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Summary. We consider Sinai’s walk in i.i.d. random scenery and focus

our attention on a conjecture of Révész concerning the upper limits of

Sinai’s walk in random scenery when the scenery is bounded from above.

A close study of the competition between the concentration property for

Sinai’s walk and negative values for the scenery enables us to prove that

the conjecture is true if the scenery has “thin” negative tails and is false

otherwise.
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1 Introduction

1.1 Random walk in random environment

Problems involving random environments arise in different domains of physics and biol-

ogy. Originally, one-dimensional random walk in random environment appeared as a sim-

ple model for DNA transcription. In the following, we consider the elementary model of

one-dimensional Random Walk in Random Environment (RWRE), defined as follows. Let
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ω := (ωi, i ∈ Z) be a family of independent and identically distributed (i.i.d.) random vari-

ables defined on Ω, which stands for the random environment. Denote by P the distribution

of ω and by E the corresponding expectation.

Conditioning on ω (i.e., choosing an environment), we define the RWRE (Xn, n ≥ 0) as

a nearest-neighbor random walk on Z with transition probabilities given by ω: (Xn, n ≥ 0)

the Markov chain satisfying X0 = 0 and for n ≥ 0,

Pω{Xn+1 = x + 1 |Xn = x} = ωx = 1 − Pω{Xn+1 = x − 1 |Xn = x}.

We denote by Pω the law of (Xn, n ≥ 0), by Eω the corresponding expectation, and by P

the joint law of (ω, (Xn)n≥0). We refer to Zeitouni [25] for an overview of random walks in

random environment.

Throughout the paper, we make the following assumptions on ω:

∃ δ ∈ (0, 1/2) : P{δ ≤ ω0 ≤ 1 − δ} = 1,(1.1)

E[ log(
1 − ω0

ω0

) ] = 0,(1.2)

σ2 := Var[ log(
1 − ω0

ω0
) ] > 0.(1.3)

Assumption (1.1) implies that | log(1−ω0

ω0
)| is, P -a.s., bounded by the constant L := log(1−δ

δ
).

It is a technical assumption, which can be replaced by an exponential moment of log(1−ω0

ω0
).

According to a recurrence-transience result due to Solomon [24], assumption (1.2) ensures

that (Xn)n≥0 is P-almost surely recurrent, i.e., the random walk hits any site infinitely often.

Assumption (1.3) excludes the case of deterministic environment, which corresponds to the

homogeneous symmetric random walk.

Under assumptions (1.1)–(1.3), the RWRE is referred to as Sinai’s walk. Sinai [23] proves

that Xn/(log n)2 converges in law, under P, toward a non-degenerate random variable, whose

distribution is explicitly computed by Kesten [17] and Golosov [10]. This result contrasts

with the usual central limit theorem which gives the convergence in law of Xn/
√

n.

Let

L(n, x) := # {0 ≤ i ≤ n : Xi = x} , n ≥ 0, x ∈ Z,(1.4)

L(n, A) :=
∑

x∈A

L(n, x), n ≥ 0, A ⊂ Z.

In words, the quantity L(n, A) measures the number of visits to the set A by the walk in the

first n steps.
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The maximum of local time is studied by Révész ([20], p. 337) and Shi [21]: under

assumptions (1.1)–(1.3), there exists c0 > 0 such that

lim sup
n→∞

maxx∈Z L(n, x)

n
≥ c0, P-a.s.

It means that the walk spends, infinitely often, a positive part of its life on a single site. The

liminf behavior is analyzed by Dembo, Gantert, Peres and Shi [6], who prove that

lim inf
n→∞

maxx∈Z L(n, x)

n/ log log log n
= c′0, P-a.s.,

for some c′0 ∈ (0,∞). A concentration property is obtained by Theorem 1.3 of Andreoletti

[1], which says that, under assumptions (1.1)–(1.3) and for any 0 < β < 1, there exists

ℓ(β) > 0 such that

lim sup
n→∞

supx∈Z
L (n, [x − ℓ(β), x + ℓ(β)])

n
≥ β, P-a.s.(1.5)

In words, for any β close to 1, it is possible to find a length ℓ(β) such that, P-almost surely,

the particle spends, infinitely often, more than a β-fraction of its life in an interval of length

2ℓ(β).

1.2 Random walk in random scenery

Random Walk in Random Scenery (RWRS) is a simple model of diffusion in disordered

media, with long-range correlations. It is a class of stationary random processes exhibiting

rich behavior. It can be described as follows: given a Markov chain on a state space, there

may be a random field indexed by the state space, called a random scenery. As the random

walk moves on this state space, he observes the scenery at his location. For a survey of

recent results about RWRS, we refer to den Hollander and Steif [14], and to Asselah and

Castell [2] for large deviations results in dimension d ≥ 5.

Let us now define the model of one-dimensional RWRS: consider S = (Sn, n ≥ 0) a

random walk on Z and ξ := (ξ(x), x ∈ Z) = (ξx, x ∈ Z), a family of i.i.d. random variables

defined on a probability space Ξ. We refer to ξ as the random scenery and denote by Q its

law. Then, define the process (Yn, n ≥ 0) by

Yn :=

n
∑

i=0

ξ(Si),
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called RWRS or the Kesten-Spitzer Random Walk in Random Scenery. An interpretation is

the following: if a random walker has to pay ξx each time he visits x, then Yn stands for the

total amount he has paid in the time interval [0, n].

The model is introduced and studied by Kesten and Spitzer [18] in dimensions d = 1

and d ≥ 3. They prove in dimension d = 1 that, when S and ξ belong to the domains of

attraction of stable laws of indice α and β respectively, then there exists δ, depending on α

and β, such that n−δ Y⌊nt⌋ converges weakly. In the simple case where α = β = 2, they show

that
(

n−3/4 Y⌊nt⌋; 0 ≤ t ≤ 1
) law−→ (Λ(t); 0 ≤ t ≤ 1) ,

where “
law−→ ” stands for weak convergence in law (in some functional space; for example in

the space of bounded functions on [0, 1] endowed with the uniform topology). The process

(Λ(t), t ≥ 0), called Brownian motion in Brownian scenery, is defined by Λ(0) = 0 and

Λ(t) :=
∫

R
ℓ(t, x) dW (x) for t > 0, where (W (x); x ∈ R) denotes a two-sided Brownian

motion and (ℓ(t, x), t ≥ 0, x ∈ R) denotes the jointly continuous version of the local time

process of a Brownian motion (B(t), t ≥ 0), independent of (W (x); x ∈ R).

Independently, Borodin analyzes the case of one-dimensional nearest-neighbor random

walk in random scenery, see [4] and [5]. Bolthausen [3] studies the case d = 2. He proves

that, if S is a recurrent random walk and ξ0 has zero expectation and finite variance, then

(n log n)−1/2 Y⌊nt⌋ satisfies a functional central limit theorem.

1.3 Random environment and random scenery

In this paper, we consider Sinai’s Walk in Random Scenery. Problems combining random

environment and random scenery have been examined for more general models. Replacing

Z by a more general countable state space, Lyons and Schramm [19] exhibit, under certain

conditions, a stationary measure for Random Walks in a Random Environment with Random

Scenery (RWRERS) from the viewpoint of the random walker. Häggström [11], Häggström

and Peres [12] treat the case where the scenery arises from percolation on a graph. In this

particular case, the scenery determines the random environment of the associated RWRE,

which is used by the authors to obtain information about the scenery.

