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Remark on the Kato smoothing effect for Schrödinger

equation with superquadratic potentials

Luc Robbiano and Claude Zuily

Résumé

The aim of this note is to extend recent results of Yajima-Zhang [Y-Z1, Y-Z2] on
the 1

2 - smoothing effect for Schrödinger equation with potential growing at infinity
faster than quadratically.

1 Introduction

The aim of this note is to extend a recent result by Yajima-Zhang [Y-Z1, Y-Z2]. In this
paper these authors considered the Hamiltonian H = −∆ + V (x) where V is a real and C∞

potential on R
n satisfying for some m > 2 and 〈x〉 = (1 + |x|2) 1

2 ,

(1.1) |∂αV (x)| ≤ Cα〈x〉m−|α|, x ∈ R
n, α ∈ N

n,

(1.2) for large |x|, V (x) ≥ C1|x|m, C1 > 0,

and they proved the following. For any T > 0 and χ ∈ C∞
0 (Rn) one can find C > 0 such

that for all u0 in L2(Rn),

(1.3)

∫ T

0

‖χ(I − ∆)
1

2m e−itHu0‖2
L2(Rn)dt ≤ C‖u0‖2

L2(Rn)

where ∆ is the flat Laplacian. In this note, using the ideas contained in Döı [D3] we shall
show that one can handle variable coefficients Laplacian with time dependent potentials, one
can remove the condition (1.2), one can replace the cut-off function χ in (1.3) by 〈x〉− 1+ν

2

with any ν > 0 and finally that the weight 〈x〉− 1

2 is enough for the tangential derivatives.
When V = 0 the estimate (1.3) goes back to Constantin-Saut [C-S], Sjölin [S], Vega [V],
Yajima [Y] who extended to the Schrödinger equation a phenomenon discovered by T. Kato
[K] on the KdV equation. Later on their results where extended to the variable coefficients
operators by Döı in a series of papers [D1, D2, D3, D4] which contained the case m = 2 of
Theorem 1.1 below.
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Let us describe more precisely our result. It will be convenient to introduce the Hörmander’s
metric

(1.4) g =
dx2

〈x〉2 +
dξ2

〈ξ〉2
to which we associate the usual class of symbols S(M, g) if M is a weight. Recall that
q ∈ S(M, g) iff q ∈ C∞(R2n) and

∀α, β ∈ N
n ∃Cαβ > 0, |∂β

x∂
α
ξ q(x, ξ)| ≦ CαβM(x, ξ)〈x〉−|β|〈ξ〉−|α|, ∀(x, ξ) ∈ T ∗(Rn)

If T > 0 we shall set

(1.5) ST (M, g) = L∞([0, T ], S(M, g)).

We shall consider here an operator P of the form

(1.6) P =
n
∑

j,k=1

(Dj − aj(t, x))g
jk(x)(Dk − ak(t, x)) + V (t, x)

and we shall denote by p the principal symbol of P , namely

(1.7) p(x, ξ) =

n
∑

j,k=1

gjk(x)ξjξk.

We shall make the following structure and geometrical assumptions.

Structure assumptions. We shall assume the following,

(1.8)







(i) the coefficients aj , g
jk, V are real valued for j, k = 1, ..., n,

(ii) p ∈ S(〈ξ〉2, g) and ∇gjk(x) = o(|x|−1), |x| → +∞ 1 ≦ j, k ≦, n

(iii) aj ∈ ST (〈x〉m

2 , g), 1 ≦ j ≦ n, V ∈ ST (〈x〉m, g) m ≧ 2

(1.9) ∃δ > 0, p(x, ξ) ≧ δ|ξ|2, ∀(x, ξ) ∈ T ∗(Rn).

(1.10) For any fixed t in [0, T ] the operator P is essentially self adjoint on L2(Rn)

Geometrical assumptions. Let φt be the bicharacteristic flow of p. It is easy to see that under
the conditions (1.8), (1.9) it is defined for all t ∈ R. Let us set S∗(Rn) = {(x, ξ) ∈ T ∗(Rn) :
p(x, ξ) = 1}. Then we shall assume that,

(1.11) ∀Kcompact j S∗(Rn) ∃tK > 0 such that Φt(K) ∩K = ∅ , ∀t ≥ tK .

This is the so-called ”non trapping condition” which is equivalent to the fact that if Φt(x; ξ) =
(x(t), (ξ(t)) then lim

t→+∞
|x(t)| = +∞.

