
to €29 ande.
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Similar arguments yield the following convergences, usiagima 2.7,
Iirrg)// e 2%, 10,0, dxdt:ff e 25y 19,017 dxdt
E Q Q
im [ 26" (00 + (e, )P) dat
= [[Le e 10" + o) axc

In the case: € HY(Q) and f € ([0, T], L3(£)), with f(0) € H3(Q), from the Carle-
man estimate associatedgoand the operatorg + dy(c.dx), we thus obtain that (1.3)
holds forg andd; + dx(cdy) with the same constan® s; and1;. With such an estimate
at hand, we can now relax the assumptions made on the final {réal) condition
and on the functiorf, by a density argument.

Hence, with the convergence results above, PropositionCademan estimate (1.3)
and Remark 1.3, we have proven

Theorem 2.8. LetO € Q be a non-empty open set and BV(Q) with 0 < Cyjin < € <
Cmaxand c of clas¥’™ in O. There existsl; = 1,(Q,0) >0, s, = 51(11, T) > 0and a
positive constant G C(Q2, O) so that Carleman estimate (1.3) holds for $;, 2 > A3
and for all g (weak) solution to

atq + 6x(caXQ) = f in Q,
q =0 on 2,
(T, x) = do(X) (resp. 40, x) = do(X)) N,

with oo € L?(Q) and f € L?(Q). The weight functions used are those defined in (2.10)
and Lemma 2.3.

Remark 2.9. Similarly, forcin BV(Q), we can obtain a Carleman estimate with a side
observation, say if0}, i.e. an estimate of the form

(2.19) st f fQ e 21971 (10,g1 + 10x(cxq)|?) dxdt+ sA? f fQ e 25y 19,02 dxdt
+ 24 fo e 2914°% |g)? dxdt
<C [s/l fo T o(t. 0)& 2009, (1, 0) dlt + f fQ &2 |2 dxdt],
for s > s;, 4 > A;. The proof is similar and makes use of such a Carleman egtimat

for a piecewiseg™! codficient proven in [4, 3]. Note however that to obtain (2.19), we
need not assume thats of classz™ in some inner region af.

3 A Carleman estimate for the heat equation with a right-hand sidein L?(0,T,H 1(Q))

Following [14], from Theorem 2.8, we can derive a Carlemamese for (1) in the
case of a r.h.s.f, in H™1. Such a estimate will be used in the next section to obtain
controllability results for classes of semilinear parabebuations.
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We set

N, = {q € ¢([0,T], Hé(Q)); q(t) e D(A) forallt € [0, T]
andayq + 0x(Cox0) = Fo + 9xF1 with Fo, F1 € L*(Q)}.

In the case of a diusion codicientcin BV, yet%* in some open region, we have

Theorem 3.1. LetO e Q be a non-empty open set and BV(Q) with 0 < Cyjin < € <
Cmaxand c of clas™ in O. There existal, = 15(Q,0,¢) > 0, $ = $(Q,0,C, 15, T) >
0 and a positive constant € C(€, O, ¢) so that the following estimate holds

(3.1) s1? fo e 2y 19,01 dxdt+ sﬁ“[fo e 29143 |g? dxdt

< C[ S ff e 2914% |g? dxdt+ ff €72 |Fol? dxdt
(0,T)x0 Q

+ szasz e 25 p2|F|? dxdt |,
Q

fors> s, 1> A, and for all ge }Ei_

The proof can be adapted from the proof given in [10, Lemma 2VE& only highlight
the main points in the proof.

Proof. We treat the case af € §+ with 9;q + d«(coxq) = Fo + dxF1. The other case
can be treated similarly. With the notatiofis= d; — dx(Cdx) and.L* = —d; — dx(Cdy),
we define the bilinear form

(3.2) «(p, p) = fo e L pLrp dxdt+ 1% ff e 29143 pp dxdt,

0.T)x0

which is a scalar product dPy = ([0, T], D(A)) from Carleman estimate (1.3). We
denote byP the Hilbert space defined as the completiorPgffor the norm||p|lp =
(x(p, p))¥2. We find, from Riesz Theorem, that there exists a unigeeP such that

(3.3) «(p,p) =1(p), Vp' eP

wherel is the continuous form of® defined byl(p’) = —s°4* [/, €*%¢® qp’ dxdt
Observe that the elementsBfare functions inQ for which the I.h.s. of (1.3) is finite.
In particular observe that S’p € L2(Q) ande o Y2 L*p e L?(Q) .