Let us first describe the model of Sinai’s walk in random scenery. We consider Sinai’s walk

(Xn, n ≥ 0) under assumptions (1.1)–(1.3), and recall that the environment ω is defined on

(Ω, P ). For the scenery, we consider a family of i.i.d. random variables ξ := (ξ(x), x ∈ Z) =

(ξx, x ∈ Z), defined on (Ξ, Q), independent of ω and (Xn, n ≥ 0). To translate independence
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between ω and ξ, we consider the probability space (Ω×Ξ, P ⊗Q), on which we define (ω, ξ).

Moreover, we denote by P ⊗ Q the law of (ω, (Xn)n≥0, ξ). Then we define as Sinai’s walk in

random scenery the process (Zn, n ≥ 0):

Zn :=

n
∑

i=0

ξ(Xi).

Observe that Zn can be written using local time notation:

Zn =
∑

x∈Z

ξ(x) L(n, x), n ≥ 0,(1.6)

where L(n, x) stands for the local time of the random walk at site x until time n, see (1.4).

We are interested in the upper limit of Zn in the case where a := ess sup ξ0 is finite. We

consider the concentration property of order β for Sinai’s walk with β close to 1 (see (1.5)),

which enables us to formulate the conjecture of Révész ([20], p. 353): does the assumption

that a := ess sup ξ0 is finite imply that, P ⊗ Q-almost surely,

lim sup
n→∞

Zn

n
= a ?

It turns out that the conjecture holds only under some additional assumptions on the

distribution of the random scenery. It is interesting to note that this conjecture follows

immediately from the result of Andreoletti [1] mentioned earlier if ess inf ξ0 is larger than

−∞. In the general case, a close study of the competition between the concentration property

for Sinai’s walk and negative values for the scenery enables us to obtain the following theorem,

which gives a solution to this problem, depending on the tail decay of ξ−0 := max{−ξ0, 0}.

Theorem 1.1 Assume (1.1)–(1.3) and a := ess sup ξ0 < ∞.

(i) If Q{ξ−0 > λ} ≤ 1
(log λ)2+ε , for some ε > 0 and all large λ, then

P ⊗ Q

{

lim sup
n→∞

Zn

n
= a

}

= 1.

(ii) If Q{ξ−0 > λ} ≥ 1
(log λ)2−ε , for some ε > 0 and all large λ, then

P ⊗ Q

{

lim
n→∞

Zn

n
= −∞

}

= 1.
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It is possible to give more precision in the case (ii), see Remark 3.5. On the other hand,

the case ε = 0 is still open.

We mention that, under (1.1)–(1.3) and a := ess sup ξ0 < ∞, it is possible to prove that

P ⊗ Q{lim supn→∞
Zn

n
= c}, satisfies a 0 − 1 law, for any c ∈ [−∞,∞]. The proof follows

the lines of [8], except that we need an additional argument saying that modifying a finite

number of random variables in the scenery does not change the behavior of lim supn→∞
Zn

n
.

The latter can be done by means of Theorem 1 (see Example 1) in [16], which implies, for

any x ∈ Z, that L(n, x) = o(n), n → ∞, P-almost surely.

In general, we do not know whether lim supn→∞
Zn

n
∈ {−∞, a}, P-almost surely.

The paper is organized as follows: in Section 2, we present some key results for the

environment and for Sinai’s walk when the environment is fixed (i.e., quenched results). In

Section 3, we define precisely the notion of “good” environment-scenery and prove Theorem

1.1 by accepting two intermediate propositions. The first one, proved in Section 4, is devoted

to the study of the RWRE within the “good” environment-scenery. The second one, proved

in Section 5, does not concern the RWRE, but only the environment-scenery. We show that,

P ⊗ Q-almost surely, (ω, ξ) is a “good” environment-scenery.

In the following, we use ci (1 ≤ i ≤ 33) to denote finite and positive constants.

2 Preliminaries

In this section, we collect some basic properties of random walk in random environment that

will be useful in the forthcoming sections.

2.1 About the environment

In the study of one-dimensional RWRE, an important role is played by a function of the

environment ω, called the potential. This process, noted V = (V (x), x ∈ Z), is defined on

(Ω, P ) by:

V (x) :=







∑x
i=1 log(1−ωi

ωi
) if x ≥ 1,

0 if x = 0,

−∑0
i=x+1 log(1−ωi

ωi
) if x ≤ −1.

(2.1)

By (1.1), we observe that |V (x) − V (x − 1)| ≤ L for any x ∈ Z. Moreover, we define

Pz{·} := P{ · | V (0) = z}, for any z ∈ R; thus P = P0. (Strictly speaking, we should
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be working in a canonical space for V , with Pz defined as the image measure of P under

translation.)

Let us define, for any Borel set A ⊂ R,

ν+(A) := min {n ≥ 0 : V (n) ∈ A} .

We recall the following result, whose proof is given by a simple martingale argument.

Lemma 2.1 For any x < y < z, we have

y − x

z − x + L
≤ Py{ν+([z,∞)) < ν+((−∞, x])} ≤ y − x + L

z − x
.

Proof. Since (1.1) and (1.2) imply that (V (n); n ≥ 0) is a martingale with bounded jumps,

we apply the optional stopping theorem ([7], p. 270) at ν+([z,∞)) ∧ ν+((−∞, x]) to get

y = Ey[X0] = Ey[Xν+([z,∞)) ; ν+([z,∞)) < ν+((−∞, x])]

+Ey[Xν+((−∞,x]) ; ν+([z,∞)) > ν+((−∞, x])].

Since Xν+([z,∞)) ∈ [z, z + L] and Xν+((−∞,x]) ∈ [x − L, x] by ellipticity, we obtain

y ≥ zPy{ν+([z,∞)) < ν+((−∞, x])} + (x − L)(1 − Py{ν+([z,∞)) < ν+((−∞, x])}),

which yields the right inequality. The left inequality is obtained by similar arguments. �

Moreover, we recall a result of Hirsch [13], which, under assumptions (1.1)–(1.3), takes

the following simplified form: for any 0 < ε′ < 1
34

, there exists c1 > 0 such that

P{ max
0≤x≤N

V (x) < N
1
2
−ε′} ∼ c1N

−ε′, N → ∞.(2.2)

2.2 Quenched results

We define, for any x ∈ Z,

τ(x) := min {n ≥ 1 : Xn = x} , min ∅ := ∞.

(Note in particular that when X0 = x, then τ(x) is the first return time to x.) Throughout

the paper, we write P x
ω{·} := Pω{ · |X0 = x} (thus P 0

ω = Pω) and denote by Ex
ω the

expectation with respect to P x
ω .
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Recalling that ωi/(1 − ωi) = e−(V (i)−V (i−1)), we get, for any r < x < s,

P x
ω{τ(r) < τ(s)} =

s−1
∑

j=x

eV (j)

(

s−1
∑

j=r

eV (j)

)−1

.(2.3)

This result is proved in [25], see formula (2.1.4).

