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1 Introduction

The paper by C. Edwards and C.P. Tan [1] presents a comparative study between the sliding mode
observers and the unknown input observers for faults reconstruction. This study is based on two works
[2] and [3]. Let us give the situations considered by these works.

First the model considered in [2] is

ẋ(t) = Ax(t) + Bu(t) + Dv(t) (1a)
y(t) = Cx(t) (1b)

where x(t) ∈ IRn is the state, u(t) ∈ IRm is the known input, v(t) ∈ IRq is the unknown input, which can
be considered as the effect of the actuator failure, and y(t) ∈ IRp is the measurement output. Without
loss of generality, we have rank D = q and rankC = p.

The problem of the state estimation in this case is the well known unknown input one, see [4] and the
references given in [2]. The necessary and sufficient conditions for the existence and the stability of the
full order or reduced order observers are

A.1.1 rank CD = rankD = q,
A.1.2 no invariant zeros of (C,A, D) are in C+.

Remark 1. No assumption is made on the nature of the unknown input v(t). !
The model given in [3] is of the form

ẋ(t) = Ax(t) + Bu(t) + Ffi(t, u) + Mξ(t, y, u) (2a)
y(t) = Cx(t) (2b)

where fi : IR+×IRm → IRq models an unknown fault / disturbance and ξ : IR+×IRp×IRm → IRk describes
the system uncertainty. Without loss of generality, we have rank F = q. The sliding mode observer
developed for this system use the following assumptions

A.2.1 rank CF = rankF = q,
A.2.2 no invariant zeros of (C,A, F ) are in C+,
A.2.3 ‖fi(t, u)‖ " α(t, u), where α : IR+×IRm → IR+ is known,
A.2.4 ‖ξ(t, y, u)‖ < β, where β ∈ IR+ is known.
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First we can compare the assumptions used in [2] and [3]. Assumptions A.1.1 and A.1.2 are exactly
A.2.1 and A.2.2, however boundedness conditions are added in [3]. The advantage of [2] is that v(t)
is arbitrary and can be unbounded, in this case the observer of [3] can not be used. In addition, the
unknown input observer developed in [2] is based on the results given in [5] and it is shown in [6] that
theses results are equivalent to those presented in [4, 7, 8].

2 Unknown input observer

In this section, we present an unified approach of the unknown input observer design for system (1)
without using any transformation of the system as in [2]. Consider the following reduced order observer

ż(t) = Nz(t) + Ly(t) + Gu(t) (3a)
x̂(t) = Mz(t) + Ey(t) (3b)

where z ∈ IRn−p is the state of the observer.
It is easy to see that e(t) = x̂(t)− x(t) −→

t→∞
0 if there exists a full row rank matrix T ∈ IR(n−p)×n such

that

(i) N is a stability matrix,
(ii) TA−NT − LC = 0,
(iii) MT + EC = In,
(iv) TD = 0,
(v) G = TB.

Now let R ∈ IR(n−p)×n be a full row rank matrix such that matrix
[
RT CT

]
is non singular (this is

always possible since rank C = p) and let
[
T
C

]
=

[
In−p −K

0 Ip

] [
R
C

]
.

Then from conditions (ii), (iii) and (iv) we obtain

[
N J K

]



R 0
C 0

CA CD





︸ ︷︷ ︸
Σ

=
[
RA RD

]
︸ ︷︷ ︸

Θ

(4)

where J = L−NE. Equation (4) has a solution if and only if

rank
[
Σ
Θ

]
= rankΣ.

This is equivalent to assumption A.1.1. In this case we have
[
N J K

]
= ΘΣ† + Z

(
In+p − ΣΣ†

)
(5)

which leads to

N = ΘΣ†




In−p

0
0



 + Z
(
In+p − ΣΣ†

)



In−p

0
0



 , (6)

J = ΘΣ†




0
Ip

0



 + Z
(
In+p − ΣΣ†

)



0
Ip

0



 , (7)

K = ΘΣ†




0
0
Ip



 + Z
(
In+p − ΣΣ†

)



0
0
Ip



 , (8)
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where Z is an arbitrary matrix of appropriate dimension and A† is a generalized inverse of matrix A
satisfying A = AA†A.

It is easy to see that there exists Z such that N is a stability matrix if and only if assumption A.1.2
is satisfied.