If we now solve the parabolic problem

L2=+521%2%p3 (plp+0) inQ,
z=0 onzx,
20)=0 inQ,

there is a unique weak solutiane”L?(0, T, H3(Q)) N £([0, T], L%(Q)) [17]. We now
observe thaz = —e 2% £*p from (3.3). Sincee o Y2 L*p e L?(Q), we then have
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2T) = 0, because & %([0, T], L?(Q)). The functionp defined above is thus a weak
solution to

LE?Lp) = -S4 (plo+q) inQ,
p=0, e Lp=0 onz,
(2L p)(0) = (e L p)(T) =0 inQ.

Introducingu’ = S*A%e 2513ply, andG = s$1%e 2% + (0, we note that

Lz=G in Q,
z=0 onx,
20)=T)=0 inQ.

From the equation satisfied loye N, we obtain
T T
(3.4) | (e awy dt= - [ (Fot) + 2710, 20,
where(., .) denotes the duality brackets fdg(Q) andH~1(Q). Noting that the function

A, and the weight functiong andzy are inW>> w.r.t. the space variable, we can follow
the proof of Lemma 2.1 in [10] to prove

(35) s34 f [ 91,7310 dxdt+ f f 152 dxdt
(0. T)xO Q
+52172 f f 9472|0,2° dxdt< Cs*1* f f e 2914%|g2 dxdt,
Q Q
for s> sy(T + T?) andA > 4, (Inequality (2.20) in [10]).

From (3.5) and (3.4), we first obtain (see [10])

(3.6) s?’/l“ff e 23 |g? dxdtsC[sﬁ“f e 2914 | dxdt
Q

(O.T)x0
+ff €729 |Fol? dxdt+ s2A4? ff e 2% p?|F,? dxdt],
Q Q

for s> s§(T + T2) anda > A7

To obtain the first term on the I.h.s. of (3.1) we multiply + 0x(coxq) = Fo + 0xF1 by
e 2%1pq and we integrate ove. This then yields

37) - % ff (e 20 [of? dxdt— ff e 215010,q2 dxdt
Q Q
- || ae > ercana dxdi= [[ (Foe g - Fuox(e o) dxat
Q Q

As the functions, and the weight functiong andn are inW>> w.r.t. the space variable,
the integration by part w.r.t. the space variable is justinceq(t,.) € D(A). We
observe that

10x(e7251)| = |SA(OxB) %€ > + A(0yB)pe 2| < Cslp?e S + 1™ ae in Q,
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which yields

U (€ p)cadyq dxd{ < sff e 29|9,0)? dxdt
Q Q
+C, % f f ©°e25|g? dxdt+ C A2 f f e >%1|gl? dxdt
Q Q

for anye > 0. Next, we estimate the first term on the I.h.s. of (3.7) amdrth.s. of
(3.7), as in [10], to obtain

U RECRL dxd4 <cé [ e’ axa
and
WQ(FOe_Z%q - Flax(e_zs’wq))dxd4 <CA? f fQ ¢*e g% dxdt
+ +8fo e 25|9,01? dxdt+ Cs 2172 fo o~ e 25| Fol2 dxdt
+(C+C,) fo 0 S|, 2 dxdt

for anye > 0 and fors > C(T + T?). Using 1< CyT?, and takings sufficiently small,
we obtain

Uf e 2519, q? dxd\{ <C
Q

+571172 ff €251 |Fol? dxdt+ sff e 2% p?|F,? dxdt],
Q Q

fors> s"(T + T?) andA > Ay’. This last estimate, along with (3.6), gives the desired
Carleman estimate. [

£A? ff e 29143 |g? dxdt
Q

4 Controllability results

The Carleman estimate proven in Section 3 allows to giverobhbéity estimates that
yield null controllability results for classes of semilareheat equations. We lete Q
be a non-empty open set an@d BV(Q) with 0 < Cyin < € < Cmaxandc of class¢™* on
O, with O some open subset of

We first state observability results wittf and L' observations. We let andb be in
L*(Q) andgr € L?(Q). From Carleman estimate (3.1) we obtain

Lemma 4.1. The solution g to

-0 — ax(C@xq) +ag—- ax(bQ) =0 in Q,
(4.1) q=0 on,
a(T) =ar inQ,
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satisfies

(4.2) IO g < €°KT IRl 0-) f g2 dxdt

O, T)xw
where KT, [lalle, [Iblleo) = 1+ 7 + Tllalleo + [[I2° + (1 + T)IIblZ..
The proof of this lemma can be found in [10, 8, 7]. From Lemmib e can then

obtain the following observability results with & observation, which will yield con-
trols in L*((0, T) x w) below.