The next result, which gives a simple bound for the expectation of τ(r) ∧ τ(s) when the

walk starts from a site x ∈ (r, s), is essentially contained in Golosov [9]; its proof can be

found in [22]. For any integers r < s, we have

max
x∈(r, s)∩Z

Ex
ω[τ(s) 1{τ(s)<τ(r)}] ≤ (s − r)2 exp

[

max
r≤i≤j≤s

(V (j) − V (i))

]

.(2.4)

We will also use the following estimate borrowed from Lemma 7 of Golosov [9]: for ℓ ≥ 1

and x < y,

P x
ω{τ(y) < ℓ} ≤ ℓ exp

(

− max
x≤i<y

[V (y − 1) − V (i)]

)

.(2.5)

Looking at the environment backwards, we get: for ℓ ≥ 1 and w < x,

P x
ω{τ(w) < ℓ} ≤ ℓ exp

(

− max
w<i≤x

[V (w + 1) − V (i)]

)

.(2.6)

Finally we quote an important result about excursions of Sinai’s walk (for detailed dis-

cussions, see Section 3 of [6]). Let b ∈ Z and x ∈ Z, and consider L(τ(b), x) under P b
ω. In

words, we look at the number of visits to the site x by the random walk (starting from b)

until the first return to b. Then there exist constants c2 and c3 such that

c2 e−[V (x)−V (b)] ≤ Eb
ω[L(τ(b), x)] ≤ c3 e−[V (x)−V (b)].(2.7)

3 Good environment-scenery and proof of Theorem 1.1

For any j ∈ N
∗, we define

d+(j) := min {n ≥ 0 : V (n) ≥ j} ,

b+(j) := min

{

n ≥ 0 : V (n) = min
0≤x≤d+(j)

V (x)

}

.

These variables enable us to consider the valley (0, b+(j), d+(j)). Similarly, we define

d−(j) := max {n ≤ 0 : V (n) ≥ j} ,

b−(j) := max

{

n ≤ 0 : V (n) = min
d−(j)≤x≤0

V (x)

}

.

In the next sections, we will be frequently using the following elementary estimates.
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Lemma 3.1 For any ε′ > 0, we have, P -almost surely for all large j,

j2−ε′ ≤ |b±(j)| < |d±(j)| ≤ j2+ε′.

Proof. Fix ε′ > 0. Let us consider the sequence (jp)p≥1 defined by jp := p12/ε′ for all p ≥ 1.

Using (2.2), we obtain
∑

p≥1 P{d+(jp) > 1
3
j2+ε′

p } < ∞. Therefore, Borel-Cantelli lemma

implies that, P -almost surely, d+(jp) ≤ 1
3
j2+ε′

p for all large p, say p ≥ p0. We fix a realization

of ω and consider jp ≤ j ≤ jp+1 with p ≥ p0. Since d+(j) ≤ d+(jp+1), we get

d+(j) ≤ 1

3
j2+ε′

p+1 ≤ j2+ε′ 1

3

(

jp+1

j

)2+ε′

≤ j2+ε′ 1

3

(

jp+1

jp

)2+ε′

= j2+ε′ 1

3
(1 + p−1)

12(2+ε′)

ε′ ,

which yields d+(j) ≤ j2+ε′ for all large j. In a similar way, we can prove that j2−ε′ ≤
ν+((−∞,−j1−κ]) ≤ d+(j) for some κ > 0 and all large j, which implies j2−ε′ ≤ b+(j) for

all large j. Moreover, the arguments are the same to prove that, P -almost surely, j2−ε′ ≤
|b−(j)| < |d−(j)| ≤ j2+ε′ for all large j. �

To introduce the announced “good” environment-scenery, we fix ε > 0 such that assump-

tion of Part (i) of Theorem 1.1 holds. For α ∈ (0, 1) (which will depend on ε), 0 < c4 < 1/6,

and j ≥ 100, we define

γ0(j) := j,

γi(j) := j(1−α)i

= (γi−1(j))
1−α, i ≥ 1,(3.1)

εi(j) := exp
{

− c4γi+2(j)
}

, i ≥ 0.(3.2)

For convenience of notation we define ε−1(j) := ε0(j). In words, (γi(j))i≥0 represents a

decreasing sequence of distances, which enables us to classify the sites according to the value

of V (x) − V (b+(j)).

Write logp for the p-th iterative logarithmic function. Fix ε′ := min{1/35, ε/2} > 0, and

introduce, for j ≥ 100,

M(j) := inf
{

n ≥ 0 : γn(j) ≤ (log2 j)
1−α

2+ε′

}

.(3.3)

By definition of M(j), we have

γM(j)−1(j) ∈
[

(log2 j)
1−α

2+ε′ , (log2 j)
1

2+ε′

]

.
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Moreover, in view of (3.1) and since γM(j) belongs to [(log2 j)
(1−α)2

2+ε′ , (log2 j)
1−α

2+ε′ ], we get that

M(j) ∼ 1

| log(1 − α)| log2 j, j → ∞.(3.4)

Note that we choose α small enough such that

β := (1 − α)2 (2 + ε) − (2 + ε′) > 0,(3.5)

β ′ :=
ε′

2
− α > 0.(3.6)

Then we introduce the set (the constant c5 will be chosen small enough in (5.9))

ΘM(j)−1(j) :=
[

b+(j) − c5 (γM(j)−1(j))
2+ε′, b+(j) + c5 (γM(j)−1(j))

2+ε′
]

,

and, for i = M(j) − 2, ..., 1, 0, the sets (the constant c6 ≥ 1 will be chosen large enough in

(5.17))

Θi(j) :=
[

b+(j) − c6 (γi(j))
2+ε′, b+(j) + c6 (γi(j))

2+ε′
]

\
M(j)−1
⋃

p=i+1

Θp(j).

Observe that the sets (Θi(j))0≤i≤M(j)−1 form a partition of the interval [b+(j)−c6 j2+ε′, b+(j)+

c6 j2+ε′]. The final sets we consider are given, for 0 ≤ i ≤ M(j) − 1, by

Θi(j) := Θi(j) ∩ I(j),

where I(j) := [ν+((−∞,−j]), d+(j)]. Note that ν+((−∞,−j]) < d+(j) on A(j) which

will be defined in (3.14). In this case, the sets (Θi(j))0≤i≤M(j)−1 form a partition of I(j)

into annuli (since c6 ≥ 1). Loosely speaking, the set Θi(j) contains the sites x satisfying

V (x) − V (b+(j)) ≈ γi(j). To cover [d−(j), d+(j)], we define

Θ−1(j) :=
[

−j2+ε′, j2+ε′
]

∩
[

d−(j), ν+((−∞,−j])
]

.(3.7)

Moreover, for the environment on Z
+, we introduce the events

Aenv
1 (j) :=

{

−4j ≤ V (b+(j)) ≤ −3j
}

,(3.8)

Aenv
2 (j) :=

{

max
0≤x≤y≤b+(j)

[V (y) − V (x)] ≤ j

4

}

.(3.9)
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The first event ensures that the valley considered is “deep enough” and the second one that

the particle reaches the bottom of the valley “fast enough”. To control the time spent by

the particle in different Θi(j) during an excursion from b+(j) to b+(j), we define

Aenv
ann(j) :=

M(j)−2
⋂

i=0







∑

x∈Θi(j)

e−[V (x)−V (b+(j))] ≤ (εi(j))
2







=:

M(j)−2
⋂

i=0

Aenv
ann,i(j).(3.10)

For the environment on Z
−, let

Benv(j) :=

{

V (b−(j)) ≤ −j

6
, max

d−(j)≤x≤y≤0
[V (y) − V (x)] ≤ j

3

}

,(3.11)

which ensures that the particle will not spent too much time on Z
−.