Now we can see that

Σ† =





[
R
C

]†
0

−(CD)†CA

[
R
C

]†
(CD)†




=





[
R
C

]−1

0

−(CD)†CA

[
R
C

]−1

(CD)†





is a generalized inverse of Σ since ΣΣ†Σ = Σ. Let

[
H1 E1

]
=

[
R
C

]−1

,

then we obtain
Σ† =

[
H1 E1 0

−(CD)†CAH1 −(CD)†CAE1 (CD)†

]
.

Let [ Z1 Z2 Z3 ] be the partition of Z according to Σ†, then we obtain

N = R
(
In −D(CD)†C

)
AH1 + Z3

(
Ip − (CD)(CD)†

)
CAH1, (9)

J = R
(
In −D(CD)†C

)
AE1 + Z3

(
Ip − (CD)(CD)†

)
CAE1, (10)

K = RD(CD)† + Z3

(
Ip − (CD)(CD)†

)
. (11)

The observer design can be done as follows : under assumptions A.1.1 and A.1.2, choose Z3 such that
N , given by (9), is a stability matrix and deduce J and K from (10) and (11), then calculate L = J−NE
and T = R−KC. We deduce G = TB and we obtain M and E from

[
M E

]
=

[
T
C

]−1

.

One can see that from the above results, by taking C = [ 0 Ip ], we obtain directly the results of [2, 5]
(see [6]. On the other hand, and since matrix

[
T T CT

]
is regular, model (1) is structurally equivalent

to
[
T
C

]
ẋ(t) =

[
T
C

]
Ax(t) +

[
T
C

]
Bu(t) +

[
T
C

]
Dv(t)

y(t) = Cx(t)

or equivalently

T ẋ(t) = TAx(t) + TBu(t) (12a)
Cẋ(t) = ẏ(t) = CAx(t) + CBu(t) + CDv(t) (12b)

y(t) = Cx(t) (12c)

which gives
v̂(t) = (CD)† (ẏ(t)− CAx̂(t)− CBu(t)) . (13)

We can also see that (3) is an observer for the singular system (12a) and (12c). We can also obtain
the unknown input estimation from (1a) as follows

v̂(t) = D†
(

˙̂x(t)−Ax̂(t)−Bu(t)
)

= (DT D)−1DT
(

˙̂x(t)−Ax̂(t)−Bu(t)
)

(14)

where D†D = Iq since rank D = q.
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Remark 2. The full order case can be obtained directly from the above results by putting R = In, then
[
R
C

]†
=

[
In

C

]†
=

[
In 0

]

which leads to
Σ† =

[
In 0 0

−(CD)†CA 0 (CD)†

]
.

Let [ Z1 Z2 Z3 ] be the partition of Z according to Σ†, then we obtain

J = Z2, (15)

E = −D(CD)† − Z3

(
Ip − (CD)(CD)†

)
, (16)

N = A + D(CD)†CA−KC − Z3

(
Ip − (CD)(CD)†

)
CA. (17)

and the observer (3) becomes [4]

ż(t) = Nz(t) + Ly(t) + Gu(t) (18a)
x̂(t) = z(t)− Ey(t) (18b)

where J = L + NE, Θ = [ A −D ] and T = In + EC.
The observer design can be done as follows : under assumptions A.1.1 and A.1.2, determine J and Z3

such that N , given by (17), is a stability matrix and deduce E from (16), then calculate L = J − NE
and G = TB = (In + EC) B. The above results summarize the results given in [4].

Let T = In + EC with TD = 0, then model (1) is structurally equivalent to

T ẋ(t) = TAx(t) + TBu(t) (19a)
D†ẋ(t) = D†Ax(t) + D†Bu(t) + v(t) (19b)

y(t) = Cx(t). (19c)

We can also see that (18) is an observer for the singular system (19a) and (19c). !
The drawback of equation (13) or (14) is the use of the derivative of y(t) or x̂(t).
In reference [2], the estimation of the unkknown input for B = 0 is given by

v̂(kτ) = (DT D)−1DT A
(
eAτ − In

)−1 (
x̂((k + 1)τ)− eAτ x̂(kτ)

)

which is a discretization of (14) with sampling time τ , used to avoid the derivative. This approach was
used in [2] to estimate the unknown input affecting the output y(t) by adding the model of the bias
resulting from sensor failures.

