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Abstract

We derive global Carleman estimates for one-dimensional linear parabolic equa-
tions ∂t ± ∂x(c∂x) with a coefficient of bounded variations. These estimates are
obtained by approximatingc by piecewise constant coefficients,cε, and passing
to the limit in the Carleman estimates associated to the operators defined withcε.
Such estimates yields observability inequalities for the considered linear parabolic
equation, which, in turn, yield controllability results for classes ofsemi-linear
equations.
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0 Introduction and settings

We consider the elliptic operatorA formally defined by−∂x(c∂x) on L2(Ω) in the one-
dimensional bounded domainΩ = (0,1) ⊂ R. The diffusion coefficientc is assumed to
be of bounded variations (BV). The domain ofA is given by

D(A) = {u ∈ H1
0(Ω); c∂xu ∈ H1(Ω)},

i.e., we consider Dirichlet boundary conditions.

We let T > 0. We shall use the following notationsQ = (0,T) × Ω, Γ = {0,1}, and
Σ = (0,T) × Γ.

We shall first study the following linear parabolic problems,

(0.1)


∂ty± Ay= f in Q,

y(0, x) = y0(x) (resp.y(T, x) = yT(x)) in Ω,
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for y0 ∈ L2(Ω) and f ∈ L2(Q).

Here, we show that we can achieveglobalCarleman estimates for the operators∂t ±A,
in Q, with an interior observation region (0,T) × ω, whereω ⋐ Ω with a non-empty
interior, and such thatc is of classC 1 in some open subset ofω.

With a Carleman estimate for∂t + ∂x(c∂x) at hand, we treat the problem of the null
controllability for semi-linear parabolic systems of the form



∂ty− ∂x(c∂xy) + G (y, ∂xy) = 1ωv in Q,

y(t, x) = 0 onΣ,

y(0, x) = y0(x) in Ω,

(0.2)

whereG : R2→ R is locally Lipschitz andG (0,0) = 0. In this case, we have

G (y1, y2) = y1 g(y1, y2) + y2 G(y1, y2), y1, y2 ∈ R.

with g andG in L∞loc(R
2). We shall assume

Assumption 0.1. The functions g and G satisfy

lim
|(y1,y2)|→∞

|g(y1, y2)|
ln3/2(1+ |y1| + |y2|)

= 0, lim
|(y1,y2)|→∞

|G(y1, y2)|
ln1/2(1+ |y1| + |y2|)

= 0.(0.3)

Under such an assumption we shall prove the complete null controllability for sys-
tem (0.2), i.e., that for all positive timeT and for ally0 ∈ L2(Ω), there exists a control
v ∈ L∞(Q) such that the solution satisfiesy(T) = 0. We also prove the controllability of
system (0.2) in the case where the control acts through one ofthe boundary conditions,
at 0 or 1. Then, we need not require the coefficientc to be of classC 1 in some inner
region ofΩ. More generally, we can address the question of the controllability to the
trajectories.

A null controllability result for alinear parabolic equation withBV coefficients was
proven in [11]. The proof relies on Russell’s method [18]. However, the question of
the existence of a Carleman-type observability estimate was open. The present article,
providing a Carleman estimate allows to treat the case of semilinear equations follow-
ing the (fix-point) method of [10] (generalized in [6]). For areview of the role played
by Carleman estimates in establishing controllability results for parabolic equations we
refer to [9].

Carleman estimates for parabolic equations in several dimensions with smooth coeffi-
cients were proven in [12]. The proof is based on the construction of suitable weight
functionsβ whose gradient is non-zero in the complement of the observation region.
In particular the functionβ is chosen to be smooth. In [7], the authors treat the case
of piecewise regular coefficients and introduce non-smooth weight functions assuming
that they satisfy thesame transmission condition as the solution. To obtain observ-
ability, they have to add some assumption on the monotonicity of the coefficients. In
the one-dimensional case, this monotonicity assumption was relaxed in [3, 2], by in-
troducing additional requirements on the non-smooth weight function β. In several
dimensions, the existence of a Carleman estimate when the monotonicity condition is
not satisfied is an open question.

The Carleman estimates derived here for the operator∂t ±∂x(c∂x) are obtained through
a limiting process from the Carleman estimates associated for∂t±∂x(cε∂x), for cε piece-
wise constant converging toc. The main issue in this limiting process is to keep both
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the weight functions and constants in the Carleman estimateunder control. Section 2
of the present article is devoted to this question.

The approximation of theBV coefficientc by some piecewise coefficientcε is closely
related to numerical methods. The techniques developed here could also be applied in
the numerical analysis of discrete type estimates of the form of Carleman estimates.

The outline of the article is as follows. In Section 1, we recall the Carleman estimate
obtained in [3, 2] for piecewise continuous coefficients (Theorem 1.2) and especially
the form of the weight functions in the estimate (Lemma 1.1).(The results of this
section are not essential as we revisit the arguments used toprove them in the following
section.) In Section 2, we construct limit weight functionsby approaching theBV
coefficient c by piecewise constant coefficientscε (Lemma 2.3). In Theorem 2.8, we
prove a Carleman estimate associated to∂t ± ∂x(c∂x) by proving that the constants
in the Carleman estimate of∂t ± ∂x(cε∂x) can be taken uniform with respect to the
parameterε (Proposition 2.4) and passing to the limit in each term of theestimate. In
Section 3, we derive a Carleman estimate for the linear system (0.1) with the r.h.s.,f ,
in L2(0,T,H−1(Ω)). This estimate is needed for the analysis of the controllability of
the semilinear system (0.2), which is carried out in Section4.

In this article, when the constantC is used, its value may change from one line to the
other. If we want to keep track of the value of a constant we shall use another letter.
We denote the jump of a functionρ, at some pointx ∈ (0,1), by [ρ]x := ρ(x+) − ρ(x−),
with the conventions [ρ]1 = −ρ(1−) and [ρ0] = ρ(0+).

1 Carleman estimate in the case of a piecewise C 1 coefficient

In the case of a piecewise-C 1 diffusion coefficient c, we denote its singularities by
a1, . . . ,an−1, with 0 = a0 < a1 < a2 < · · · < an−1 < an = 1. We first introduce
a particular type of weight function to be used in the Carleman estimate. Letj ∈
{0, . . . ,n − 1} be fixed in the sequel andω0 ⋐ O ⋐ (a j ,a j+1) be non-empty open sets.
We have the following lemma [3, 2].

Lemma 1.1. There exists a functioñβ ∈ C (Ω) satisfying

β̃|[ai ,ai+1] ∈ C
2([ai ,ai+1]), i = 0, . . . ,n− 1,

β̃ > 0 in Ω, β̃ = 0 onΓ, (β̃|[aj ,aj+1] )
′
, 0 in [a j ,a j+1] \ ω0,

(β̃|[ai ,ai+1] )
′
, 0, i ∈ {1, . . . ,n}, i , j,

β̃′ > 0 on the l.h.s. ofω0, β̃′ < 0 on the r.h.s. ofω0,

and the functioñβ satisfies the following trace properties, for someα > 0,

(Aiu,u) ≥ α|u|2, u ∈ R2,(1.1)

with the matrices Ai , defined by

Ai =

(
[β̃′]ai β̃′(a+i )[c̃β′]ai

β̃′(a+i )[c̃β′]ai β̃′(a+i )[c̃β′]2
ai
+ [c2(β̃′)3]ai

)
, i = 1, . . . ,n− 1.

Figure 1 illustrates a typical shape for the functionβ̃.
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Figure 1: Sketch of a typical shape for the functionβ̃ for an ‘observation’ in (a j ,a j+1).

Choosing a functioñβ, as in the previous lemma, we introduceβ = β̃ + K with K =
m‖β̃‖∞ andm> 1. Forλ > 0 andt ∈ (0,T), we define the following weight functions

(1.2) ϕ(x, t) =
eλβ(x)

t(T − t)
, η(x, t) =

eλβ − eλβ(x)

t(T − t)
,

with β = 2m‖β̃‖∞ (see [7],[9]). We next set

ℵ =
{
q ∈ C (Q,R); q|[0,T]×[ai ,ai+1] ∈ C

2([0,T] × [ai ,ai+1]), i = 0, . . . ,n− 1,

q|Σ = 0, andq satisfies (TCn), for all t ∈ (0,T)
}
,

with

q(a−i ) = q(a+i ), c(a−i )∂xq(a−i ) = c(a+i )∂xq(a+i ), i = 1, . . . ,n− 1.(TCn)

The following global Carleman estimate is proven in [3, 2].

Theorem 1.2. Let ω0 ⋐ O ⋐ (a j ,a j+1) be non-empty open sets. There existsλ1 =

λ1(Ω,O) > 0, s1 = s1(λ1,T) > 0 and a positive constant C= C(Ω,O) so that the
following estimate holds

(1.3) s−1
Ï

Q
e−2sηϕ−1 (|∂tq|2 + |∂x(c∂xq)|2) dxdt

+ sλ2
Ï

Q
e−2sηϕ |∂xq|2 dxdt+ s3λ4

Ï

Q
e−2sηϕ3 |q|2 dxdt

≤ C

[
s3λ4

Ï

(0,T)×O
e−2sηϕ3 |q|2 dxdt+

Ï

Q
e−2sη |∂tq± ∂x(c∂xq)|2 dxdt

]
,

for s≥ s1, λ ≥ λ1 and for all q∈ ℵ.