Recalling that ξ−x = max{−ξx, 0}, we define for the scenery

Asce
i (j) :=

{

max
x∈Θi(j)

ξ−x < (εi(j))
−1/2

}

, −1 ≤ i ≤ M(j) − 2,(3.12)

which ensures that the scenery does not reach excessive negative value in each Θi(j). In order

to force the scenery in a neighborhood of the bottom (where the particle is concentrated),

to be close to a = ess sup ξ0, we fix ρ ∈ (0, 1) and introduce

Asce
M(j)−1(j) :=

{

min
x∈ΘM(j)−1(j)

ξx ≥ a − ρ

}

.(3.13)

We set

Aenv(j) := Aenv
1 (j) ∩ Aenv

2 (j) ∩ Aenv
ann(j), Asce(j) :=

M(j)−1
⋂

i=−1

Asce
i (j).

Moreover, we define

A(j) := Aenv(j) ∩ Benv(j) ∩ Asce(j).(3.14)

A pair (ω, ξ) is a “good” environment-scenery if (ω, ξ) ∈ A(j) for infinitely many j ∈ N.

For future use, let us note that for ω ∈ Benv(j) ∩ Aenv
2 (j), we have

max
d−(j)≤x≤y≤b+(j)

[V (y) − V (x)] ≤ 2j

3
.(3.15)

To prove Theorem 1.1, we need two propositions, whose proofs are respectively post-

poned until Sections 5 and 4. The first one ensures that almost all pair (ω, ξ) is a “good”

environment-scenery, while the second one describes the behavior of the particle in a “good”

environment.
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Proposition 3.2 Under assumptions (1.1)–(1.3), we have that P ⊗ Q-almost all (ω, ξ) is

a “good” environment-scenery. More precisely, P ⊗ Q-almost surely, there exists a random

sequence (mk)k≥1 such that mk ≥ k3k and (ω, ξ) is a good environment-scenery along (mk)k≥1,

i.e., (ω, ξ) ∈ A(mk), for all k ≥ 1.

In fact (mk)k≥1 is constructed in the following way. Let us first introduce the sequence

jp := p3p for p ≥ 0. We define then (mk)k≥1 by m1 := inf{jp ≥ 0 : (ω, ξ) ∈ A(jp)} and

mk := inf{jp > mk−1 : (ω, ξ) ∈ A(jp)} for k ≥ 2. Then, Proposition 3.2 means that mk → ∞,

k → ∞, P ⊗Q-almost surely. Before establishing the proposition about the behavior of the

particle, we extract a random sequence (nk)k≥1 from (mk)k≥1 such that

∑

k≥1

εM(nk)(nk) < ∞.(3.16)

In fact, we consider the random sequence defined by n1 := inf{mp ≥ 1 : εM(mp)(mp) ≤ 1}
and nk := inf{mp > nk−1 : εM(mp)(mp) ≤ 1

k2} for k ≥ 2.

To ease notations, we write throughout the paper, d+
k := d+(nk), τ+

k := τ(d+
k ), b+

k :=

b+(nk) and d−
k := d−(nk), τ−

k := τ(d−
k ). Moreover, we define, for all k ≥ 1,

tk := ⌊enk⌋.(3.17)

Proposition 3.3 For P ⊗ Q almost all (ω, ξ), we have that, Pω-a.s., for all large k,

L (tk, Θ−1(nk)) ≤ ε−1(nk) tk,(3.18)

L (tk, Θi(nk)) ≤ εi(nk) tk, 0 ≤ i ≤ M(nk) − 2,(3.19)

τ+
k ∧ τ−

k > tk.(3.20)

Remark 3.4 There is no measurability problem for the events described in Proposition 3.3,

see the beginning of Section 4. Similar arguments apply to the forthcoming events.

Proof of Theorem 1.1.

Proof of Part (i). For any δ > 0, we define ε(δ)(j) :=
∑M(j)−2

i=−1 εδ
i (j). Recalling (1.6), we

use Proposition 3.3 and Lemma 3.1 to obtain, for P ⊗ Q-almost all realization of ω, ξ and

(Xj)j≥0,

tk
∑

j=0

ξ(Xj) ≥ (1 − ε(1)(nk)) tk

(

min
x∈ΘM(nk)−1(nk)

ξx

)

−
M(nk)−2
∑

i=−1

εi(nk) tk

(

max
x∈Θi(nk)

ξ−x

)

,
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for all large k. Then, Proposition 3.2 implies

tk
∑

j=0

ξ(Xj) ≥ (1 − ε(1)(nk)) tk (a − ρ) −
M(nk)−2
∑

i=−1

√

εi(nk) tk

≥ (1 − ε(1)(nk)) tk (a − ρ) − ε(1/2)(nk) tk,(3.21)

for all large k. We claim that, for any δ > 0 and all large j,

ε(δ)(j) ≤
M(j)
∑

i=−1

εδ
i (j) ≤ 2

(

1 +
1

δ

)

εδ
M(j)(j).(3.22)

To prove (3.22), we observe that

M(j)
∑

i=−1

εδ
i (j) ≤ 2 εδ

M(j)(j) +

M(j)−1
∑

i=0

∫ εi+1(j)

εi(j)

εδ
i (j)

εi+1(j) − εi(j)
dx.

Recalling (3.2), we have that εi+1(j)−εi(j) = εi+1(j)
(

1 − e−c4(γi+2(j)−γi+3(j))
)

. Recalling (3.1)

we get that γi+2(j) − γi+3(j) = γi+2(j)(1 − γ−α
i+2(j)). Since (3.1) and (3.3) imply γi+2(j) ≥

γM(j)+2(j) ≥ (log2 j)
(1−α)4

2+ε′ for 0 ≤ i ≤ M(j), we obtain that γi+2(j) − γi+3(j) ≥ γi+2(j)/2,

for all large j and for 0 ≤ i ≤ M(j). Therefore, we get εi+1(j) − εi(j) ≥ εi+1(j)/2, implying

that

ε(δ)(j) ≤ 2 εδ
M(j)(j) + 2

M(j)−1
∑

i=0

∫ εi+1(j)

εi(j)

εδ
i (j)

εi+1(j)
dx.

Furthermore,
∑M(j)−1

i=0

∫ εi+1(j)

εi(j)

εδ
i (j)

εi+1(j)
dx ≤∑M(j)−1

i=0

∫ εi+1(j)

εi(j)
xδ−1 dx =

∫ εM(j)(j)

ε0(j)
xδ−1 dx, which

is less than εδ
M(j)(j)/δ. This implies (3.22).