We shall consider u ∈ C1([0, T ],S(Rn)) and we set

(1.12) f(t) = (Dt + P )u(t)

For s ∈ R let es(x, ξ) = (1 + |ξ|2 + |x|m)
s

2 and Es be the Weyl quantized pseudo-differential
operator with symbol es.
Our first result is the following.

2



Theorem 1.1 Let T > 0. Let P be defined by (1.6) which satisfies (1.8), (1.9), (1.10),(1.11).
Then for any ν > 0 one can find C = C(ν, T ) > 0 such that for any u ∈ C1([0, T ],S(Rn))
and all t in [0, T ] we have,

‖u(t)‖2
L2 +

∫ T

0

‖〈x〉− 1+ν

2 E 1

m

u(t)‖2
L2dt ≦ C (‖u(0)‖2

L2 +

∫ T

0

‖〈x〉 1+ν

2 E− 1

m

f(t)‖2
L2dt).

Here L2 = L2(Rn) and f(t) is defined by (1.12).

Now even when P is the flat Laplacian it is known that the estimate in the above Theorem
does not hold with ν = 0. However we have the following result. Let us set

(1.13) ℓjk =
xjξk − xkξj

〈x〉〈ξ〉 , 1 ≦ j, k ≦ n ,

and let us denote by ℓwjk its Weyl quantization.

Theorem 1.2 Let T > 0. Let P be defined by (1.6) with real coefficients satisfying (1.9),
(1.10),(1.11) and

(1.14)

{

(i) gjk = δjk + bjk, bjk ∈ S(〈x〉−σ0 , g), for some σ0 > 0,
(ii) aj ∈ ST (〈x〉m

2 , g), V ∈ ST (〈x〉m, g).

Then for any ν > 0 one can find C = C(ν, T ) such that for any u ∈ C1([0, T ],S(Rn)) and
f(t) = (Dt + P )u(t) we have

n
∑

j,k=1

∫ T

0

‖〈x〉− 1

2E 1

m

ℓwjku(t)‖2
L2dt ≦ C (‖u(0)‖2

L2 +

∫ T

0

‖〈x〉 1+ν

2 E− 1

m

f(t)‖2
L2dt).

Here are some remarks and examples.

Remark 1.3 1)We know that one can find ψ ∈ C∞
0 (|x| < 1) and φ ∈ C∞

0 (1
2

≦ |x| ≦ 2)

positive such that ψ(x) +

+∞
∑

j=0

φ(2−jx) = 1, for all x in R
n. Let V = |x|m

∑

j even

φ(2−jx) −

|x|2
∑

j odd

φ(2−jx). Then V ∈ S(〈x〉m, g) and since V ≧ −|x|2 the operator P = −∆ + V

is essentially self adjoint on C∞
0 (Rn). It follows that (1.9), (1.10), (1.11) and (1.14) are

satisfied, therefore Theorem 1.1 and 1.2 apply. However the lower bound (1.2) assumed in
[Y-Z2] is not satisfied.

2) Assume that p(x, ξ) = |ξ|2 + ε

n
∑

j,k=1

bjk(x)ξjξk with bjk ∈ S(〈x〉−σ0 , g) for some σ0 > 0.

Then if ε is small enough the non trapping condition (1.11) is satisfied.
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2 Proofs of the results

Let us consider the symbol a0(x, ξ) =
x · ξ
〈ξ〉 . A straightforward computation shows that under

condition (1.8) (ii) one can find C0, C1, R positive such that

(2.1) Hpa0(x, ξ) ≧ C0|ξ| − C1, if (x, ξ) ∈ T ∗(Rn) and |x| ≧ R.

where Hp denotes the Hamiltonian field of the symbol p.
Then we have the following result due to Döı [D3].

Lemma 2.1 Assume moreover that (1.11) is satisfied then there exist a ∈ S(〈x〉, g) and
positive constants C2, C3 such that
(i) Hpa(x, ξ) ≧ C2|ξ| − C3, ∀(x, ξ) ∈ T ∗(Rn),
(ii) a(x, ξ) = a0(x, ξ), if |x| is large enough.