Remark 1.3. By a density argument, we see that the Carleman estimate (1.3) remains
valid for q (weak) solution to



∂tq± ∂x(c∂xq) = f in Q,

q = 0 onΣ,

q(T, x) = qT(x) (resp.q(0, x) = q0(x)) in Ω,

with f ∈ L2(Q) andqT (resp.q0) in L2(Ω).
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2 Carleman estimates in the case of a BV coefficient

To obtain a Carleman estimate in the case of more general non-smooth coefficients,
such asBV coefficients, we shall first revisit the conditions imposed on the weight
function β̃ in Lemma 1.1. Since the conditions imposed onβ̃ will only make use of
its derivative, we shall sometimes employβ in place ofβ̃ here, as they only differ by
a constant (see the definition ofβ in (1.2) above). We shall use a limiting process to
obtain a Carleman estimate in the case of aBV coefficient making use of estimate (1.3)
in the case of a piecewise-C 1 coefficients.

We first consider a piecewise-C 1 diffusion coefficient, c, with a discontinuity ata ∈
(0,1). Defining a functionβ, as in the Lemma 1.1, we then define the matrixA as

A =

(
[β′]a β′(a+)[cβ′]a

β′(a+)[cβ′]a β′(a+)[cβ′]2
a + [c2(β′)3]a

)
.

This symmetric matrix is positive definite if and only if [β′]a > 0 and det(A) > 0. We
now set

Y =
c(a+)
c(a−)

, X =
β′(a−)
β′(a+)

,

and write

A =

(
β′(a+)(1− X) c(a−)(β′(a+))2(Y− X)
c(a−)(β′(a+))2(Y− X) c2(a−)(β′(a+))3

(
(Y− X)2

+ (Y2 − X3)
)

)
,

which yields det(A) = c2(a−)(β′(a+))4 PY(X) with

PY(X) = (1− X)(Y2 − X3) − X(Y− X)2.

In the caseY = 1, there is actually no discontinuity for the coefficientc at the consid-
ered point. An inspection of the proof of the Carleman estimate (1.3) in [2] shows that
with X = 1, i.e.∂xβ continuous ata, the integrals over (0,T) at the pointa vanish in
the course of the proof of the estimate.

We now place ourselves in the caseY , 1 andβ′ < 0, i.e., on the r.h.s. of the open set
ω0 (see Lemma 1.1). There, [β′]a > 0 is equivalent toX > 1. The polynomial function
PY can be made positive forX sufficiently large, since its leading coefficient is positive.
Here, we shall in fact giveexplicitsufficient conditions onX for this to be satisfied.

Observe thatPY(Y) = Y2(1 − Y)2. In the caseY > 1, we can thus chooseX = Y and
the desired conditions on the functionβ are satisfied. This choice corresponds to that
made in [7] since in this case we havec(a−)∂xβ(a−) = c(a+)∂xβ(a+).

In the caseY < 1, the previous choice,X = Y, is not possible as it would yield a
negative definite quadratic formA. Observe, however, thatPY(2− Y) = Y2(1− Y)2. In
the case 0< Y < 1, we can thus chooseX = 2 − Y. Observe also thatPY(1/Y) > 0,
which makesX = 1/Y an alternative choice.

Remark 2.1. Note that the proposed choices are not optimal but yield easy-to-handle
conditions to compute an adapted weight functionβ. We can actually show that there
existsg(Y) ≥ 1, defined forY > 0, with g(Y) > 1 if Y , 1 such thatPY(X) > 0 if and
only if X > g(Y). Figure 2 compares the proposed solution to the optimal one.
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Figure 2: Graph of the optimal solutiong(Y) (thick) and graph of the proposed solution
(thin) in the caseβ′ < 0.

1
X

0
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Figure 3: Graph of the optimal solutionh(Y) (thick) and graph of the proposed solution
(thin) in the caseβ′ > 0.
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In the caseβ′ > 0, i.e., on the l.h.s. of the open setω0, we now need 0< X < 1 to
satisfy [β′]a > 0. We can make the following choices:X = Y if Y < 1 andX = Y

2Y−1 if
Y > 1. Figure 3 compares the proposed solution to the optimal one(herePY(X) > 0 if
and only if 0< X < h(Y) for some functionh satisfyingh(Y) < 1 if Y , 1). Note that
X = Y

2Y−1, actually yields1
X = 2 − 1

Y , which makes the connexion with the proposed

choice in the caseβ′ < 0 above. In fact, we havePY( Y
2Y−1) = Y2(Y−1)2

(2Y−1)4 .

We now consider a diffusion coefficientc, of bounded variations, yetC 1 onO, with O
an open subset ofΩ, O ⋐ Ω. We also assume 0< cmin ≤ c ≤ cmax. Without any loss of
generality we may assumeO = (x0, x1), with 0 < x0 < x1 < 1. We also letω0 ⋐ O. We
denote the total variations ofc on [0, x0] and [x1,1] by ϑ0 = Vx0

0 (c), andϑ1 = V1
x1

(c).

Let ε > 0. There exists a functioncε, piecewise-constanton (0, x0)∪(x1,1), and smooth
onO such that (see e.g. [4])

‖c− cε‖L∞(Ω) ≤ ε, Vx0

0 (cε) ≤ ϑ0, andV1
x1

(cε) ≤ ϑ1, ‖cε − c‖
C 1(O) ≤ ε.

We denote bya1, . . . ,an the points of discontinuity ofcε in the interval [x1,1]. We then
have

n∑

i=1

|cε(a+i ) − cε(a
−
i )| ≤ ϑ1.

Let Yi = cε(a+i )/cε(a−i ) andXi , i = 1, . . . ,n, be defined according to what is described
above, i.e.,

Xi = Yi , if Yi > 1, andXi = 2− Yi , if Yi < 1,

as we are on the r.h.s. ofω0. We define thepiecewise-constantfunctionγ1,ε as

γ1,ε(x) := γ1,ε(1)
∏

x<a j

X j , x < {a1, . . . ,an},(2.1)

for some fixedγ1,ε(1) < 0. Observe thatXi =
γ1,ε(a−i )
γ1,ε(a+i ) , i = 1, . . . ,n.

In a similar fashion, ifan+1, . . . ,an+k are the discontinuities ofcε on [0, x0], we build
thepiecewise-constantfunctionγ0,ε on [0, x0] as

γ0,ε(x) := γ0,ε(0)
∏

x>a j

1
X j
, x < {an+1, . . . ,an+k},(2.2)

for some fixedγ0,ε(0) > 0 and withXn+1, . . . ,Xn+k defined as described above, i.e.,

Xi = Yi , if Yi < 1, andXi =
Yi

2Yi − 1
, if Yi > 1, i = n+ 1, . . . ,n+ k.

We then haveXi =
γ0,ε(a−i )
γ0,ε(a+i ) , i = n+ 1, . . . ,n+ k.

We define the functions̃β1,ε(x) :=
∫x

1 γ1,ε(y) dy and β̃0,ε(x) :=
∫x

0 γ0,ε(y) dy, and we
define a continuous functioñβε by βε(x) = β0,ε(x) in [0, x0] and βε(x) = β1,ε(x) in
[x1,1], andC 2 onO, such that̃β′ε does not vanish outsideω0. The precise definition of
β̃ε onO will be given below.
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We observe that̃βε satisfies the conditions listed in Lemma 1.1. Hence, we obtain Car-
leman estimate (1.3) for the operator∂t ±∂x(cε∂x) with the associated weight functions
ηε andϕε: we introduceβε = β̃ε + Kε with Kε ≥ m‖β̃ε‖∞ andm > 1. Forλ > 0 and
t ∈ (0,T), we define

(2.3) ϕε(x, t) =
eλβε(x)

t(T − t)
, ηε(x, t) =

eλβε − eλβε(x)

t(T − t)
, with βε = 2Kε.

We now wish to pass to the limit in the Carleman estimate ascε converges toc in
L∞(Ω). The remaining of this section is devoted to this question.We first need to
control the behavior ofβε, or rather its derivative, asε goes to zero.

Lemma 2.2. There exists K> 0 and ε0 > 0 that depend solely on the diffusion
coefficient c ∈ BV(0,1) such that, for all0 < ε ≤ ε0, Vx0

0 (γ0,ε) ≤ K γ0,ε(0) and
V1

x1
(γ1,ε) ≤ K |γ1,ε(1)|.

Proof. We haveV1
x1

(γ1,ε) = |γ1,ε(x1) − γ1,ε(1)| sinceγ1,ε is a non-decreasing function.
ThusV1

x1
(γ1,ε) = (X1 . . .Xn − 1)|γ1,ε(1)|. We have

∑

i∈I1

|cε(a+i ) − cε(a
−
i )| +

∑

i∈I2

|cε(a+i ) − cε(a
−
i )| ≤ ϑ1,

with i ∈ I1 if cε(a+i ) > cε(a−i ) andi ∈ I2 if cε(a+i ) < cε(a−i ). Dividing by cε(a−i ) or cε(a+i )
accordingly, we obtain

∑

i∈I1

(Yi − 1)+
∑

i∈I2

(
1
Yi
− 1) ≤ ϑ1/(cmin − ε0).

(Recall thatc ≥ cmin > 0; here we take 0< ε ≤ ε0 < cmin.) Note that if 0< Y < 1
thenX = 2 − Y < 1/Y. We thus obtain

∑n
i=1(Xi − 1) ≤ ϑ1/(cmin − ε0). Finally, since

X1, . . . ,Xn > 1, we write

X1 . . .Xn ≤ eX1−1 . . . eXn−1
= e

∑n
i=1(Xi−1) ≤ eϑ1/(cmin−ε0),

which concludes the proof forγ1,ε.

Forγ0,ε we haveVx0

0 (γ0,ε) = ( 1
Xn+1...Xn+k

− 1)γ0,ε(0). This time, ifY > 1 then

1
X
− 1 =

2Y− 1
Y

− 1 =
Y− 1

Y
< Y− 1.