Combining (3.21) and (3.22) and recalling that εδ
M(j)(j) → 0 when j → ∞, we get

lim sup
n→∞

1

n

n
∑

i=0

ξ(Xi) ≥ a − ρ, P ⊗ Q-a.s.(3.23)

To conclude the proof, it remains only to observe that (3.23) is true for all ρ > 0 and

that the definition of a implies that P ⊗ Q-a.s., 1
n

∑n
i=0 ξ(Xi) ≤ a, for all n ≥ 0. �

Proof of Part (ii). Using Theorem 1.5 of [15], we have that, for any ε′′ > 0, P-almost surely,

max0≤i≤n Xi ≥ (log n)2−ε′′ + 1, for all large n. This implies

n
∑

i=0

ξ(Xi) ≤ a n − max
0≤x≤⌈(log n)2−ε′′ ⌉

ξ−x .(3.24)
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By assumption, there exists ε > 0 such that Q {ξ0 < −λ} ≥ (log λ)−2+ε. Therefore, fixing

ε′′ < ε, we get for k ≥ 1 and all N ≥ 1,

Q

{

max
0≤x≤N

ξ−x < k a eN
1

2−ε′′

}

≤ exp
{

−c7N
δ
}

,(3.25)

where δ := 1 − 2−ε
2−ε′′

> 0.

We choose Np := ⌊(log p)T ⌋ for p ≥ 1 with T large enough such that Tδ > 1. Therefore,

(3.25) and the Borel–Cantelli lemma imply that, Q-almost surely, there exists p0(ξ) such

that

max
0≤x≤Np

ξ−x ≥ k a eN
1

2−ε′′
p ,(3.26)

for p ≥ p0(ξ). Fixing a realization of ξ, we define p(n) by

Np(n) ≤ ⌈(log n)2−ε′′⌉ ≤ Np(n)+1,(3.27)

for all n such that p(n) ≥ p0(ξ). This yields

max
0≤x≤⌈(log n)2−ε′′ ⌉

ξ−x ≥ max
0≤x≤Np(n)

ξ−x ≥ k a e
N

1
2−ε′′

p(n) ,

the last inequality being a consequence of (3.26). Therefore, we obtain

max
0≤x≤⌈(log n)2−ε′′ ⌉

ξ−x ≥ ka exp

{

⌈(log n)2−ε′′⌉
1

2−ε′′

}

exp

{

−
(

⌈(log n)2−ε′′⌉
1

2−ε′′ − N
1

2−ε′′

p(n)

)}

≥ kan exp

{

−
(

N
1

2−ε′′

p(n)+1 − N
1

2−ε′′

p(n)

)}

,

the second inequality being a consequence of (3.27). Moreover, we easily get that N
1

2−ε′′

p(n)+1 −
N

1
2−ε′′

p(n) → 0, when n → ∞, implying that for all large n,

max
0≤x≤⌈(log n)2−ε′′⌉

ξ−x ≥ k

2
an.(3.28)

Assembling (3.24) and (3.28), we get that P ⊗ Q-almost surely, lim supn→∞
1
n

∑n
i=0 ξ(Xi) ≤

a (1 − k
2
). We conclude the proof by sending k to infinity. �

Remark 3.5 It is possible to give more precision in the case (ii). Indeed, using the same

arguments, we can prove that if Q{ξ−0 > λ} ≥ 1
(log λ)α , for some α < 2, then we have, for any

ε′ > 0, that limn→∞ n− 2
α

+ε′Zn = −∞, P ⊗ Q-almost surely.
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4 Proof of Proposition 3.3

Let us first explain why the events described in Proposition 3.3 (more precisely in (3.18) and

(3.19)) are measurable. Since the sequences (nk)k≥0 and (tk)k≥0 can be explicitly constructed,

ω 7→ (nk)k≥0(ω) and ω 7→ (tk)k≥0(ω) are measurable. Moreover, this implies that Θi(nk) is

measurable, for any −1 ≤ i ≤ M(nk) − 2. Now, let us write

L(tk, Θi(nk)) =
∑

x∈Z

L(tk, x)1{x∈Θi(nk)}.

Since the Θi(nk)’s are measurable, so are the random variables 1{x∈Θi(nk)}. To the other

hand, the measurability of L(tk, x), for any x ∈ Z, is obvious, being the composition of the

measurable applications ω 7→ (tk)k≥0(ω) and t 7→ L(t, x).

We now proceed to the proof of Proposition 3.3. To get (3.20), we observe that

Pω

{

τ+
k ∧ τ−

k ≤ tk
}

≤ Pω

{

τ+
k ≤ tk

}

+ Pω

{

τ−
k ≤ tk

}

.

Then using (2.5), (2.6) and (3.8), (3.11) we obtain

Pω

{

τ+
k ∧ τ−

k ≤ tk
}

≤ tk (e−4nk + e−7nk/6) ≤ 2 e−nk/6,

Since nk ≥ k, this yields

∑

k≥0

Pω

{

τ+
k ∧ τ−

k ≤ tk
}

≤ 2
∑

k≥0

e−nk/6 < ∞.

We conclude by using the Borel–Cantelli lemma.

To prove (3.19), we apply the strong Markov property at τ(b+
k ) and get for 0 ≤ i ≤

M(nk) − 2,

Pω {L (tk, Θi(nk)) ≥ εi(nk) tk}
≤ P

b+
k

ω {L (tk, Θi(nk)) ≥ εi(nk) tk − λk} + Pω

{

λk ≤ τ(b+
k ) ≤ τ−

k

}

+ Pω

{

τ−
k ≤ τ(b+

k )
}

,

for any λk ≥ 0. By (2.3), (3.9) and Lemma 3.1, we get, for all large k,

Pω

{

τ−
k ≤ τ(b+

k )
}

≤ b+
k enk/3

enk
≤ n2+ε′

k e−2nk/3.

Since Pω

{

λk ≤ τ(b+
k ) ≤ τ−

k

}

≤ λ−1
k Eω

[

τ(b+
k ) 1{τ(b+

k
)≤τ−

k
}

]

, (2.4) and (3.15) yield

Pω

{

λk ≤ τ(b+
k ) ≤ τ−

k

}

≤ (b+
k − d−

k )2

λk
e2nk/3 ≤ 2n

2 (2+ε′)
k

λk
e2nk/3,
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for all large k, the second inequality being a consequence of Lemma 3.1. Choosing λk :=

e5nk/6, we obtain, for all large k,

Pω

{

λk ≤ τ(b+
k ) ≤ τ−

k

}

+ Pω

{

τ−
k ≤ τ(b+

k )
}

≤ e−nk/7.(4.1)

To treat Pk,i := P
b+
k

ω {L (tk, Θi(nk)) ≥ εi(nk) tk − λk}, we observe that (3.17) implies λk ≤
2 e−nk/6 tk. Therefore, we obtain

Pk,i ≤ P
b+k
ω

{

L (tk, Θi(nk)) ≥
(

εi(nk) − 2 e−nk/6
)

tk
}

.

Then, by Chebyshev’s inequality, we get

Pk,i ≤ 1

(εi(nk) − 2 e−nk/6) tk
E

b+
k

ω [L (tk, Θi(nk))] .

Furthermore, observe that Sinai’s walk can not make more than tk excursions from b+
k to b+

k

before tk. Since these excursions are i.i.d., we obtain

Pk,i ≤ tk
(εi(nk) − 2 e−nk/6) tk

E
b+
k

ω

[

L
(

τ(b+
k ), Θi(nk)

)]

.