The symbol a is called a global escape function for p. Here is the form of this symbol. Let
χ ∈ C∞

0 (Rn) be such that χ(x) = 1 if |x| ≦ 1, χ(x) = 0 if |x| ≧ 2 and 0 ≦ χ ≦ 1. With R

large enough and M ≧ 2R we have,

a(x, ξ) = a0(x, ξ) +M
1

2χ
( x

M

)

a1

(

x,
ξ

√

p(x, ξ)

)

(1 − θ(
√

p(x, ξ))

where

a1(x, ξ) = −
∫ +∞

0

χ
( 1

R
π(Φt(x, ξ)

)

dt

and π(Φt(x, ξ)) = x(t; x, ξ) , θ(t) = 1 if 0 ≦ t ≦ 1, θ(t) = 0 if t ≧ 2, 0 ≦ θ ≦ 1. Details can
be found in [D3].
Proof of Theorem 1.1
Let ψ ∈ C∞(Rn) be such that suppψ ∈ [ε,+∞[, ψ(t) = 1 in [2ε,+∞[ (where ε > 0 is a
small constant chosen later on) and ψ′(t) ≧ 0 for t ∈ R. Following Döı [D3] we set,

(2.2)

{

ψ0(t) = 1 − ψ(t) − ψ(−t) = 1 − ψ(|t|)
ψ1(t) = ψ(−t) − ψ(t) = − sgn t ψ(|t|)

Then ψj ∈ C∞(R), for j = 0, 1 and we have

(2.3) ψ′
0(t) = − sgn t ψ′(|t|) and ψ′

1(t) = −ψ′(|t|).

Let χ ∈ C∞(R) be such that χ(t) = 1 if t ≦ 1
2
, χ(t) = 0 if t ≧ 1 and χ(t) ∈ [0, 1]. With a

given by Lemma 2.1 we set

(2.4)















θ(x, ξ) =
a(x, ξ)

〈x〉 , (x, ξ) ∈ T ∗(Rn),

r(x, ξ) =
〈x〉m

2

√

p(x, ξ)
, (x, ξ) ∈ T ∗(Rn) \ 0.
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Finally we set

(2.5) −λ =
( a

〈x〉ψ0(θ) −
(

M0 − 〈a〉−ν
)

ψ1(θ)
)

p
1

m
− 1

2χ(r),

where ν > 0 is an arbitrary small constant and M0 a large constant to be chosen.
The main step of the proof is the following Lemma.

Lemma 2.2 (i) One can find M0 > 0 such that for any ν > 0 there exist positive constants
C, C’ such that

(2.6) −Hpλ(x, ξ) ≧ C〈x〉−1−ν(|ξ|2 + |x|m)
1

m − C ′, ∀(x, ξ) ∈ T ∗(Rn),

(ii) λ ∈ S(1, g),

(iii) [P, λw] − 1

i
(Hpλ)w ∈ OpwST (1, g).

Proof
First of all on the support of χ(r) we have 〈x〉m

2 ≦
√

p(x, ξ) ≦ C|ξ|. It follows that |ξ| ∼ 〈ξ〉
and |ξ| ≦ |ξ| + 〈x〉m

2 ≦ C ′|ξ|. Now

(2.7) −Hpλ =
6
∑

j=1

Aj

where the Aj’s are defined below.

1) A1 =
(

Hp〈x〉−1
)

p
1

m
− 1

2aψ0(θ)χ(r). Since on the support of ψ0(θ) we have |a| ≦ 2ε〈x〉, it is
easy to see that

(2.8) |A1| ≦ C1ε〈x〉−1|ξ| 2

m

(

1 − ψ(|θ|)
)

χ(r).

2) A2 = 〈x〉−1p
1

m
− 1

2 (Hpa)ψ0(θ)χ(r). By Lemma 2.1 (i) we have

(2.9) A2 ≧ C2〈x〉−1(|ξ|+ 〈x〉m

2 )
2

m

(

1 − ψ(|θ|)
)

χ(r) − C ′
2.

3) A3 = 〈x〉−1p
1

m
− 1

2aψ′
0(θ)(Hpθ)χ(r). It follows from (2.3), (2.4) that

(2.10) A3 = −p 1

m
− 1

2 |θ|(Hpθ)ψ
′(|θ|)χ(r)

4) A4 = p
1

m
− 1

2 (Hp〈a〉−ν)ψ1(θ)χ(r). Here we have Hp〈a〉−ν = −ν〈a〉−2−νaHpa. It follows from

(2.2) that A4 = νp
1

m
− 1

2 |a|〈a〉−2−ν(Hpa)ψ(|θ|)χ(r). Now on the support of ψ(|θ|) we have
ε〈x〉 ≤ |a| and since a ∈ S(〈x〉, g) we have |a| ≤ C〈x〉. It follows from Lemma 2.1 (i) that

(2.11) A4 ≥ C3〈x〉−1−ν(|ξ| + 〈x〉m

2 )
2

mψ(|θ|)χ(r) − C ′
3.