Thus, we obtain
∑n+k

i=n+1( 1
Xi
− 1) ≤ ϑ0/(cmin − ε0), and accordingly

1
Xn+1 . . .Xn+k

≤ e
1

Xn+1
−1
. . . e

1
Xn+k
−1
= e

∑n+k
i=n+1( 1

Xi
−1) ≤ eϑ0/(cmin−ε0).

�

By Helly’s theorem [14, 4], up to a subsequence, the functionsγ0,ε (resp.γ1,ε) converge
everywhereto a functionγ0 (resp.γ1) asε goes to 0. (We take for instanceε = 1

n+1 but
shall not write it explicitly for the sake of concision.) Moreover, these two functions
satisfy

Vx0

0 (γ0) ≤ K γ0,ε(0) = Kγ0(0), andV1
x1

(γ1) ≤ K |γ1,ε(1)| = K |γ1(1)|.
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The functionsγ0,ε (resp.γ1,ε) are bounded inL∞(0, x0) (resp.L∞(x1,1)) uniformly w.r.t.
ε. Thus, by dominated convergence, the associated functionsβ̃0,ε and β̃1,ε converge
everywhere to the continuous functionsβ̃0(x) :=

∫x
0 γ0(y)dy, andβ̃1(x) :=

∫x
1 γ1(y)dy.

We definẽβ onΩ by β̃(x) = β̃0(x) in [0, x0], β̃(x) = β̃1(x) in [x1,1], and we desigñβε
andβ̃ to beC 2 onO and such that

|̃β′ε(x)| ≥ min(̃β′(0), |̃β′(1)|), and|̃β′(x)| ≥ min(̃β′(0), |̃β′(1)|), in Ω \ ω0,(2.4)

and such that̃βε |O converges tõβ|O in C 2(O). We have thus obtained the following
lemma.

Lemma 2.3. Letω0 ⋐ O ⋐ Ω, be open sets,O = (x0, x1). Let c in BV(Ω) be of class
C 1 in O with 0 < cmin ≤ c ≤ cmax. Let cε be piecewise-constant onΩ \ O, and smooth
onO such that

‖c− cε‖L∞(Ω) ≤ ε, Vx0

0 (cε) ≤ ϑ0, and V1
x1

(cε) ≤ ϑ1, ‖cε − c‖
C 1(O) ≤ ε.

There exist weight functions̃βε that satisfy the properties listed in Lemma 1.1 for the
associated coefficient cε, and are uniformly bounded in L∞(Ω), with derivatives uni-
formly bounded in L∞(Ω) and piecewise-constant onΩ\O. Furthermore,̃βε converges
everywhere inΩ to a functionβ̃ which is inC (Ω) and β̃ε |O can be chosen uniformly

bounded inC 2(O) and the functions̃βε and β̃ satisfy (2.4).

We shall now revisit the proof of Carleman estimate (1.3) andcheck that the con-
stants,C, s1 andλ1, can be chosen uniformly w.r.t.ε with the properties of̃βε listed in
Lemma 2.3. Note that in the definitions ofϕε andηε, in (2.3), the constantsKε andβε
can actually be chosen uniformly w.r.t.ε by Lemma 2.3.

Proposition 2.4. Let c∈ BV(0,1) beC 1 in O. Let cε andβε be defined as above. The
constant C on the r.h.s. of the Carleman estimate (1.3) for the operators∂t ± ∂x(cε∂x)
and the constants s1 andλ1 can be chosen uniformly w.r.t.ε for 0 < ε ≤ ε0, with ε0

sufficiently small.

Proof. We treat the case of the operator∂t + ∂x(cε∂x). The proof is similar for∂t −
∂x(cε∂x). Call a1, . . . ,an−1 the discontinuities ofcε, with a0 = 0 < a1 < . . . ,an−1 <

an = 1. We choose 0< ε0 < cmin and thus 0< cmin − ε0 ≤ cε ≤ cmax+ ε0.

In the derivation of Carleman estimate (1.3) (see [2]) we consider s > 0, λ > 1 and
q ∈ ℵε with

ℵε =
{
q ∈ C (Q,R); q|[0,T]×[ai ,ai+1] ∈ C

2([0,T] × [ai ,ai+1]), i = 0, . . . ,n− 1,

q|Σ = 0, andq satisfies (TCε,n), for all t ∈ (0,T)
}
,

with

q(a−i ) = q(a+i ), cε(a
−
i )∂xq(a−i ) = cε(a

+

i )∂xq(a+i ), i = 1, . . . ,n− 1.(TCε,n)

We setψε = e−sηεq. Sinceq satisfies transmission conditions (TCn) we have

ψε(t,a
−
i ) = ψε(t,a

+

i ),(2.5)

[cε∂xψε(t, .)]ai = sλϕε(t,ai) ψε(t,ai)[cεβ
′
ε]ai , i = 1, . . . ,n− 1.(2.6)
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In each (0,T) × (ai ,ai+1), i = 0, . . . ,n− 1, the functionψε satisfiesM1ψε + M2ψε = fs,
with

M1ψε = ∂x(cε∂xψε) + s2λ2ϕ2
ε(β
′
ε)

2cεψε + s(∂tηε)ψε,

M2ψε = ∂tψε − 2sλϕεcεβ
′
ε∂xψε − 2sλ2ϕεcε(β

′
ε)

2ψε,

fs = e−sηε f + sλϕε(cεβ
′
ε)
′ψε − sλ2ϕεcε(β

′
ε)

2ψε.

We have

‖M1ψε‖2L2(Q′) + ‖M2ψε‖2L2(Q′) + 2(M1ψε,M2ψε)L2(Q′) = ‖ fs‖2L2(Q′).(2.7)

whereQ′ = (0,T) × Ω′, with Ω′ = (∪n−1
i=0 (ai ,ai+1)). With the same notations as in [7,

Theorem 3.3], we write (M1ψε,M2ψε)L2(Q′) as a sum of 9 termsI i j , 1 ≤ i, j ≤ 3, where
I i j is the inner product of theith term in the expression ofM1ψε and thejth term in the
expression ofM2ψε above. For the computation of the termsI i j see [2].

The termI11 follows as

I11 =
1
2

sλ
n−1∑

i=1

∫T

0
∂tϕε(t,ai)[cεβ

′
ε]ai |ψε(t,ai)|2 dt

The termI12 follows as

I12 = sλ2
Ï

Q′
ϕε(β

′
ε)

2 |cε∂xψε|2 dxdt+ X12 + sλ
n∑

i=0

∫T

0
ϕε(t,ai) [β′ε |cε∂xψε|2(t, .)]ai dt,

whereX12 = sλ
Î

Q′ ϕε(β
′′
ε ) |cε∂xψε|2 dxdt. The termI13 follows as

I13 = 2sλ2
Ï

Q′
|cε∂xψε|2ϕε(β′ε)2dxdt+ X13,

with

X13 = 2sλ2
n−1∑

i=1

∫T

0
ϕε(t,ai)ψε(t,ai) [(β′ε)

2 c2
ε∂xψε(t, .)]ai dt

+ 2sλ3
Ï

Q′
c2
ε(∂xψε)ψεϕε(β

′
ε)

3dxdt+ 2sλ2
Ï

Q′
cε(∂xψε)ψεϕε(cε(β

′
ε)

2)′dxdt.

The termI21 follows as

I21 = −s2λ2
Ï

Q′
cεϕε(∂tϕε)(β

′
ε)

2|ψε|2 dxdt.

The termI22 follow as

I22 = 3s3λ4
Ï

Q′
ϕ3
ε(β
′
ε)

4|cεψε|2dxdt

+ s3λ3
n−1∑

i=1

∫T

0
ϕ3
ε(t,ai)|ψε(t,ai)|2 [c2

ε(β
′
ε)

3]ai dt+ X22,
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with X22 = s3λ3
Î

Q′ ϕ
3
ε(c

2
ε(β
′
ε)

3)′|ψε|2 dxdt. The termsI23 andI31 follow as

I23 = −2s3λ4
Ï

Q′
ϕ3
ε(β
′
ε)

4|cεψε|2 dxdt, I31 = −
s
2

Ï

Q′
(∂2

t ηε)|ψε|2 dxdt.

The termsI32 is given by

I32 = s2λ2
Ï

Q′
ϕε(β

′
ε)

2cε(∂tηε)|ψε|2 dxdt− s2λ2
Ï

Q′
ϕε(∂tϕε)(β

′
ε)

2cε|ψε|2 dxdt

+ s2λ

Ï

Q′
ϕε(cεβ

′
ε)
′(∂tηε)|ψε|2 dxdt

+ s2λ

n−1∑

i=1

∫T

0
ϕε(t,ai)(∂tηε)(t,ai)|ψε(t,ai)|2 [cεβ

′
ε]ai dt.

Finally, the termI33 follows as

I33 = −2s2λ2
Ï

Q′
ϕεcε(∂tηε)(β

′
ε)

2|ψε|2 dxdt.

Adding the nine terms together to form (M1ψε,M2ψε)L2(Q′) in (2.7) leads to

(2.8) ‖M1ψε‖2L2(Q′) + ‖M2ψε‖2L2(Q′)

+ 6sλ2
Ï

Q′
ϕε(β

′
ε)

2 |cε∂xψε|2 dxdt+ 2s3λ4
Ï

Q′
ϕ3
ε(β
′
ε)

4|cεψε|2 dxdt

+ 2sλ
n∑

i=0

∫T

0
ϕε(t,ai)

(
[β′ε |cε∂xψε|2(t, .)]ai + [c2

ε(β
′
ε)

3]ai |sλϕε(t,ai)ψε(t,ai)|2
)

dt

= ‖ fs‖2L2(Q′) − 2(I11 + X12 + X13 + I21 + X22 + I31 + I32 + I33).