Now we recall (2.7), which implies E
b+k
ω

[

L
(

τ(b+
k ), Θi(nk)

)]

≤ c3

∑

x∈Θi(nk) e−[V (x)−V (b+
k

)], for

all 0 ≤ i ≤ M(nk)−2. Moreover, by (3.10), we get for all large k and for 0 ≤ i ≤ M(nk)−2,

Pk,i ≤
c3 (εi(nk))

2

(εi(nk) − 2 e−nk/6)
≤ c8 εi(nk),

for some c8 > 0. The second inequality is a consequence of εi(nk) ≥ ε0(nk) and the fact that

c4 < 1/6 implies e−nk/6 = o(ε0(nk)).

Summing from 0 to M(nk) − 2 and using (3.22), we get, with c9 := 2(1 + 1
δ
) c8,

M(nk)−2
∑

i=0

Pk,i ≤ c8

M(nk)−2
∑

i=0

εi(nk) ≤ c9 εM(nk)(nk).(4.2)

Assembling (4.1), (4.2) and recalling (3.4), (3.16) we obtain

∑

k≥1

M(nk)−2
∑

i=0

Pω {L (tk, Θi(nk)) ≥ εi(nk) tk} ≤
∑

k≥1

(

c9 εM(nk)(nk) + M(nk) e−nk/7
)

< ∞.

This implies (3.19) by an application of the Borel–Cantelli lemma.

We get (3.18) by an argument very similar to the one used in the proof of (3.19), the

main ingredients being the facts that V (x) − V (b+
k ) ≥ 2 nk, for x ∈ Θ−1(nk) (which is a

consequence of (3.11), (3.8) and the definition of d+(j)), and that Θ−1(nk) contains less than

2 n2+ε′

k sites (by (3.7)). We feel free to omit the details.
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5 Proof of Proposition 3.2

We now prove that, for P ⊗ Q-almost all (ω, ξ), there exists a sequence (mk) such that

(ω, ξ) ∈ A(mk), ∀k ≥ 1, where A(mk) is defined in (3.14).

Let jk := k3k (k ≥ 1) and Fjk−1
:= σ{V (x), ξz, d−(jk−1) ≤ x, z ≤ d+(jk−1)}. In the

following, we ease notations by using γi, εi and M instead of γi(jk), εi(jk) and M(jk).

If we are able to show that

∑

k

P ⊗ Q
{

A(jk) | Fjk−1

}

= ∞, P ⊗ Q-a.s.,(5.1)

then Lévy’s Borel–Cantelli lemma ([7], p. 237) will tell us that P ⊗ Q-almost surely there

are infinitely many k such that (ω, ξ) ∈ A(jk).

To bound P ⊗Q{A(jk) | Fjk−1
} from below, we start with the trivial inequality A(jk) ⊃

A(jk) ∩ C(jk−1), for any set C(jk−1). We choose C(jk−1) := Cenv(jk−1) ∩ Denv(jk−1) ∩
Csce(jk−1), where

Cenv(jk−1) :=

{

inf
0≤y≤d+(jk−1)

V (y) ≥ −jk−1 log2 jk−1

}

,

Denv(jk−1) :=

{

inf
d−(jk−1)≤y≤0

V (y) ≥ −jk−1 log2 jk−1

}

,

Csce(jk−1) :=

{

max
d−(jk−1)≤x≤d+(jk−1)

ξ−x < (ε−1(jk))
−1/2

}

.

Clearly, C(jk−1) is Fjk−1
-measurable. Moreover on Cenv(jk−1)∩Aenv(jk), we have d+(jk−1) ≤

ν+((−∞,−jk]) ≤ b+(jk).

Let

Esce
−1 (jk) :=

{

max
x∈Θ−1\[d−(jk−1),d+(jk−1)]

ξ−x < (ε−1(jk))
−1/2

}

,

and consider

Esce(jk) :=

M−1
⋂

i=0

Asce
i (jk) ∩ Esce

−1 (jk).

Since Csce(jk−1) ∩ Esce
−1 (jk) ⊂ Asce

−1(jk), it follows that

P ⊗ Q
{

A(jk) | Fjk−1

}

≥ P ⊗ Q
{

P ⊗ Q
{

Aenv(jk) , Benv(jk) , Esce(jk) , C(jk−1) | Fjk−1
, ω
}

| Fjk−1

}

≥ P ⊗ Q
{

1{Aenv(jk) , Benv(jk) , C(jk−1)}P ⊗ Q {Esce(jk) |ω} | Fjk−1

}

.
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Now, we suppose for the moment that we are able to prove that there exists c10 > 0 such

that, for P -almost all ω,

P ⊗ Q {Esce(jk) |ω} ≥ c10

k1/4
.(5.2)

We get

P ⊗ Q
{

A(jk) | Fjk−1

}

≥ c10

k1/4
P ⊗ Q

{

Aenv(jk) , Benv(jk) , C(jk−1) | Fjk−1

}

≥ c10

k1/4
P+

k P−
k 1Csce(jk−1),(5.3)

where we use the fact that (V (x), x ≥ 0) and (V (x), x < 0) are independent processes and

introduce

P+
k := P

{

Aenv(jk) , Cenv(jk−1) | Fjk−1

}

,

P−
k := P

{

Benv(jk) , Denv(jk−1) | Fjk−1

}

.

To bound P+
k from below, we introduce

Eenv
2 (jk) :=

{

max
0≤x≤y≤b+(jk)

[V (y) − V (x)] ≤ jk

4
− jk−1 log2 jk−1 − jk−1 − L

}

,

and consider

Eenv(jk) := Aenv
1 (jk) ∩ Aenv

ann(jk) ∩ Eenv
2 (jk).

Observe that Cenv(jk−1)∩{maxd+(jk−1)≤x≤y≤b+(jk)[V (y)−V (x)] ≤ jk

4
− jk−1 log2 jk−1− jk−1 −

L} ⊂ Aenv
2 (jk). Thus, since V (d+(jk−1)) ∈ Ijk−1

:= [jk−1, jk−1 +L], we have, by applying the

strong Markov property at d+(jk−1),

P+
k ≥

(

inf
z∈Ijk−1

Pz {Eenv(jk)}
)

1Cenv(jk−1).(5.4)

To bound P−
k from below, we observe the following inclusion

Benv(jk) ⊃
{

max
d−(jk)≤x≤y≤d−(jk−1)

[V (y) − V (x)] ≤ jk

3

}

∩ Denv(jk−1).

Then since V (d−(jk−1)) belongs to Ijk−1
, the strong Markov property applied at d−(jk−1)

yields

P−
k ≥

(

inf
z∈Ijk−1

Pz {Benv(jk)}
)

1Denv(jk−1).(5.5)
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Observe that an easy calculation yields 1C(jk−1) = 1, P ⊗Q-almost surely for all large k.

Therefore, recalling (5.3), (5.4) and (5.5), the proof of (5.1) boils down to showing that

lim inf
k→∞

inf
z∈Ijk−1

Pz {Eenv(jk)} > 0,(5.6)

lim inf
k→∞

inf
z∈Ijk−1

Pz {Benv(jk)} > 0.(5.7)

The rest of the section is devoted to the proof of (5.2) and (5.6), whereas (5.7) is an

immediate consequence of Donsker’s theorem.