5) A5 = −p 1

m
− 1

2 (M0 − 〈a〉−ν)(Hpθ)ψ
′
1(θ)χ(r). It follows from (2.3) that

(2.12) A5 = p
1

m
− 1

2 (M0 − 〈a〉−ν)(Hpθ)ψ
′(|θ|)χ(r)

5



We deduce from (2.10) and (2.12) that

A3 + A5 = p
1

m
− 1

2 (M0 − 〈a〉−ν − |θ|)(Hpθ)ψ
′(|θ|)χ(r)

Now Hpθ = 〈x〉−1Hpa+aHp〈x〉−1. Since |a| ≤ 2ε|θ| on the support of ψ′(|θ|) we deduce that
Hpθ ≥ C4〈x〉−1|ξ| − C5 ≥ −C5. Taking M0 ≥ 2 and using the facts that ψ′ ≥ 0, χ ≥ 0 and
ε ≤ |θ| ≤ 2ε on the support of ψ′(|θ|) we obtain

(2.13) A3 + A5 ≥ −C6

6)A6 = (〈x〉−1aψ0(θ)−(M0−〈a〉−ν)ψ1(θ))p
1

m
− 1

2Hp[χ(r)]. We haveHp[χ(r)] =
1√
p
(Hp〈x〉

m

2 )χ′(r).

On the support of χ′(r) we have 〈x〉 ∼ |ξ| 2

m ; this implies that

p
1

m
− 1

2 |Hp[χ(r)]| ≤ C|ξ| 2

m
−1 |ξ|〈x〉

m

2
−1

|ξ| |χ′(r)| ≤ C7.

Therefore we obtain

(2.14) |A6| ≤ C8.

Gathering the estimates obtained in (2.8) to (2.14) we obtain

(2.15) −Hpλ ≥ C9〈x〉−1−ν(|ξ| + 〈x〉m

2 )
2

mχ(r) − C10.

Now on the support of 1 − χ(r) we have |ξ| ≤ C11〈x〉
m

2 so 〈x〉−1−ν(|ξ| + 〈x〉m

2 )
2

m ≤ C12.
Therefore writing 1 = 1 − χ+ χ and using (2.15) we obtain (2.6).

(ii) We use the symbolic calculus in the classes S(M, g). We have 〈x〉−1 ∈ S(〈x〉−1, g),

a ∈ S(〈x〉, g), p ∈ S(〈ξ〉2, g) so p
1

m
− 1

2 ∈ S(〈ξ〉 2

m
−1, g) since p ≥ C > 0 on suppχ(r). Moreover

χ(r) ∈ S(1, g) and on suppχ(r) we have 〈x〉m

2 ≤ C|ξ|. It follows that λ ∈ S(〈ξ〉 2

m
−1, g) ⊂

S(1, g).

(iii) By the symbolic calculus {λ, V } ∈ ST (〈ξ〉 2

m
−1〈x〉m〈x〉−1〈ξ〉−1, g). Since we have 〈x〉m

2 ≤
C|ξ| on its support we will have 〈x〉m−1〈ξ〉 2

m
−2 ≤ C|ξ| 2

m
(m−1)〈ξ〉 2

m
−2 ≤ C ′. Therefore {λ, V } ∈

ST (1, g). Now if b ∈ ST (〈x〉m

2 , g) we have {λ, bξj} ∈ S(〈ξ〉 2

m
−1〈x〉m

2 |ξ|〈x〉−1〈ξ〉−1, g) and since

〈x〉m

2 ≤ C|ξ| we have 〈x〉m

2
−1〈ξ〉 2

m
−1 ≤ C|ξ| 2

m
(m

2
−1)〈ξ〉 2

m
−1 ≤ C ′ so {λ, bξj} ∈ ST (1, g).

Finally [Opw(p), λw] − 1
i
(Hpλ)w ∈ S(〈ξ〉2〈ξ〉 2

m
−1〈x〉−2〈ξ〉−2, g) ⊂ OpwS(1, g). �

End of the proof of Theorem 1.1.