Lemma 4.2. The solution g to system (4.1) satisfies
(4.3) IG(0)IZ, ) < €HT 1Rl Pl ( f f lql dxdt) ,
O.T)xw

where

1
(4.4)  H(TJlalle, Ibll) = 1+ = + T+ (T + TY9)alle + I3 + (1 + T)IIbIIZ,.

Since the cofficientc is ¥ on the open sab, the proof of [7, Theorem 2.5, Lemma
2.5] can be adapted. See also [8, Proposition 4.2, Lemma 4.3]

Consider now the followingjnear system
Oty — 0x(coyy) + ay + boyy = 1,v inQ,

(4.5) y=0 onx,
¥(0) = Yo inQ,

with a andb in L*(Q) andyp € L%(Q). If v e L%(Q), we consider its unique weak
solution in£'([0, T], L?()) N L(0, T, H3(Y)) [17, 6]. We have the following null
controllability result for (4.5)

Theorem 4.3. For all T > 0 and for all y in L?(Q), there exists \& L*((0,T) x w),
such that the solutionto (4.5) satisfiesT) = 0. Moreover, the control v can be
chosen such that

(4.6) ML= (o) < €°HTIRIP) gl 2

with H(T, ||a]|«, lIbll) @S given in (4.4).

The proof of Theorem 3.1 in [7] can be adapted to the presesat dais based on the
argument developed in [9]. It makes use of the observabisylt in Lemma 4.2.

For the null controllability of the quasi-linear heat eqaatwe shall need estimates for
the solution to the following linear system

Oty — 0x(Coxy) + ay+box(y) = f  inQ,
4.7) y=0 onx,
¥(0) = Yo inQ,

with a andb in L*(Q) andyy € L?(Q), f € L?(Q). We have the following classical
estimates.
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Lemma 4.4. The solution y to system (4.7) satisfies

(4.8) V)12 qy + 1020y + IMIE2(0) < Ka(T ks 10lleo) Il FIIF 2 + IV(OMIE2(cy)):

for 0 < t < T, with Ky(T, l|allee, lIbllco) = €CET+TIa+TIBG) - f yy e Hi(Q) then,
y € €([0, T], H3(®)) and

(4.9) 10:xYWO)IF 210y + 10:Y11F2 ) + 10x(CNIIE~ )
< Ko(T, llallo, 101} (1 FIiEz ) + YO)Fy(qy) O E<T,

with Ka(T, [|a]]eo, [|blleo) = T HT+TH3) el +H(T+TY2)IIDIZ)

With further regularity onf andyy we actually obtain

Lemma 4.5. Let f € L*(0, T,L?(Q)) and y € D(A). The solution y to system (4.7)
satisfies

(4.10) 10xy(OllL=(@) < Ka(T, [|alleos l1blleo) ([ fllL= 0,7, L202)) + IVlID(A))-
with
(4.11) Ka(T, [[alleo, Iblles) = CHTH(T+s(Mlalle +(THS(TYIBIZ)

for | a non-negative increasing function such th@d)l= 0. More precisely, d(t) =
S+ J)(FSdrwith 3 <s< 1.

The domain ofA = dy(cdy), D(A), is furnished with the norm of the graph denoted by
IIl.llo¢ay- Note that in the proof we make use of the fact s one-dimensional.

Proof. We first recall some properties of the semigr@(p generated byA = d,(Cox).
Consider the system

Otu — dx(coku) =0 inQ,
(4.12) u=0 onx,
u(0) = ug in Q,

with ug € L?(Q). The solution is given by(t) = S(t)ug. Since the semigrouf(t) is
analytic, we have [18, 6]

U2 < luoll 2y, andlAUt)ll 2y < %HUO“LZ(Q), O<t<T.