5.1 Proof of (5.2)

Since the sets {Θi}−1≤i≤M−1 are disjoint, the events Esce
−1 (jk) and {Asce

i (jk)}0≤i≤M−1 are

mutually independent. We write

P ⊗ Q {Esce(jk) |ω} =

M−1
∏

i=0

P ⊗ Q {Asce
i (jk) |ω} × P ⊗ Q

{

Esce
−1 (jk) |ω

}

.

Thus, (5.2) will be a consequence of the two following lemmas.

Lemma 5.1 For P -almost all ω, we have

P ⊗ Q
{

Asce
M−1(jk) |ω

}

≥ 1

k1/4
.

Lemma 5.2 There exists c11 > 0 such that, for P -almost all ω,

lim inf
k→∞

M−2
∏

i=0

P ⊗ Q {Asce
i (jk) |ω} × P ⊗ Q

{

Esce
−1 (jk) |ω

}

≥ c11.(5.8)

Proof of Lemma 5.1. Recalling (3.13), (3.7) and (3.4), we get, P -almost surely,

P ⊗ Q
{

Asce
M−1(jk) |ω

}

≥ exp {c5 log q log2 jk} ,

where q := Q {ξ0 ≥ a − ρ}. Note that the definition of a implies −∞ < log q < 0. Therefore,

it remains only to observe that log2 jk = log k + log2 k + log 3 and to choose c5 small enough

such that

c5 log q > −1/5,(5.9)
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to conclude the proof. �

Proof of Lemma 5.2. Recalling (3.12) and that (ξ−x )x∈Z is a family of i.i.d. random variables,

we get, P -almost surely, for 0 ≤ i ≤ M − 2,

P ⊗ Q {Asce
i (jk) |ω} ≥

(

Q{ξ−0 ≤ ε
−1/2
i }

)2c6 γ2+ε′

i

≥ exp
{

2c6 γ2+ε′

i log
(

1 − Q{ξ−0 ≥ ε
−1/2
i }

)}

.

Then, since Q{ξ−0 ≥ ε
−1/2
i } tends to 0 when k tends to ∞ and using the fact that log(1−x) ≥

−c12 x for x ∈ [0, 1/2) with c12 := 2 log 2 > 0, it follows that

P ⊗ Q {Asce
i (jk) |ω} ≥ exp

{

− c13 γ2+ε′

i Q{ξ−0 ≥ ε
−1/2
i }

}

,

for all large k, with c13 := 2 c6 c12. Recalling that Q
{

ξ−0 ≥ λ
}

≤ (log λ)−(2+ε) for λ ≥ λ0 > 0

and (3.2) we get for k large enough and uniformly in 0 ≤ i ≤ M − 2,

P ⊗ Q {Asce
i (jk) |ω} ≥ exp

{

− c14 γ−β
i

}

,(5.10)

where β := (1 − α)2 (2 + ε) − (2 + ε′) > 0 by (3.5), and c14 := c13

(

2
c4

)2+ε

. Similarly, since

Esce
−1 (jk) ⊂ Asce

−1(jk) and recalling (3.12), we obtain

P ⊗ Q
{

Esce
−1 (jk) |ω

}

≥ exp
{

− c15 γ−β
0

}

,(5.11)

for some c15 > 0. Combining (5.10) and (5.11), we get

M−2
∏

i=0

P ⊗ Q {Asce
i (jk) |ω} × P ⊗ Q

{

Esce
−1 (jk) |ω

}

≥ exp{−c16 σβ},

with c16 := max{c14, c15} and σβ := γ−β
0 +

∑M−2
i=0 γ−β

i . By the same way we proved (3.22),

we obtain that, for any β > 0, there exists c17 ≤ 1 + 2/β such that σβ ≤ c17γ
−β
M−1. Recalling

(3.4), it follows that σβ → 0 when k → ∞, which implies (5.8). �

5.2 Proof of (5.6)

To prove (5.6), we need the following preliminary result.
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Lemma 5.3 For any δ > 0, k ≥ 1 and any 0 ≤ p ≤ M , we have

M
∑

i=p

γδ
i ≤

(

1 +
2

δ

)

γδ
p.

Proof. Observe that we easily get

M
∑

i=p

γδ
i ≤ γδ

p +

M
∑

i=p+1

∫ γi−1

γi

γδ
i

γi−1 − γi
dx.

Recalling that γi−1 − γi ≥ γi−1/2, for all large j and for 1 ≤ i ≤ M , we get

M
∑

i=p

γδ
i ≤ γδ

p + 2
M
∑

i=p+1

∫ γi−1

γi

γδ
i

γi−1
dx.

Then,
∑M

i=p+1

∫ γi−1

γi

γδ
i

γi−1
dx ≤ ∑M

i=p+1

∫ γi−1

γi
xδ−1dx =

∫ γp

γM
xδ−1dx ≤ γδ

p/δ yields Lemma 5.3.

�

We now proceed to prove (5.6). Let

aℓ := −3jk − ℓ γM , F env
1 (jk, ℓ) :=

{

aℓ+1 ≤ V (b+(jk)) < aℓ

}

.

Denoting θk := ⌊ jk/γM⌋ − 1, the inclusion
⊔θk

ℓ=0 F env
1 (jk, ℓ) ⊂ Aenv

1 (jk) yields

Pz {Eenv(jk)} ≥
θk
∑

ℓ=0

Pz {F env
1 (jk, ℓ) , Aenv

ann(jk) , Eenv
2 (jk)} =:

θk
∑

ℓ=0

P+
k,ℓ.(5.12)

To bound P+
k,ℓ by below for 0 ≤ ℓ ≤ θk, we define the following levels,

ηi = ηi(jk, ℓ) := aℓ + γi, 0 ≤ i ≤ M,(5.13)

ηM+1 = ηM+1(jk, ℓ) := aℓ,(5.14)

ηM+2 = ηM+2(jk, ℓ) := aℓ+1.(5.15)

In the following, we introduce stopping times for the potential, which will enable us to

consider a valley having “good” properties. Let us write

T = T (jk, ℓ) := ν+((−∞, ηM+1]),

T̃ = T̃ (jk, ℓ) := ν+((−∞, ηM+2]).
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Then, let us define the following stopping times, for 0 ≤ i ≤ M ,

Ti = Ti(jk, ℓ) := ν+((−∞, ηi]),

T ′
i = T ′

i (jk, ℓ) := min {n ≥ T : V (n) ≥ ηM−i} ,

Ri = Ri(jk, ℓ) := min {n ≥ T ′
i : V (n) ≤ ηM−i+1} .

We introduce the events

Gi(jk) :=

{

Ti+1 − Ti ≤ γ2+ε′

i , max
Ti≤x≤y≤Ti+1

[V (y) − V (x)] ≤ jk

5

}

, 0 ≤ i ≤ M − 1,

GM(jk) :=

{

T − TM ≤ γ2+ε′

M , max
TM≤x≤y≤T

[V (y) − V (x)] ≤ jk

5

}

,

and

G′
0(jk) :=

{

T ′
0 − T ≤ γ2+ε′

M , T ′
0 < T̃

}

,

G′
i(jk) :=

{

T ′
i − T ′

i−1 ≤ γ2+ε′

M−i , T ′
i < Ri−1

}

, 1 ≤ i ≤ M.