The termsI11, . . . , I33 on the r.h.s. are terms to be ‘dominated’. The ‘dominating’ vol-
ume and surface terms are the terms we kept on the l.h.s. of (2.8).

We shall first treat the ‘dominated’ volume terms and bound them from above uni-
formly w.r.t. ε.

With β′ε piecewise constant outsideO, the termX12 reduces to

X12 = sλ
Ï

(0,T)×O
ϕε(β

′′
ε ) |cε∂xψε|2 dxdt,

and we have

|X12| ≤ sλC
Ï

(0,T)×O
|∂xψε|2 dxdt,

with C uniform w.r.t.ε by lemma 2.3. The absolute value of the volume terms inX13

can be bounded by [2, 7]

CδT
4sλ4

Ï

Q
ϕ3
ε |ψε|2 dxdt+ δsλ2

Ï

Q
ϕε|∂xψε|2 dxdt, δ > 0,

with δ arbitrary small, usingϕε ≤ CT4ϕ3
ε; the constantsCδ is uniform w.r.t.ε. (recall

thatcε is piecewise constant outsideO and‖cε−c‖
C 1(O) ≤ ε.) Noting that [7, equations

(89)–(91)]

|∂tϕε| ≤ Tϕ2
ε, |∂tηε| ≤ Tϕ2

ε, |∂2
ttηε| ≤ 2T2ϕ3

ε,
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we obtain

|I21| ≤ s2λ2CT
Ï

Q
ϕ3
ε |ψε|2 dxdt, |I31| ≤ sCT2

Ï

Q
ϕ3
ε |ψε|2 dxdt,

|I33| ≤ s2λ2CT
Ï

Q
ϕ3
ε |ψε|2dxdt,

with the constants uniform w.r.t.ε. Similarly we have

|X22| ≤ Cs3λ3
Ï

Q
ϕ3
ε |ψε|2 dxdt,

with a constantC uniform w.r.t.ε. Finally, the absolute value of the volume terms in
I32 can be estimated from above bys2λ2CT

Î

Q ϕ
3
ε |ψε|2dxdtwith a constantC uniform

w.r.t. ε.

We shall use the properties ofβε listed in Lemma 2.3 to now estimate from above the
‘dominated’ surface terms.

Lemma 2.5. Let δ > 0. There exists Cδ > 0 uniform w.r.t.ε such that the absolute
value of the surface terms in I11, I13 and I32 can be bounded by

Cδ(sλT3
+ sλ3T4

+ (λ + λ3)s2T2)
n−1∑

i=1

|Yi − 1|
∫T

0
ϕ3
ε(t,ai)|ψε(t,ai)|2 dt

+ sλδ
n−1∑

i=1

|Yi − 1|
∫T

0
ϕε(t,ai) |(cε∂xψε)(t,a

−
i )|2 dt.

Proof. Note first that on the r.h.s. of the open setO (β′ε < 0) we either haveX = Y if
Y > 1 or X = 2−Y, if Y < 1. In the first case,Y− X = 0 andY− X2

= (1−Y)Y; in the
second caseX−Y = 2(Y−1) andY−X2

= (Y−1)(4−Y). On the l.h.s. ofO (β′ε > 0) we
either haveX = Y

2Y−1 if Y > 1 or X = Y if Y < 1. In the first case,Y− X = 2Y
2Y−1(Y− 1)

andY − X2
=

4Y2−Y
(2Y−1)2 (Y − 1); in the second caseY − X = 0 andY − X2

= (1 − Y)Y.
Hence, in any case, since

0 <
cmin − ε0

cmax+ ε0
≤ Y ≤ cmax+ ε0

cmin − ε0
,

we obtain that|X − Y| ≤ C|Y − 1| and|Y − X2| ≤ C|Y − 1| with the constantC uniform
w.r.t. ε and w.r.t. the considered point of discontinuity ofcε.

Observing that [cεβ′ε]ai = cε(a−i )β′ε(a
+

i )(Yi − Xi) we obtain

|I11| ≤ sλCT3
n−1∑

i=1

|Yi − 1|
∫T

0
ϕ3
ε(t,ai)|ψε(t,ai)|2 dt,

with C uniform w.r.t.ε by Lemma 2.3.
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To estimate the surface terms inX13 we write, witha being one of theai , i = 1, . . . ,n−1,

2sλ2
∫T

0
ϕε(t,a)ψε(t,a) [(β′ε)

2 c2
ε∂xψε(t, .)]a dt

= 2sλ2
∫T

0
ϕε(t,a)ψε(t,a)cε(a

−)β′ε(a
+)2

(
(cε∂xψε)(a

+)Y− (cε∂xψε)(a
−)X2

)
dt

= 2sλ2(Y− X2)cε(a
−)β′ε(a

+)2
∫T

0
ϕε(t,a) ψε(t,a)(cε∂xψε)(a

−) dt

+ 2s2λ3(Y− X)Yc2
ε(a
−)β′ε(a

+)3
∫T

0
ϕ2
ε(t,a) |ψε(t,a)|2 dt,

where we have used transmission condition (2.6). We thus obtain that the absolute
value of the surface terms inX13 can be estimated uniformly w.r.t.ε by

sλ2C
n−1∑

i=1

|Yi − 1|
∫T

0
ϕε(t,ai) ψε(t,ai)(cε∂xψε)(a

−
i ) dt

+ s2λ3C
n−1∑

i=1

|Yi − 1|
∫T

0
ϕ2
ε(t,ai) |ψε(t,ai)|2 dt

≤ Cδ(sλ
3T4
+ s2λ3T2)

n−1∑

i=1

|Yi − 1|
∫T

0
ϕ3
ε(t,ai) |ψε(t,ai)|2 dt

+ δsλ
n−1∑

i=1

|Yi − 1|
∫T

0
ϕε(t,ai) |(cε∂xψε)(t,a

−
i )|2 dt,

for δ > 0 arbitrary small, by Young’s inequality and usingϕ2
ε ≤ Cϕ3

εT
2 andϕε ≤

Cϕ3
εT

4.

Finally, we estimate the absolute value of the surface termsin I32 uniformly w.r.t.ε by

s2λCT
n−1∑

i=1

|Yi − 1|
∫T

0
ϕ3
ε(t,ai)|ψε(t,ai)|2 dt,

which concludes the proof of Lemma 2.5. �

Continuation of the proof of Proposition 2.4.We now pass to the task of estimat-
ing from below the volume and surface ‘dominating’ terms. Wefirst treat the vol-
ume terms, restricting the domain of integration to (Ω \ ω0) × (0,T). Since|β′ε(x)| ≥
min(β′ε(0), |β′ε(1)|) = min(β′(0), |β′(1)|) > 0 onΩ \ ω0, from the construction we gave
above, we obtain

6sλ2
∫T

0

∫

Ω\ω0

ϕε(β
′
ε)

2 |cε∂xψε|2 dxdt+ 2s3λ4
∫T

0

∫

Ω\ω0

ϕ3
ε(β
′
ε)

4|cεψε|2 dxdt

≥ C

(
sλ2

∫T

0

∫

Ω\ω0

ϕε|cε∂xψε|2 dxdt+ s3λ4
∫T

0

∫

Ω\ω0

ϕ3
ε |ψε|2 dxdt

)
,

where the constant C is uniform w.r.t.ε.

As in the proof of the previous lemma, to treat the surface terms, we writea as one of
theai , i = 1, . . . ,n − 1. The ‘dominating’ surface terms in (2.8) are sums of terms of
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the form

µ := 2sλ
∫T

0
ϕε(t,a)

(
[β′ε |cε∂xψε|2(t, .)]a + [c2

ε(β
′
ε)

3]a|sλϕε(t,a)ψε(t,a)|2
)

dt.

Applying transmission condition (2.6) we obtain

[β′ε |cε∂xψε|2(t, .)]a = [β′ε]a |cε(a−)∂xψε(t,a
−)|2 + s2λ2ϕ2

ε(t,a)β′ε(a
+)[cεβ

′
ε]

2
a |ψε(t,a)|2

+ 2sλϕε(t,a)β′ε(a
+)[cεβ

′
ε]a (cε∂xψε)(t,a

−)ψε(t,a),

which gives

µ := sλ
∫T

0
ϕε(t,a)

(
[β′ε]a |(cε∂xψε)(t,a

−)|2

+

(
β′ε(a

+)[cεβ
′
ε]

2
a + [c2

ε(β
′
ε)

3]a

)
|sλϕε(t,a)ψε(t,a)|2

+ 2β′ε(a
+)[cεβ

′
ε]a (cε∂xψε)(t,a

−)(sλϕε(t,a)ψε(t,a))
)

dt

= sλ
∫T

0
ϕε(t,a)

(
Au(t,a),u(t,a)

)
dt,

with u(t,a) = ((cε∂xψε)(t,a−), sλϕε(t,a)ψε(t,a))t and the symmetric matrixA given by

A =

(
[β′ε]a β′ε(a

+)[cεβ′ε]a

β′ε(a
+)[cεβ′ε]a β′ε(a

+)[cεβ′ε]
2
a + [c2

ε(β
′
ε)

3]a

)
.

The matrix A is positive definite by Lemma 2.3 and Lemma 1.1. However, we need to
estimate its eigenvalues from below, which is the object of the following lemma.

Lemma 2.6. The eigenvaluesν1, ν2 of the matrix A satisfyνi ≥ C|Y − 1|, i = 1,2, with
C uniform w.r.t.ε and i ∈ {1, . . . ,n}.