We can then write

(AU, ()20 < tlIolliz@) Uiz < Tltollzgy, O<t<T,
which by integration by parts yields

I u®)llze) < lluolliz), O<t<T.
As [Icoxu®) gy < (3 + %)HUOHLZ(Q), the interpolation inequality [17]

IBlIks@) < IBlIE gy 112
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for0 < s<1,yields
(4.13) llcoxu(®)llHs@) < hs(WlluollL2(qy-

with he(t) = (3 + %)S(%)LS ~50 1% . We choosé < s < 1. Thenhy(t) is integrable
on [0, T].

The solution to (4.7) can be written by Duhamel’'s formula][18

(4.14)

y(t) = Sy + fo 'S(t- 1) () dr - fo 'S(t- 1) (ay)(r) dr - fo 'S(t - 1) (bay)(x) di.

For the first term in (4.14)1(t) = S(t)yo, Wwe haveAy (t) = S(t)Ayp [18], which yields
IAGYD) OllL2) < IAYO)IIL2(0y)-

By Lemma 4.4, we havicayillizq) < eC(1+T)||yo||Hé(Q), which gives
(4.15) Icay1 Oy < € PlYollpga-
For the second terny,, in (4.14) we have
t t
Icoxy2(Ollnsi) < fo llcax(S(t — 7) F (7))l dr < fo hs(t — DIIf (7l 2(q) dT

by (4.13). We sels(t) = f hs(t — 7)dr = f; hs(r)dr, and obtain

t
(4.16) ||C(9xy2(t)||HS(Q) < (.[0 hs(t) dT) ||f|||_w(o,T,|_2(Q)) = |s(t)||f|||_oo(o,T,|_2(Q))-

For the third termys, in (4.14) we have

t
I00YaOlli < [ 163:(S(t =) @AWy U

< [ POl B < ORIV 070
< lsllalleo Ka (T, [1alloos 1Bl ) (Il FllLz(q) + YOIz
by Lemma 4.4. Observe that the functigris increasing. This yields
(417)  1Icoxys(llegy < € THTHMRSETIONY (£l 2 ) + 1Y(O)L2(ey).

Finally, for the fourth termy,, in (4.14) we have

(4.18) [Icaxya®)llsy < Cls®Iblleo 10Vl 07,20

< sl K2(T, [[alleo, 1blleo) (I FllLzq) + 1Y(ONHz(e)
< CAFTHT+T¥2) o+ (THTIBIZ)

Collecting estimates (4.15), (4.16), (4.17), and (4.18pbtain
(4.19) llcoxy®llusqy < CTHT TN+ T+ (11l o722y + Yollpay)-

Since the spacklS(Q) can be continuously injected #i(Q) because is one dimen-
sional (see e.g. [17]), fs > 3, the result follows, since > Cyin > 0. n

24



We are now ready to prove the null controllability result $ystem (2) which is based
on a fixed point argument.

Theorem 4.6. We letw € Q be a non-empty open set ané& BV(Q) with 0 < Cyip <
C < Cmaxand c of clas€™* on some non-empty open subsebofVe assume th& is
locally Lipschitz. Let T> O:

1. Local null controllability: There exists > 0 such that for all y in L?(Q) with
IYoll 2y < &, there exists a control @ L*((0, T) x w) such that the correspond-
ing solution to system (2) satisfie@y = 0.

2. Global null controllability: Let% satisfy in addition Assumption 1. Then for all
Yo in L2(Q), there exists & L*((0, T) x w) such that the solution to system (2)
satisfies yT) = 0.

The proof is classical and is along the same lines as thos@tfig 8] and originates
from [2, 11].

Proof. We first assume thay and G are continuous. We IeR > 0 and setZ =
L2(0, T, Hé(Q)). The truncation functiofy is defined as

S if |8 <R
ICE s =t
Rsgn@) otherwise
Forz e Z we consider the followinginear system
(4.20)
OYzv — 0x(COxYzv) + I(TR(2D). TR(9x2)Yzv + G(TR(2). TR(9x2)0xYzv = 1oV IN Q,
yLV = 0 on Z,
Yzv(0) = Yo inQ,