In reference [2], the parameter uncertainty in the system is modeled as

ẋ(t) = (A0 + ∆A)x(t) + (B0 + ∆B)u(t) + Dv(t) (20a)
y(t) = Cx(t) + Hh(t) (20b)

where h(t) is an unmeasurable vector describing the additive sensor failure. Model (20) is then reduced
to standard unknown input system

ẋ(t) = A0x(t) + B0u(t) + D∗v∗(t) (21a)
y(t) = Cx(t) + Hh(t) (21b)

where D∗ = [ D In In ] and v∗(t) =
[
vT (t) (∆Ax(t))T (∆Bu(t))T

]T .
Remark 3. The sensor failure h(t) in (20) et (21) is assumed to be satisfy equation (33) in [2] or relation
(16) in [1]. !

As can be seen from [1], the method used is simple and can give good results in failures detection and
identification. Howerver, it was not used to estimate the failures. The problem induced by this approach
is the choice of the decision rules (see [9] and references therein). In addition, the failure estimation uses
the derivative of the state or the output, this explain why this method is very sensitive to the uncertainy
and the noises.
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3 Sliding mode observer

In [1, 10, 11], the proposed observer for the uncertain system (2) is in the form

ż(t) = Az(t) + Bu(t)−G"ey(t) + Gην(t) (22)

with
ν(t) = −ρ(t, y, u)

Poey(t)
‖Poey(t)‖

(23)

where ey(t) = Cz(t)− y(t) is the output estimation error and Po is a symmetric positive definite matrix.
The function ρ(#) is a design parameter which depends on the magnitude of the fault and the uncertainty.

The necessary and sufficient conditions for the existence of the observer (22), which must be insensitve
to the unknown input or faut are assumptions A.2.1 and A.2.2. Contrary to observers (3) and (18) which
are linear ones, the sliding mode observer (22) is nonlinear and discontinuous.

The advantage of the approach presented in the section 2 of [1] is that it permits in addition to
estimate, under assumptions A.2.3 et A.2.4, the fault or the unknown input without usin the derivative
of the output (see equations (10)-(13) and (16)-17) of [1].

Another alternative of the sliding mode observers which can be used to estimate the faults or the
unknown inputs is the step by step sliding mode observer [12, 13, 14]. The latter will be presented in the
next section.

4 Comparison based on a crane system

The system considerd for the comparison is described by a nonlinear model of the form(45)-(46) of [1],
which can be written as

(
I + mpl

2
)
θ̈ + cθ̇ + mpgl sin θ + mpld̈ cos θ = 0 (24a)

(mt + mp) d̈ + bḋ + mplθ̈ cos θ −mplθ̇
2 sin θ = u. (24b)

Choosing [ x1 x2 x3 x4 ]T =
[

θ θ̇ d ḋ
]T

as the state vector and using standard small approxima-
tions, the crane system (24) is equivalent to

ẋ1 = x2 (25a)

ẋ2 =
−βγg

βα− γ2
x1 −

cβ

βα− γ2
x2 +

bγ

βα− γ2
x4 −

γ

βα− γ2
u (25b)

ẋ3 = x4 (25c)

ẋ4 =
γ2g

βα− γ2
x1 +

cγ

βα− γ2
x2 −

bα

βα− γ2
x4 +

α

βα− γ2
u (25d)

with
α = I + mpl

2, β = mt + mp and γ = mpl

and corresponds to the linear model (1) with matrices

A =





0 1 0 0
−βγg

βα− γ2

−cβ

βα− γ2
0

bγ

βα− γ2

0 0 0 1
γ2g

βα− γ2

cγ

βα− γ2
0

−bα

βα− γ2




, C =




C1

C2

C3



 =




1 0 0 0
0 0 1 0
0 0 0 1



, B = D =





0
−γ

βα− γ2

0
α

βα− γ2




.
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The observer matching condition is verified (see([12, 14]), therefore it is possible to design the following
step by step sliding mode observer [12, 13, 14]

˙̂x1 = x̂2 + λ1 sign (x1 − x̂1) (26a)

˙̂x2 =
−βγg

βα− γ2
x1 −

cβ

βα− γ2
x̃2 +

bγ

βα− γ2
x4 + E1λ2 sign (x̃2 − x̂2) (26b)

˙̂x3 = x4 + λ3 sign (x3 − x̂3) (26c)

˙̂x4 =
γ2g

βα− γ2
x1 +

cγ

βα− γ2
x̃2 −

bα

βα− γ2
x4 + λ4 sign (x4 − x̂4) (26d)

with the following condition : if x̂1 = x1 then E1 = 1 else E1 = 0. And by using the equivalent vector
(see [15, 10])

x̃2 = x̂2 + E1λ1 sign(x1 − x̂1).