Since λ ∈ S(1, g) we can set M = 1 + sup
(x,ξ)∈R2n

|λ(x, ξ)|. Let us introduce N(t) = ((M +

λw)u(t), u(t))L2(Rn). Then there exist absolute constants C1 > 0,C2 > 0 such that C1‖u(t)‖2
L2 ≤

N(u(t)) ≤ C2‖u(t)‖2
L2. Now

d

dt
N(t) = ((M + λw)

∂u

∂t
(t), u(t))L2 + ((M + λw)u(t),

∂u

∂t
(t))L2
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Since
∂u

∂t
(t) = −iPu(t) + if(t) and P ∗ = P we obtain

d

dt
N(t) =i([P, λw]u(t), u(t))L2 − 2 Im((M + λw)f(t), u(t))L2

= − ((−Hpλ)wu(t), u(t))L2 − 2 Im((M + λw)f(t), u(t))L2 +O(‖u(t)‖2
L2)

By lemma 2.2 (iii).

Now by Lemma 2.2 (i) and the sharp G̊arding inequality, we obtain

(2.16) ((−Hpλ)wu(t), u(t))L2 ≥ C‖〈x〉− 1+ν

2 E 1

m

u(t)‖2
L2 − C ′‖u(t)‖2

L2

On the other hand we have for any ε > 0

(2.17) |((M + λw)f(t), u(t))L2| ≤ ε‖〈x〉− 1+ν

2 E 1

m

u(t)‖2
L2 + Cε‖〈x〉

1+ν

2 E− 1

m

f(t)‖2
L2

Using (2.16) and (2.17) with ε small enough, we obtain

d

dt
N(t) ≤ −C1‖〈x〉−

1+ν

2 E 1

m

u(t)‖2
L2 + C2‖〈x〉

1+ν

2 E− 1

m

f(t)‖2
L2 + C3N(t)

Integrating this inequality between 0 and t (in [0,T]) and using Gronwall’s inequality, we
obtain the conclusion of Theorem 1.1. �

Proof of theorem 1.2.

Let χ ∈ C∞
0 (R+), χ(t) = 1 if t ∈ [0, 1], χ(t) = 0 if t ≥ 2. Recall that according to (1.14) we

have p = |ξ|2 + q(x, ξ) where q(x, ξ) =
n
∑

j,k=1

bjk(x)ξjξk and bjk ∈ S(〈x〉−σ0, g). Let us set

(2.18) Ajk =
xjξk − xkξj

〈ξ〉 , 1 ≤ j, k ≤ n

Then we have the following result.

Lemma 2.3 Let a be defined in Lemma 2.1. One can find positive constants C0, C1 and C2

such that if we set

(2.19) −λ =
a

(1 + a2 +
n
∑

j,k=1

A2
jk)

1

2

p
1

m
− 1

2χ

(

〈x〉m

2

√

p(x, ξ)

)

then

(i) −Hpλ ≥ C0〈x〉−3(|ξ| + 〈x〉m

2 )
2

m

n
∑

j,k=1

A2
jk − C1〈x〉−1−σ0(|ξ| + 〈x〉m

2 )
2

m − C2,

(ii) λ ∈ S(〈ξ〉 2

m
−1, g),

(iii) [P, λw] − 1

i
(Hpλ)w ∈ OpwST (1, g).

7



Proof

First of all we have

(2.20) |HpAjk(x, ξ)| ≤ C1
|ξ|

〈x〉σ0
, 1 ≤ j, k ≤ n, (x, ξ) ∈ T ∗(Rn).

Indeed we have {|ξ|2, Ajk} = 0 and |{q, Ajk}| ≤ C2
|ξ|

〈x〉σ0
.

Let us set

(2.21) D = 1 + a2 +

n
∑

j,k=1

A2
jk.

We claim that on the support of χ(〈x〉m

2 p−
1

2 ) we have

(2.22) C3〈x〉2 ≤ D ≤ C4〈x〉2

for some positive constants C3 and C4.

Indeed a straightforward computation shows that

(x.ξ)2 +
n
∑

j,k=1

(xjξk − xkξj)
2 ≥ |x|2|ξ|2.

Since by Lemma 2.1 we have a(x, ξ) =
x.ξ

〈ξ〉 for |x| ≥ R0 ≫ 1 and |ξ| ≥ C5 > 0 on

the support of χ we deduce that D ≥ C6〈x〉2 when |x| ≥ R0. When |x| ≤ R0 we have

D ≥ 1 ≥ 1

1 +R2
0

〈x〉2.