Sinceg andG are continuous, we see that the functi@as= g(Tr(2), Tr(0x2)) and
b, := G(Tr(2), Tr(0x2)) are inL*(Q) and have bounds ib™ that only depends og, G,
andR. If yo € L?(Q) and ifv = O fort € [0, 5], § > O, we obtainy,,(5) € D(A). Without
any loss of generality we may thus assume thgat D(A). We apply Theorem 4.3 to
system (4.20). We set

T, = min(T, llaall 2, llazllo >, s (laglls®)).
with the functionls defined in Lemma 4.5. Then we have
el tbd) < Q& Ko(To l1adlos IIballee) < 8, Ka(T l1@gleos lIballee) < &,
with & = eI +Z) | for H, K, andK3 the constants in (4.6), (4.9), and (4.11).
According to Theorem 4.3, there existsin L*(Q) such thatv, and the associated

solution to (4.20), withv = v, satisfyy,(T) = 0 and

(4.21) IVl (0, T)xw) < DlIYolliz()

(4.22) IYzullLo 1w ()) < DlIYolloeay,
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with $ of the same form a8, by Lemma 4.4 and Lemma 4.5, making use of the
continuous injectiorHé(Q) — L*(Q) in the one-dimensional case. Observe also that
we have

(4.23) ||yLv|||_2(o,T,D(A)) + ||atyLv|||_2(Q) < 55||Y0||Hé(g),

by Lemma 4.4. We now set
U@ ={ve L”((0,T) X w); Y.u(T) =0, (4.21) hold$

andA(?) = {yv: ve U@, (4.22) holds.

The mapz — A(2 from Z into &(Z), the power set oZ, satisfies the following
properties

1. for allz € Z, A(2) is a non-empty bounded closed convex set. Boundedness is
however uniform w.r.t. t& (and only depends OR);

2. there exists a compact skt c Z, such thatA(2) c K: by (4.23)A(2) is uni-
formly bounded inL?(0, T, D(A)) N H(0, T, L?(Q)), which injects compactly in
L2(Q) [16, Theorem 5.1, Chapter 1] sinB¥A) injects compactly irH3(€);

3. adapting the method of [7, pages 811-812] to the preseat we obtain that the
mapA is upper hemicontinuous; the argument uses the contintiyaadG.
These properties allow us to apply Kakutani’s fixed pointotieen [1, Theorem 1,
Chapter 15, Section 3] to the map

Result 1 follows by choosing suticiently small such that the (essential) supremum on
Q of the obtained fixed point is less th&by (4.22).

Result 2 follows if we prove thd® can be chosen greater that the (essential) supremum
on Q of the obtained fixed point. This is done exactly as in [7, paty8] and makes
use of the form ofy, estimate (4.22) and Assumption 1 @h

To treat the case whegendG are not continuous, we adapt the argument of [7, Section
3.2.1] to the present cases, for both the local and globataitability results. ]
Arguing as in [13] or e.g. [7] we can actually prove the follog null controllability
result with a boundary control from Theorem 4.6 :

Theorem 4.7. We let ce BV(Q) with 0 < Cmin < € < Cmax We assume th& is locally
Lipschitz. Lety be{0} or {1}. Let T > 0.

1. Local null controllability: There exists > 0 such that for all y in L?(Q) with
IYoll 2(qy < &, there exists a control & €°(0, T) such that the solution to system

Oty — 0x(coxy) +9(y) =0 inQ,

(4.24) y=0 onziy.
y=v ony,
¥(0) = Yo inQ,

satisfies yT) = 0.
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2. Global null controllability: Assume the functicf satisfies in addition Assump-

tion 1. Then for all y in L2(Q), there exists ¥ % (0, T) such that the solution to
system (4.24) satisfie§Ty) = 0.

Remark 4.8. 1. Note that for the distributed control (Theorem 4.6) weuisgjthat

the codficientc be of classg™ on an non-empty open subsetwf On the other
hand, for a boundary control (Theorem 4.7) there is no sustiicdon on the
codficientc, which can have a very singular behavior as the control baynd
approached.

. Note that as usual, one can repla€€) = 0 by y(T) = y*(T) in the previ-

ous statements, wheyg is any trajectory defined in [0] of system (2) (resp.
(4.24)), corresponding to some initial dgtpand any" in L*((0, T) X w) (resp.
%(0,T)). For the local controllability result, one has to assuwe- y;

“LZ(Q) S
&, with & sufficiently small.
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