Proof. We have several cases to consider. Consider first the r.h.s. of O, that is in the
region whereβ′ε < 0. In the caseY > 1, we have made the choice,X = Y and the
matrix A then reduces to

A =

(
β′ε(a

+)(1− Y) 0
0 c2

ε(a
−)(β′ε(a

+))3Y2(1− Y)

)
.

and the result follows (recall that 0< Ymin ≤ Y ≤ Ymax, Ymin andYmax uniform w.r.t.ε
and 0< cmin − ε0 ≤ cε ≤ cmax+ ε0 and|β′ε(a+)| ≥ |β′ε(1)| = |β′(1)| > 0).

In the caseY < 1 we haveX = 2− Y. The matrixA is then equal to

A = β′ε(a
+)(Y− 1)A, with A =

(
1 2cε(a−)β′ε(a

+)
2cε(a−)β′ε(a

+) c2
ε(a
−)(β′ε(a

+))2(Y2
+ 4)

)
.

Observe that det(A) = Y2c2
ε(a
−)(β′ε(a

+))2
= c2

ε(a
+)(β′ε(a

+))2 thus det(A) ≥ C1 > 0 and
0 < tr(A) ≤ C2. The constants are uniform w.r.t.ε. We thus obtain thatνi ≥ β′ε(a+)(Y−
1)C1

C2
, i = 1,2, sinceν1 andν2 are both positive by Lemma 2.3 and Lemma 1.1.

Consider now the l.h.s. ofO, that is in the region whereβ′ε > 0. In the caseY < 1 we
made the choiceX = Y and the result follows as above. In the caseY > 1 we have
X = Y

2Y−1. The matrixA is then equal toβ′ε(a
+)(Y− 1)A with

A =

( X
Y 2αX
2αX α2(4X2(Y− 1)+ X3

Y (8Y2 − 4Y+ 1))

)
,
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whereα = cε(a−)β′ε(a
+). Observe that det(A) = c2

ε(a
+)(β′ε(a

+))2 1
(2Y−1)4 ≥ C1 > 0 and

0 < tr(A) ≤ C2. Thus result thus follows as above. �

End of the proof of Proposition 2.4.With the estimations provided above we can ab-
sorb the ‘dominated’ terms by the ‘dominating’ ones, takingthe parameterss andλ
sufficiently large. More precisely we obtain

‖M1ψε‖2L2(Q′)+‖M2ψε‖2L2(Q′)+ sλ2
Ï

Q
ϕεe
−2sηε |∂xq|2 dxdt+ s3λ4

Ï

Q
ϕ3
εe
−2sηε |q|2 dxdt

≤ C‖e−sηε f ‖2L2(Q′) +Csλ2
∫T

0

∫

ω0

ϕεe
−2sηε |∂xq|2 dxdt+Cs3λ4

∫T

0

∫

ω0

ϕ3
εe
−2sηε |q|2 dxdt,

for λ ≥ λ1 = λ1(Ω,O, c), s≥ s1 = σ1(Ω,O, c, λ1)(T + T2), with σ1, λ1 andC uniform
w.r.t. ε. As in [7, Estimate (100)], we have the following estimate, uniformly w.r.t. ε,
because of the properties ofβε onO (see Lemma 2.3)

(2.9) sλ2
∫T

0

∫

ω0

ϕεe
−2sηε |∂xq|2 dxdt≤ C‖e−sηε f ‖2L2(Q′) +C

(
s3λ4

+s2λ2(λ2T2
+ T) + sλ2(λT4

+ λT2
+ T3)

)∫T

0

∫

O
ϕ3
εe
−2sηε |q|2 dxdt.

Forλ ≥ λ1 ands≥ s1, we then obtain

‖M1ψε‖2L2(Q′)+‖M2ψε‖2L2(Q′)+ sλ2
Ï

Q
ϕεe
−2sηε |∂xq|2 dxdt+ s3λ4

Ï

Q
ϕ3
εe
−2sηε |q|2 dxdt

≤ C‖e−sηε f ‖2L2(Q′) +Cs3λ4
∫T

0

∫

ω0

ϕ3
εe
−2sηε |q|2 dxdt,

with the constantC uniform w.r.t.ε. To incorporate the higher order terms on the l.h.s.
and obtain Carleman estimate (1.3) we follow the classical procedure (see e.g. [9])
which can be done uniformly w.r.t.ε. �

For cε defined as above, converging toc in L∞, we shall now analyse the convergence
of each term in Carleman estimate (1.3), that holds for the operators∂t ± ∂x(cε∂x),
as |cε − c|∞ goes to zero. For this purpose, we define the following weightfunctions
associated toβ by

(2.10) ϕ(x, t) =
eλβ(x)

t(T − t)
, η(x, t) =

eλβ − eλβ(x)

t(T − t)
.

The constantβ used is the same used in the definition ofηε in (2.3), sinceβε can be
chosen uniformly w.r.t.ε as mentioned above.

At first, we considerf ∈ C 1([0,T], L2(Ω)), with f (0) ∈ H1
0(Ω), andq (weak) solution

to


∂tq± ∂x(c∂xq) = f in Q,

q = 0 onΣ,

q(T, x) = q0(x) (resp.q(0, x) = q0(x)) in Ω.

(2.11)
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We also defineqε as the (weak) solution to


∂tqε ± ∂x(cε∂xqε) = f in Q,

qε = 0 onΣ,

qε(T, x) = q0,ε(x) (resp.qε(0, x) = q0,ε(x)) in Ω.

(2.12)

The final (resp. initial) conditions are chosen such that

∂x(c∂xq0) = µ, and∂x(cε∂xq0,ε) = µ,

with µ ∈ H1
0(Ω). Then we find

‖q0 − q0,ε‖H1
0(Ω) ≤ C‖c− cε‖∞‖µ‖L2(Ω).(2.13)

For the solutionsq andqε we have the following lemma.

Lemma 2.7. The solutions to (2.11) and (2.12) satisfy

‖q(t, .) − qε(t, .)‖L2(Ω) + ‖∂xq− ∂xqε‖L2(Q) ≤ C‖c− cε‖∞(‖ f ‖L2(Q) + ‖µ‖L2(Ω)),(2.14)

for t ∈ [0,T] and

(2.15) ‖∂tq(t, .) − ∂tqε(t, .)‖L2(Ω) + ‖∂x(c∂xq)(t, .) − ∂x(cε∂xqε)(t, .)‖L2(Ω)

≤ C‖c− cε‖∞(‖∂t f ‖L2(Q) + ‖ f (0)‖L2(Ω) + ‖µ‖L2(Ω)), t ∈ [0,T].

Proof. We treat here the case of the operators∂t − ∂x(c∂x) and∂t − ∂x(cε∂x). The other
case follows similarly. The solution to (2.11) satisfies

Ï

Qt

(∂tqφ + c∂xq∂xφ) dxdt=
Ï

Qt

fφ dxdt, φ ∈ L2(0,T,H1
0(Ω)),

for Qt = (0, t) × Ω, t ∈ [0,T]. We write a similar weak formulation for the solution to
(2.12), from which we obtain

(2.16)
Ï

Qt

(∂t(q− qε)φ + cε∂x(q− qε)∂xφ) dxdt

=

Ï

Qt

(cε − c)∂xq∂xφ dxdt, φ ∈ L2(0,T,H1
0(Ω)),

which withφ = q− qε yields
Ï

Qt

(
1
2
∂t |q− qε|2 + cε|∂x(q− qε)|2 dxdt=

Ï

Qt

(cε − c)∂xq∂x(q− qε) dxdt.

It follows that

1
2
‖q(t) − qε(t)‖2L2(Ω) + (cmin − δ)‖∂x(q− qε)‖2L2(Q)

≤ Cδ‖cε − c‖2∞‖∂xq‖2L2(Q) +
1
2
‖q0 − q0,ε‖2L2(Ω),

which yields (2.14) from a classical energy estimate and (2.13).
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From the regularity assumption made onf , q andqε are inC 1([0,T], L2(Ω)). In fact,
for q, we can write, by Duhamel’s formula [17, Chapter 4, Section 2]

q(t) = S(t)q0 +

∫t

0
S(t − s) f (s) ds,

whereS is the semigroup generated byA = ∂x(c∂x). Sinceq0 is in the domain ofA,
the first term is inC 1([0,T], L2(Ω)) (see Theorem 2.4.c in [17, Chapter 1, Section 2]).
The second term,q2(t), is differentiable w.r.t.t on [0,T] with

∂tq2(t) = S(t) f (0)+
∫t

0
S(s)∂t f (t − s) ds,

which is continuous on [0,T] using the continuity ofS(t) and the uniform continuity
of ∂t f in L2(Ω) on [0,T].

Consider nowp = ∂tq. Then the functionp is solution to


∂t p− ∂x(c∂xp) = ∂t f in Q,

p = 0 onΣ,

p(0, x) = µ + f (0) inΩ.

(2.17)

Similarly pε = ∂tqε is solution to


∂t pε − ∂x(cε∂xpε) = ∂t f in Q,

pε = 0 onΣ,

pε(0, x) = µ + f (0) inΩ.