After recovering the states x1 ,x2, x3 and x4 (i.e. x̂1 = x1, x̃2 = x̂2 = x2, x̂3 = x3 and x̂4 = x4), we
can estimate the unknown input u by calculating the observation error dynamic

ė1 = e2 − λ1 sign(x1 − x̂1) = 0

ė2 =
−γ

βα− γ2
u− E1λ2 sign(x̃2 − x̂2) = 0

ė3 = −λ3 sign(x̃3 − x̂3) = 0

ė4 =
α

βα− γ2
u− λ4 sign (x4 − x̂4) = 0

which gives

û =
−βα− γ2

γ
E1λ2 sign(x̃2 − x̂2)

û =
βα− γ2

α
λ4 sign (x4 − x̂4) .

The explore the effect of parametric uncertainty the mass of the pendulum has been changed by 5%
to be mp = m′

p = 0.525. However, the observation error dynamics (ei = xi − x̂i) are

ė1 = e2 − λ1 sign(x1 − x̂1)

ė2 =
(

βγg

βα− γ2
− β′γ′g

β′α′ − γ′2

)
x1 +

(
cβ

βα− γ2
− c′β′

β′α′ − γ′2

)
x2

+
(

bγ′

β′α′ − γ′2
− bγ

βα− γ2

)
x4 −

γ′

β′α′ − γ′2
u− E1λ2 sign(x̃2 − x̂2)

ė3 = −λ3 sign(x̃3 − x̂3)

ė4 =

(
γ

′2g

β′α′ − γ′2
− γ2g

βα− γ2

)
x1 +

(
cγ′

β′α′ − γ′2
− cγ

βα− γ2

)
x2

+
(

bα

βα− γ2
− bα′

β′α′ − γ′2

)
x4 +

α′

β′α′ − γ′2
u− λ4 sign (x4 − x̂4)

with
α′ = I + m′

pl
2, β′ = mt + m′

p and γ′ = m′
pl.

When we estimated x1 ,x2, x3 and x4 (i.e. x̂1 = x1, x̃2 = x̂2 = x2, x̂3 = x3 and x̂4 = x4), we have
ė = 0.
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Then the estimation of unknown input is given by

û =
γ′

β′α′ − γ′2

((
βγg

βα− γ2
− β′γ′g

β′α′ − γ′2

)
x1 +

(
cβ

βα− γ2
− c′β′

β′α′ − γ′2

)
x2

+
(

bγ′

β′α′ − γ′2
− bγ

βα− γ2

)
x4 − E1λ2 sign(x̃2 − x̂2)

)

û =
−α′

β′α′ − γ′2

((
γ

′2g

β′α′ − γ′2
− γ2g

βα− γ2

)
x1 +

(
cγ′

β′α′ − γ′2
− cγ

βα− γ2

)
x2

+
(

bα

βα− γ2
− bα′

β′α′ − γ′2

)
x4 − λ4 sign (x4 − x̂4)

)
.

The simulation results are shown in figures 1 and 2.
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Figure 1: Actuator reconstruction without parametric uncertainties.
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Figure 2: Actuator reconstruction in presence of parametric uncertainties.

Figures 1 and 2 show the obtained results of the actuator reconstruction by using the step by step
sliding mode observer (26) when system (25) has no parametric uncertainties and in presence of parametric
uncertainties in system (25), respectively.
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Comparing the unknown input and classical sliding mode observers given in [1] and the step by step
sliding mode observer in presence of parametric uncertainties, we notice that more significant errors
appear for the unknown input and classical sliding mode observers (see figure 7 in [1]), however a good
estimation is obtained by the step by step sliding mode observer (26) (see figure 2).

The step by step sliding mode observer is very useful and was developed to achieve robustness under
parameter uncertainties, if a specific condition (dual of the matching condition [12, 14]) is verified.
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