Now we can write with r(x, ξ) = 〈x〉m

2 p−
1

2 ,

(2.23)







−Hpλ = I1 + I2

I1 = D− 3

2 (D(Hpa) − 1
2
a(HpD))p

1

m
− 1

2χ(r)

I2 = p
1

m
− 1

2 aD− 1

2Hp(χ(r))

We have

DHpa−
1

2
a(HpD) =(1 +

n
∑

j,k=1

A2
jk)Hpa+ a2Hpa−

1

2
a(2aHpa+ 2

n
∑

j,k=1

AjkHpAjk)

=(1 +

n
∑

j,k=1

A2
jk)Hpa− a

n
∑

j,k=1

AjkHpAjk.

8



Using (2.18) and (2.20) we see that,

(2.24) |a|
n
∑

j,k=1

|Ajk||HpAjk| ≤ C7|x|2
|ξ|

〈x〉σ0
.

Morever by Lemma 2.1 we have on the support of χ(r),

(2.25) p
1

m
− 1

2 (1 +

n
∑

j,k=1

A2
jk)Hpa ≥ (1 +

n
∑

j,k=1

A2
jk)(C8(|ξ| + 〈x〉m

2 )
2

m − C9).

Therefore (2.21), (2.23), (2.24), (2.25) show that,

I1 ≧
[

C10〈x〉−3(|ξ| + 〈x〉m

2 )
2

m

n
∑

j,k=1

A2
jk − C11

|ξ|
〈x〉1+σ0

]

χ(r).

On the support of 1 − χ(r) we have |ξ| ≤ 〈x〉m

2 so we obtain,

(2.26) I1 ≥ C12〈x〉−3(|ξ| + 〈x〉m

2 )
2

m

n
∑

j,k=1

A2
jk − C13

(|ξ| + 〈x〉m

2 )
2

m

〈x〉1+σ0
− C14.

On the other hand we have,

|Hp(χ(r)| = |p− 1

2χ′(r)Hp〈x〉
m

2 | ≤ C15

|ξ| |χ
′(r)||ξ|〈x〉m

2
−1.

It follows from (2.22) and the estimate |a| ≤ C16〈x〉 that,

(2.27) |I2| ≤ C17,

since 〈x〉m

2
−1|ξ| 2

m
−1 ≤ C18.

Then (i) in lemma 2.3 follows from (2.23), (2.26) and (2.27). The proofs of (ii) and (iii) are
the same as those in the proof of lemma 2.2. �

End of the proof of Theorem 1.2.

We introduce as before, for t in (0, T ).

N(t) = ((M0 + λw)u(t), u(t))L2

Where M0 is a large constant. Then N(t) ∼ ‖u(t)‖2
L2.

Now using the equation and Lemma 2.3 (iii) we can write,

d

dt
N(t) = −((−Hpλ)wu(t), u(t))L2 − 2 Im((M0 + λw)f(t), u(t))L2 +O(‖u(t)‖2

L2)
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Since by (1.13) and (2.19) we have 〈x〉−2A2
jk = ℓ2jk, Lemma 2.3 (i) and the sharp G̊arding

inequality ensure that

d

dt
N(t) ≤− C1

n
∑

j,k=1

‖〈x〉− 1

2E 1

m

ℓwjku(t)‖2
L2 + C2‖〈x〉−

1+σ0
2 E 1

m

u(t)‖2
L2

+ ‖〈x〉
1+σ0

2 E− 1

m

f(t)‖2
L2 + C3N(t).

It follows that for 0 < t < T ,

N(t) + C1

∫ t

0

n
∑

j,k=1

‖〈x〉− 1

2E 1

m

ℓwjku(s)‖2
L2ds ≤N(0) + C2

∫ T

0

‖〈x〉−
1+σ0

2 E 1

m

u(s)‖2
L2ds

+

∫ T

0

‖〈x〉
1+σ0

2 E− 1

m

f(s)‖2
L2ds+ C3

∫ t

0

N(s)ds.

(2.28)

Using Theorem 1.1 to bound the second term in the right hand side and then using the
Gronwall inequality we obtain

N(t) ≤ C(T )(‖u(0)‖2
L2 +

∫ T

0

‖〈x〉
1+σ0

2 E− 1

m

f(t)‖2
L2dt).

Using again the inequality (2.28) we obtain the conclusion of Theorem 1.2. The proof is
complete. �
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[D1] Döı, S. : Smoothing effects of Schrödinger evolution group on Riemannian manifolds,
Duke Math. J. 82 (1996) 679-706.
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