(2.18)

Thusp(0, .) andpε(0, .) are inH1
0(Ω), sincef (0) ∈ H1

0(Ω). With the previous procedure
we obtain

‖p(t, .) − pε(t, .)‖L2(Ω) + ‖∂xp− ∂xpε‖L2(Q)

≤ C‖c− cε‖∞(‖∂t f ‖L2(Q) + ‖ f (0)‖L2(Ω) + ‖µ‖L2(Ω)), t ∈ [0,T],

which yields (2.15). �

To study the convergence of the term
Î

Q e−2sηεϕ3
ε |qε|2 dxdt in the Carleman estimate

for the operators∂t ± ∂x(cε∂x), we write

∣∣∣∣∣∣

Ï

Q
e−2sηϕ3 |q|2 dxdt−

Ï

Q
e−2sηεϕ3

ε |qε|2 dxdt

∣∣∣∣∣∣

≤
Ï

Q
|e−2sηϕ3 − e−2sηεϕ3

ε | |qε|2 dxdt+
Ï

Q
e−2sηεϕ3

ε

∣∣∣|q|2 − |qε|2
∣∣∣ dxdt

≤
Ï

Q
|e−2sηϕ3 − e−2sηεϕ3

ε | |qε|2 dxdt+
Ï

Q
e−2sηεϕ3

ε |q− qε| (|q| + |qε|)dxdt,

which converges to zero by Cauchy-Schwarz inequalities anddominated convergence.
Recall thatβε converges everywhere toβ and thuse−2sηε andϕε converge everywhere
to e−2sη andϕ.
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Similar arguments yield the following convergences, usingLemma 2.7,

lim
ε→0

Ï

Q
e−2sηεϕε |∂xqε|2 dxdt=

Ï

Q
e−2sηϕ |∂xq|2 dxdt.

lim
ε→0

Ï

Q
e−2sηεϕ−1

ε (|∂tqε|2 + |∂x(cε∂xqε)|2) dxdt

=

Ï

Q
e−2sηϕ−1 (|∂tq|2 + |∂x(c∂xq)|2) dxdt.

In the caseµ ∈ H1
0(Ω) and f ∈ C 1([0,T], L2(Ω)), with f (0) ∈ H1

0(Ω), from the Carle-
man estimate associated toqε and the operators∂t ± ∂x(cε∂x), we thus obtain that (1.3)
holds forq and∂t±∂x(c∂x) with the same constantsC, s1 andλ1. With such an estimate
at hand, we can now relax the assumptions made on the final (resp. initial) condition
and on the functionf , by a density argument.

Hence, with the convergence results above, Proposition 2.4, Carleman estimate (1.3)
and Remark 1.3, we have proven

Theorem 2.8. LetO ⋐ Ω be a non-empty open set and c∈ BV(Ω) with 0 < cmin ≤ c ≤
cmax and c of classC 1 in O. There existsλ1 = λ1(Ω,O) > 0, s1 = s1(λ1,T) > 0 and a
positive constant C= C(Ω,O) so that Carleman estimate (1.3) holds for s≥ s1, λ ≥ λ1

and for all q (weak) solution to



∂tq± ∂x(c∂xq) = f in Q,

q = 0 onΣ,

q(T, x) = q0(x) (resp. q(0, x) = q0(x)) in Ω,

with q0 ∈ L2(Ω) and f ∈ L2(Q). The weight functions used are those defined in (2.10)
and Lemma 2.3.

Remark 2.9. Similarly, for c in BV(Ω), we can obtain a Carleman estimate with a side
observation, say in{0}, i.e. an estimate of the form

(2.19) s−1
Ï

Q
e−2sηϕ−1 (|∂tq|2 + |∂x(c∂xq)|2) dxdt+ sλ2

Ï

Q
e−2sηϕ |∂xq|2 dxdt

+ s3λ4
Ï

Q
e−2sηϕ3 |q|2 dxdt

≤ C

[
sλ

∫T

0
ϕ(t,0)e−2sη(t,0)|∂xq|2(t,0) dt+

Ï

Q
e−2sη | f |2 dxdt

]
,

for s ≥ s1, λ ≥ λ1. The proof is similar and makes use of such a Carleman estimate
for a piecewise-C 1 coefficient proven in [3, 2]. Note however that to obtain (2.19), we
need not assume thatc is of classC 1 in some inner region ofΩ.

3 A Carleman estimate for the heat equation with a right-hand
side in L2(0,T,H−1(Ω))

Following [13], from Theorem 2.8, we can derive a Carleman estimate for (0.1) in the
case of a r.h.s.,f , in H−1. Such a estimate will be used in the next section to obtain
controllability results for classes of semilinear parabolic equations.
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We set

ℵ̃± =
{
q ∈ C ([0,T],H1

0(Ω)); q(t) ∈ D(A) for all t ∈ [0,T]

and∂tq± ∂x(c∂xq) = F0 + ∂xF1 with F0, F1 ∈ L2(Q)
}
.

In the case of a diffusion coefficientc in BV, yetC 1 in some open region, we have

Theorem 3.1. LetO ⋐ Ω be a non-empty open set and c∈ BV(Ω) with 0 < cmin ≤ c ≤
cmax and c of classC 1 in O. There existsλ2 = λ2(Ω,O, c) > 0, s2 = s2(Ω,O, c, λ2,T) >
0 and a positive constant C= C(Ω,O, c) so that the following estimate holds

(3.1) sλ2
Ï

Q
e−2sηϕ |∂xq|2 dxdt+ s3λ4

Ï

Q
e−2sηϕ3 |q|2 dxdt

≤ C

[
s3λ4

Ï

(0,T)×O
e−2sηϕ3 |q|2 dxdt+

Ï

Q
e−2sη |F0|2 dxdt

+ s2λ2
Ï

Q
e−2sη ϕ2|F1|2 dxdt

]
,

for s≥ s2, λ ≥ λ2 and for all q∈ ℵ̃±.

The proof can be adapted from the proof given in [9, Lemma 2.1]. We only highlight
the main points in the proof.

Proof. We treat the case ofq ∈ ℵ̃+ with ∂tq + ∂x(c∂xq) = F0 + ∂xF1. The other case
can be treated similarly. With the notationsL = ∂t − ∂x(c∂x) andL∗ = −∂t − ∂x(c∂x),
we define the bilinear form

κ(p, p′) =
Ï

Q
e−2sηL∗pL∗p′ dxdt+ s3λ4

Ï

(0,T)×O
e−2sηϕ3 pp′ dxdt,(3.2)

which is a scalar product onP0 = C 2([0,T],D(A)) from Carleman estimate (1.3). We
denote byP the Hilbert space defined as the completion ofP0 for the norm‖p‖P =
(κ(p, p))1/2. We find, from Riesz Theorem, that there exists a uniquep ∈ P such that

κ(p, p′) = l(p′), ∀p′ ∈ P,(3.3)

wherel is the continuous form onP defined byl(p′) = −s3λ4
Î

Q e−2sηϕ3 qp′ dxdt.
Observe that the elements ofP are functions inQ for which the l.h.s. of (1.3) is finite.
In particular observe thate−sηp ∈ L2(Q) ande−sηϕ−1/2L∗p ∈ L2(Q) .

If we now solve the parabolic problem


Lẑ= +s3λ4e−2sηϕ3 (p1O + q) in Q,

ẑ= 0 onΣ,

ẑ(0) = 0 inΩ,

there is a unique weak solution ˆz ∈ L2(0,T,H1
0(Ω)) ∩ C ([0,T], L2(Ω)) [16]. We now

observe that ˆz = −e−2sηL∗p from (3.3). Sincee−sηϕ−1/2L∗p ∈ L2(Q), we then have
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ẑ(T) = 0, because ˆz ∈ C ([0,T], L2(Ω)). The functionp defined above is thus a weak
solution to



L(e−2sηL∗p) = −s3λ4e−2sηϕ3 (p1O + q) in Q,

p = 0, e−2sηL∗p = 0 onΣ,

(e−2sηL∗p)(0) = (e−2sηL∗p)(T) = 0 inΩ.

Introducingû = s3λ4e−2sηϕ3p1O, andG = s3λ4e−2sηϕ3q+ û, we note that


Lẑ= G in Q,

ẑ= 0 onΣ,

ẑ(0) = ẑ(T) = 0 inΩ.

From the equation satisfied byq ∈ ℵ̃+ we obtain
∫T

0
〈G(t),q(t)〉 dt = −

∫T

0
〈F0(t) + ∂xF1(t), ẑ(t)〉,(3.4)

where〈., .〉 denotes the duality brackets forH1
0(Ω) andH−1(Ω). Noting that the function

β, and the weight functionsϕ andη are inW1,∞ w.r.t. the space variable, we can follow
the proof of Lemma 2.1 in [9] to prove

(3.5) s−3λ−4
Ï

(0,T)×O
e2sηϕ−3|û|2 dxdt+

Ï

Q
e2sη|ẑ|2 dxdt

+ s−2λ−2
Ï

Q
e2sηϕ−2|∂xẑ|2 dxdt≤ Cs3λ4

Ï

Q
e−2sηϕ3|q|2 dxdt,

for s≥ s′2(T + T2) andλ ≥ λ′2 (Inequality (2.20) in [9]).

From (3.5) and (3.4), we first obtain (see [9])

(3.6) s3λ4
Ï

Q
e−2sηϕ3 |q|2 dxdt≤ C

s
3λ4

Ï

(0,T)×O
e−2sηϕ3 |q|2 dxdt

+

Ï

Q
e−2sη |F0|2 dxdt+ s2λ2

Ï

Q
e−2sη ϕ2|F1|2 dxdt

 ,

for s≥ s′′2 (T + T2) andλ ≥ λ′′2 .

To obtain the first term on the l.h.s. of (3.1) we multiply∂tq+ ∂x(c∂xq) = F0+ ∂xF1 by
e−2sηϕq and we integrate overQ. This then yields

(3.7) − 1
2

Ï

Q
∂t(e

−2sηϕ)|q|2 dxdt−
Ï

Q
e−2sηϕc|∂xq|2 dxdt

−
Ï

Q
∂x(e

−2sηϕ)cq∂xq dxdt=
Ï

Q

(
F0e−2sηϕq − F1∂x(e

−2sηϕq)
)
dxdt.

As the functionβ, and the weight functionsϕ andη are inW1,∞ w.r.t. the space variable,
the integration by part w.r.t. the space variable is justified sinceq(t, .) ∈ D(A). We
observe that

|∂x(e
−2sηϕ)| = |sλ(∂xβ)ϕ2e−2sη

+ λ(∂xβ)ϕe−2sη| ≤ Csλϕ2e−2sη
+ λϕe−2sη, a.e. in Ω,
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which yields

∣∣∣∣∣∣

Ï

Q
∂x(e

−2sηϕ)cq∂xq dxdt

∣∣∣∣∣∣ ≤ ε
Ï

Q
ϕe−2sη|∂xq|2 dxdt

+Cεs
2λ2

Ï

Q
ϕ3e−2sη|q|2 dxdt+Cελ

2
Ï

Q
ϕe−2sη|q|2 dxdt,

for any ε > 0. Next, we estimate the first term on the l.h.s. of (3.7) and the r.h.s. of
(3.7), as in [9], to obtain

∣∣∣∣∣∣

Ï

Q
∂t(e

−2sηϕ)|q|2 dxdt

∣∣∣∣∣∣ ≤ Cs2
Ï

Q
ϕ3e−2sη|q|2 dxdt,

and
∣∣∣∣∣∣

Ï

Q

(
F0e−2sηϕq − F1∂x(e

−2sηϕq)
)
dxdt

∣∣∣∣∣∣ ≤ Cs2λ2
Ï

Q
ϕ3e−2sη|q|2 dxdt

+ +ε

Ï

Q
ϕe−2sη|∂xq|2 dxdt+Cs−2λ−2

Ï

Q
ϕ−1e−2sη|F0|2 dxdt

+ (C +Cε)
Ï

Q
ϕe−2sη|F1|2 dxdt,

for anyε > 0 and fors≥ C(T + T2). Using 1≤ CϕT2, and takingε sufficiently small,
we obtain

∣∣∣∣∣∣

Ï

Q
ϕe−2sη|∂xq|2 dxdt

∣∣∣∣∣∣ ≤ C

s
2λ2

Ï

Q
e−2sηϕ3 |q|2 dxdt

+s−1λ−2
Ï

Q
e−2sη |F0|2 dxdt+ s

Ï

Q
e−2sη ϕ2|F1|2 dxdt

 ,

for s≥ s′′′2 (T + T2) andλ ≥ λ′′′2 . This last estimate, along with (3.6), gives the desired
Carleman estimate. �

4 Controllability results

The Carleman estimate proven in Section 3 allows to give observability estimates that
yield null controllability results for classes of semilinear heat equations. We letω ⋐ Ω
be a non-empty open set andc ∈ BV(Ω) with 0 < cmin ≤ c ≤ cmax andc of classC 1 on
O, with O some open subset ofω.

We first state observability results withL2 andL1 observations. We leta andb be in
L∞(Q) andqT ∈ L2(Ω). From Carleman estimate (3.1) we obtain

Lemma 4.1. The solution q to



−∂tq− ∂x(c∂xq) + aq− ∂x(bq) = 0 in Q,

q = 0 onΣ,

q(T) = qT in Ω,

(4.1)
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satisfies

‖q(0)‖2L2(Ω) ≤ eCK(T,‖a‖∞,‖b‖∞)
Ï

(0,T)×ω
|q|2 dxdt,(4.2)

where K(T, ‖a‖∞, ‖b‖∞) = 1+ 1
T + T‖a‖∞ + ‖a‖2/3∞ + (1+ T)‖b‖2∞.

The proof of this lemma can be found in [9, 7, 6]. From Lemma 4.1, we can then obtain
the following observability results with anL1 observation, which will yield controls in
L∞((0,T) × ω) below.

Lemma 4.2. The solution q to system (4.1) satisfies

‖q(0)‖2L2(Ω) ≤ eCH(T,‖a‖∞,‖b‖∞)

(
Ï

(0,T)×ω
|q| dxdt

)2

,(4.3)

where

H(T, ‖a‖∞, ‖b‖∞) = 1+
1
T
+ T + (T + T1/2)‖a‖∞ + ‖a‖2/3∞ + (1+ T)‖b‖2∞.(4.4)

Since the coefficientc is C 1 on the open setω, the proof of [6, Theorem 2.5, Lemma
2.5] can be adapted. See also [7, Proposition 4.2, Lemma 4.3].

Consider now the followinglinear system


∂ty− ∂x(c∂xy) + ay+ b∂xy = 1ωv in Q,

y = 0 onΣ,

y(0) = y0 in Ω,

(4.5)

with a andb in L∞(Q) andy0 ∈ L2(Ω). If v ∈ L2(Q), we consider its unique weak
solution in C ([0,T], L2(Ω)) ∩ L2(0,T,H1

0(Ω)) [16, 5]. We have the following null
controllability result for (4.5)

Theorem 4.3. For all T > 0 and for all y0 in L2(Ω), there exists v∈ L∞((0,T) × ω),
such that the solution yv to (4.5) satisfies yv(T) = 0. Moreover, the control v can be
chosen such that

‖v‖L∞((0,T)×ω) ≤ eCH(T,‖a‖∞,‖b‖∞)‖y0‖L2(Ω),(4.6)

with H(T, ‖a‖∞, ‖b‖∞) as given in (4.4).

The proof of Theorem 3.1 in [6] can be adapted to the present case. It is based on the
argument developed in [8]. It makes use of the observabilityresult in Lemma 4.2.

For the null controllability of the quasi-linear heat equation we shall need estimates for
the solution to the following linear system



∂ty− ∂x(c∂xy) + ay+ b∂x(y) = f in Q,

y = 0 onΣ,

y(0) = y0 in Ω,

(4.7)

with a andb in L∞(Q) andy0 ∈ L2(Ω), f ∈ L2(Q). We have the following classical
estimates.
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Lemma 4.4. The solution y to system (4.7) satisfies

(4.8) ‖y(t)‖2L2(Ω) + ‖∂xy‖2L2(Q) + ‖y‖
2
L2(Q) ≤ K1(T, ‖a‖∞, ‖b‖∞)(‖ f ‖2L2(Q) + ‖y(0)‖2L2(Ω)),

for 0 ≤ t ≤ T, with K1(T, ‖a‖∞, ‖b‖∞) = eC(1+T+T‖a‖∞+T‖b‖2∞). If y0 ∈ H1
0(Ω) then,

y ∈ C ([0,T],H1
0(Ω)) and

(4.9) ‖∂xy(t)‖2L2(Ω) + ‖∂ty‖2L2(Q) + ‖∂x(c∂xy)‖2L2(Q)

≤ K2(T, ‖a‖∞, ‖b‖∞)(‖ f ‖2L2(Q) + ‖y(0)‖2
H1

0(Ω)
), 0 ≤ t ≤ T,

with K2(T, ‖a‖∞, ‖b‖∞) = eC(1+T+(T+T1/2)‖a‖∞+(T+T1/2)‖b‖2∞).

With further regularity onf andy0 we actually obtain

Lemma 4.5. Let f ∈ L∞(0,T, L2(Ω)) and y0 ∈ D(A). The solution y to system (4.7)
satisfies

‖∂xy(t)‖L∞(Ω) ≤ K3(T, ‖a‖∞, ‖b‖∞)(‖ f ‖L∞(0,T,L2(Ω)) + ‖y‖D(A)),(4.10)

with

K3(T, ‖a‖∞, ‖b‖∞) = eC(1+T+(T+ls(T))‖a‖∞+(T+ls(T)2)‖b‖2∞),(4.11)

for l a non-negative increasing function such that l(0) = 0. More precisely, lS(t) =
∫t

0( 1
t +

1√
t
)s( 1√

t
)1−s dτ with 1

2 < s< 1.

The domain ofA = ∂x(c∂x), D(A), is furnished with the norm of the graph denoted by
‖.‖D(A). Note that in the proof we make use of the fact thatΩ is one-dimensional.

Proof. We first recall some properties of the semigroupS(t) generated byA = ∂x(c∂x).
Consider the system



∂tu− ∂x(c∂xu) = 0 in Q,

u = 0 onΣ,

u(0) = u0 in Ω,

(4.12)

with u0 ∈ L2(Ω). The solution is given byu(t) = S(t)u0. Since the semigroupS(t) is
analytic, we have [17, 5]

‖u(t)‖L2(Ω) ≤ ‖u0‖L2(Ω), and‖Au(t)‖L2(Ω) ≤ 1
t ‖u0‖L2(Ω), 0 < t ≤ T.

We can then write

|(Au(t),u(t))L2(Ω)| ≤ 1
t ‖u0‖L2(Ω)‖u(t)‖L2(Ω) ≤ 1

t ‖u0‖2L2(Ω), 0 < t ≤ T,

which by integration by parts yields

‖c∂xu(t)‖L2(Ω) ≤ 1√
t
‖u0‖L2(Ω), 0 < t ≤ T.

As ‖c∂xu(t)‖H1(Ω) ≤ ( 1
t +

1√
t
)‖u0‖L2(Ω), the interpolation inequality [16]

‖φ‖Hs(Ω) ≤ ‖φ‖sH1(Ω) ‖φ‖
1−s
L2(Ω),

23



for 0 ≤ s≤ 1, yields

‖c∂xu(t)‖Hs(Ω) ≤ hs(t)‖u0‖L2(Ω).(4.13)

with hs(t) = ( 1
t +

1√
t
)s( 1√

t
)1−s ∼t→0 t−

s+1
2 . We choose1

2 < s< 1. Thenhs(t) is integrable
on [0,T].

The solution to (4.7) can be written by Duhamel’s formula [17]

y(t) = S(t)y0 +

∫t

0
S(t − τ) f (τ) dτ −

∫t

0
S(t − τ) (ay)(τ) dτ −

∫t

0
S(t − τ) (b∂xy)(τ) dτ.

(4.14)

For the first term in (4.14),y1(t) = S(t)y0, we haveAy1(t) = S(t)Ay0 [17], which yields

‖A(y1)(t)‖L2(Ω) ≤ ‖A(y0)‖L2(Ω).

By Lemma 4.4, we have‖c∂xy1‖L2(Ω) ≤ eC(1+T)‖y0‖H1
0(Ω), which gives

(4.15) ‖c∂xy1(t)‖H1(Ω) ≤ eC(1+T)‖y0‖D(A).

For the second term,y2, in (4.14) we have

‖c∂xy2(t)‖Hs(Ω) ≤
∫t

0
‖c∂x(S(t − τ) f (τ))‖Hs(Ω) dτ ≤

∫t

0
hs(t − τ)‖ f (τ)‖L2(Ω) dτ

by (4.13). We setls(t) =
∫t

0 hs(t − τ)dτ =
∫t

0 hs(τ)dτ, and obtain

‖c∂xy2(t)‖Hs(Ω) ≤
(
∫t

0
hs(t) dτ

)
‖ f ‖L∞(0,T,L2(Ω)) = ls(t)‖ f ‖L∞(0,T,L2(Ω)).(4.16)

For the third term,y3, in (4.14) we have

‖c∂xy3(t)‖Hs(Ω) ≤
∫t

0
‖c∂x(S(t − τ) (ay)(τ))‖Hs(Ω) dτ

≤
∫t

0
hs(t)‖ay(τ)‖L2(Ω) dτ ≤ ls(t)‖a‖∞‖y‖L∞(0,T,L2(Ω))

≤ ls(t)‖a‖∞K1(T, ‖a‖∞, ‖b‖∞) (‖ f ‖L2(Q) + ‖y(0)‖L2(Ω)),

by Lemma 4.4. Observe that the functionls is increasing. This yields

‖c∂xy3(t)‖Hs(Ω) ≤ eC(1+T+(T+ls(T))‖a‖∞+T‖b‖∞) (‖ f ‖L2(Q) + ‖y(0)‖L2(Ω)).(4.17)

Finally, for the fourth term,y4, in (4.14) we have

(4.18) ‖c∂xy4(t)‖Hs(Ω) ≤ Cls(t)‖b‖∞‖∂xy‖L∞(0,T,L2(Ω))

≤ ls(t)‖b‖∞K2(T, ‖a‖∞, ‖b‖∞)(‖ f ‖L2(Q) + ‖y(0)‖H1
0(Ω))

≤ eC(1+T+(T+T1/2)‖a‖∞+(T+ls(T)2)‖b‖2∞).

Collecting estimates (4.15), (4.16), (4.17), and (4.18) weobtain

‖c∂xy(t)‖Hs(Ω) ≤ eC(1+T+(T+ls(T))‖a‖∞+(T+ls(T)2)‖b‖2∞) (‖ f ‖L∞(0,T,L2(Ω)) + ‖y0‖D(A)).(4.19)

Since the spaceHs(Ω) can be continuously injected inC (Ω) becauseΩ is one dimen-
sional (see e.g. [16]), fors> 1

2, the result follows, sincec ≥ cmin > 0. �
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We are now ready to prove the null controllability result forsystem (0.2) which is based
on a fixed point argument.

Theorem 4.6. We letω ⋐ Ω be a non-empty open set and c∈ BV(Ω) with 0 < cmin ≤
c ≤ cmax and c of classC 1 on some non-empty open subset ofω. We assume thatG is
locally Lipschitz. Let T> 0:

1. Local null controllability: There existsε > 0 such that for all y0 in L2(Ω) with
‖y0‖L2(Ω) ≤ ε, there exists a control v∈ L∞((0,T) × ω) such that the correspond-
ing solution to system (0.2) satisfies y(T) = 0.

2. Global null controllability: LetG satisfy in addition Assumption 0.1. Then for
all y0 in L2(Ω), there exists v∈ L∞((0,T) × ω) such that the solution to system
(0.2) satisfies y(T) = 0.

The proof is classical and is along the same lines as those that in [6, 7] and originates
from [10].

Proof. We first assume thatg and G are continuous. We letR > 0 and setZ =
L2(0,T,H1

0(Ω)). The truncation functionTR is defined as

TR(s) =


s if |s| ≤ R,

Rsgn(s) otherwise.

For z ∈ Z we consider the followinglinear system



∂tyz,v − ∂x(c∂xyz,v) + g(TR(z),TR(∂xz))yz,v +G(TR(z),TR(∂xz))∂xyz,v = 1ωv in Q,

yz,v = 0 onΣ,

yz,v(0) = y0 in Ω,

(4.20)

Sinceg andG are continuous, we see that the functionsaz := g(TR(z),TR(∂xz)) and
bz := G(TR(z),TR(∂xz)) are inL∞(Q) and have bounds inL∞ that only depends ong, G,
andR. If y0 ∈ L2(Ω) and ifv = 0 for t ∈ [0, δ], δ > 0, we obtainyz,v(δ) ∈ D(A). Without
any loss of generality we may thus assume thaty0 ∈ D(A). We apply Theorem 4.3 to
system (4.20). We set

Tz = min(T, ‖az‖−2/3
∞ , ‖az‖−1/3

∞ , l−1
s (‖az‖−1/3

∞ )),

with the functionls defined in Lemma 4.5. Then we have

eCH(Tz,‖az‖∞,‖bz‖∞) ≤ K, K2(Tz, ‖az‖∞, ‖bz‖∞) ≤ K, K3(Tz, ‖az‖∞, ‖bz‖∞) ≤ K,

with K = e(C(Tz)(1+‖az‖2/3∞ +‖bz‖2∞)), for H, K2 andK3 the constants in (4.6), (4.9), and (4.11).
According to Theorem 4.3, there existsvz in L∞(Q) such thatvz and the associated
solution to (4.20), withv = vz satisfyyz,v(T) = 0 and

(4.21) ‖vz‖L∞((0,T)×ω) ≤ H‖y0‖L2(Ω),

(4.22) ‖yz,v‖L∞(0,T,W1,∞(Ω)) ≤ H‖y0‖D(A),
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with H of the same form asK, by Lemma 4.4 and Lemma 4.5, making use of the
continuous injectionH1

0(Ω) ֒→ L∞(Ω) in the one-dimensional case. Observe also that
we have

(4.23) ‖yz,v‖L2(0,T,D(A)) + ‖∂tyz,v‖L2(Q) ≤ H‖y0‖H1
0(Ω),

by Lemma 4.4. We now set

U(z) =
{
v ∈ L∞((0,T) × ω); yz,v(T) = 0, (4.21) holds

}

andΛ(z) =
{
yz,v; v ∈ U(z), (4.22) holds

}
.

The mapz 7→ Λ(z) from Z into P(Z), the power set ofZ, satisfies the following
properties

1. for all z ∈ Z, Λ(z) is a non-empty bounded closed convex set. Boundedness is
however uniform w.r.t. toz (and only depends onR);

2. there exists a compact setK ⊂ Z, such thatΛ(z) ⊂ K : by (4.23)Λ(z) is uni-
formly bounded inL2(0,T,D(A)) ∩ H1(0,T, L2(Ω)), which injects compactly in
L2(Q) [15, Theorem 5.1, Chapter 1] sinceD(A) injects compactly inH1

0(Ω);

3. adapting the method of [6, pages 811–812] to the present case, we obtain that the
mapΛ is upper hemicontinuous; the argument uses the continuity of g andG.

These properties allow us to apply Kakutani’s fixed point theorem [1, Theorem 1,
Chapter 15, Section 3] to the mapΛ.

Result 1 follows by choosingε sufficiently small such that the (essential) supremum on
Q of the obtained fixed point is less thanRby (4.22).

Result 2 follows if we prove thatRcan be chosen greater that the (essential) supremum
on Q of the obtained fixed point. This is done exactly as in [6, page813] and makes
use of the form ofH, estimate (4.22) and Assumption 0.1 onG .

To treat the case wheregandG are not continuous, we adapt the argument of [6, Section
3.2.1] to the present cases, for both the local and global controllability results. �

Arguing as in [12] or e.g. [6] we can actually prove the following null controllability
result with a boundary control from Theorem 4.6 :

Theorem 4.7. We let c∈ BV(Ω) with 0 < cmin ≤ c ≤ cmax. We assume thatG is locally
Lipschitz. Letγ be{0} or {1}. Let T > 0.

1. Local null controllability: There existsε > 0 such that for all y0 in L2(Ω) with
‖y0‖L2(Ω) ≤ ε, there exists a control v∈ L∞(0,T) such that the solution to system



∂ty− ∂x(c∂xy) + G (y) = 0 in Q,

y = 0 onΣ \ γ,
y = v onγ,

y(0) = y0 in Ω,

(4.24)

satisfies y(T) = 0.

26



2. Global null controllability: Assume the functionG satisfies in addition Assump-
tion 0.1. Then for all y0 in L2(Ω), there exists v∈ L∞(0,T) such that the solution
to system (4.24) satisfies y(T) = 0.

Remark 4.8. 1. Note that for the distributed control (Theorem 4.6) we require that
the coefficientc be of classC 1 on an non-empty open subset ofω. On the other
hand, for a boundary control (Theorem 4.7) there is no such restriction on the
coefficientc, which can have a very singular behavior as the control boundary is
approached.

2. Note that as usual, one can replacey(T) = 0 by y(T) = y∗(T) in the previous
statements, wherey∗ is any trajectory defined in [0,T] of system (0.2) (resp.
(4.24)), corresponding to some initial datay∗0 and anyv∗ in L∞((0,T) ×ω) (resp.
L∞(0,T)). For the local controllability result, one has to assume‖y0 − y∗0‖L2(Ω) ≤
ε, with ε sufficiently small.

Acknowledgement: The author wishes to thank A. Benabdallah and Y. Dermenjian
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fonctionnelle. Editions MIR, 1974.

[15] J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires.
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