Moreover, we set

G(jk, ℓ) :=
M
⋂

i=0

Gi(jk), G′(jk, ℓ) :=
M
⋂

i=0

G′
i(jk),

and

H(jk, ℓ) :=

{

max
0≤x≤y≤T0

[V (y) − V (x)] ≤ jk

5

}

,

H ′(jk, ℓ) :=
{

d+(jk) < RM

}

.

See Figure 1 for an example of ω ∈ G(jk, ℓ) ∩ G′(jk, ℓ) ∩ H(jk, ℓ) ∩ H ′(jk, ℓ).

Observe that on G(jk, ℓ) ∩ G′(jk, ℓ) ∩ H ′(jk, ℓ), we have, for 0 ≤ i ≤ M − 1,

[Ti, T
′
M−i] ⊃

{

x ∈ [0, d+(jk)] : V (x) − V (b+(jk)) ≤ γi+1

}

.(5.16)

Moreover, on G(jk, ℓ) ∩ G′(jk, ℓ),

T ′
M−i − Ti ≤ 2

M
∑

p=i

γ2+ε′

p , 0 ≤ i ≤ M.

If we choose c6 such that

c6 ≥ 2(1 +
2

2 + ε′
),(5.17)
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d+(j)

Ti T ′

M−i
T b+(j)

x

V (x)

j

0

ηi

aℓ

aℓ+1

Figure 1: Example of ω ∈ G(jk, ℓ) ∩ G′(jk, ℓ) ∩ H(jk, ℓ) ∩ H ′(jk, ℓ)

then Lemma 5.3 yields

[Ti, T
′
M−i] ⊂ [b+(jk) − c6 γ2+ε′

i , b+(jk) + c6 γ2+ε′

i ], 0 ≤ i ≤ M − 2.(5.18)

Recall now definition of Θi(jk), so that, by assembling (5.16) and (5.18), we have on G(jk, ℓ)∩
G′(jk, ℓ) ∩ H ′(jk, ℓ),

Θi(jk) ⊂
{

x ∈ Z : V (x) − V (b+(jk)) ≥ γi+2

}

, 0 ≤ i ≤ M − 2.

An easy calculation yields
∑

x∈Θi(jk) exp{−[V (x) − V (b+(jk))]} ≤ 2c6 γ2+ε′

i e−γi+2 , for all

0 ≤ i ≤ M − 2, on G(jk, ℓ) ∩ G′(jk, ℓ) ∩ H ′(jk, ℓ). On the other hand, since 6 c4 < 1, we

get 2c6 γ2+ε′

i e−γi+2 ≤ ε2
i , for all large k and uniformly in 0 ≤ i ≤ M − 2. This implies that

G(jk, ℓ) ∩ G′(jk, ℓ) ∩ H ′(jk, ℓ) ⊂ F env
1 (jk, ℓ) ∩ Aenv

ann(jk). We easily observe that G(jk, ℓ) ∩
H(jk, ℓ) ⊂ Eenv

2 (jk), for all large k. Thus we obtain

G(jk, ℓ) ∩ G′(jk, ℓ) ∩ H(jk, ℓ) ∩ H ′(jk, ℓ) ⊂ F env
1 (jk, ℓ) ∩ Aenv

ann(jk) ∩ Eenv
2 (jk).
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Recalling (5.12), we get

P+
k,ℓ ≥ Pz {G(jk, ℓ) , G′(jk, ℓ) , H(jk, ℓ) , H ′(jk, ℓ)} .

To bound Pz{G(jk, ℓ) , G′(jk, ℓ) , H(jk, ℓ) , H ′(jk, ℓ)} by below, we will apply the strong

Markov property several times.

Since V (T ′
M) ∈ Iη0 := [η0, η0 +L], the strong Markov property applied at T ′

M implies, for

z ∈ Ijk−1
,

P+
k,ℓ ≥ Pz

{

G(jk, ℓ) , G′(jk, ℓ) , H(jk, ℓ)
}

inf
y∈Iη0

Py

{

d+(jk) ≤ ν+((−∞, η1])
}

.

To bound by below Py{· · ·} on the right hand side, observe that Py{· · ·} is greater than

Pη0{· · ·}. Moreover since η1 ≥ −4jk implies jk − η1 ≤ 5jk, Lemma 2.1 yields

Pη0{d+(jk) ≤ ν+((−∞, η1])} ≥ η0 − η1

5jk + L
=

η0(1 − η−α
0 )

5jk + L
≥ c18,

for all large k and some c18 > 0, which implies

P+
k,ℓ ≥ c18 Pz {G(jk, ℓ) , G′(jk, ℓ) , H(jk, ℓ)} .

We now apply the strong Markov property successively at (T ′
M−i)1≤i≤M and T , such that

P+
k,ℓ ≥ c18 Pz {G(jk, ℓ) , H(jk, ℓ)} inf

y∈IηM+1−L

Q′
0,y

M
∏

p=1

inf
y∈IηM−p+1

Q′
p,y,(5.19)

where

Q′
p,y := Py

{

d+(ηM−p) ≤ γ2+ε′

M−p , d+(ηM−p) < ν+((−∞, ηM−p+2])
}

, 0 ≤ p ≤ M.

First, observe that infy∈IηM−p+1
Q′

p,y ≥ Q′
p,ηM−p+1

=: Q′
p, for all 1 ≤ p ≤ M and similarly

infy∈IηM+1−L
Q′

0,y ≥ Q′
0,ηM+1−L := Q′

0. Therefore we only have to bound from below Q′
p for

1 ≤ p ≤ M and Q′
0. Recalling that P{A , B} ≥ P{A} − P{Bc}, we get, for 1 ≤ p ≤ M,

Q′
p ≥ PηM−p+1

{

d+(ηM−p) < ν+((−∞, ηM−p+2])
}

− PηM−p+1

{

d+(ηM−p) ≥ γ2+ε′

M−p

}

,

and

Q′
0 ≥ PηM+1−L

{

d+(ηM) < ν+((−∞, ηM+2])
}

− PηM+1−L

{

d+(ηM) ≥ γ2+ε′

M

}

.
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By Lemma 2.1, we obtain, for 1 ≤ p ≤ M,

PηM−p+1

{

d+(ηM−p) < ν+((−∞, ηM−p+2])
}

≥ ηM−p+1 − ηM−p+2

ηM−p − ηM−p+2 + L
,

and

PηM+1−L

{

d+(ηM ) < ν+((−∞, ηM+2])
}

≥ ηM+1 − L − ηM+2

ηM − ηM+2 + L
.

Recalling (5.13) and (5.14), we bound by below PηM−p+1
{d+(ηM−p) < ν+((−∞, ηM−p+2])}

(for all 1 ≤ p ≤ M) by

γM−p+1

γM−p

1 − γ
−α(1−α)
M−p

1 + Lγ−1
M−p

≥ γM−p+1

γM−p
(1 − γ

−α(1−α)
M−p )(1 − Lγ−1

M−p)

≥ γM−p+1

γM−p
(1 − 2 γ

−α(1−α)
M−p ),

for all large k. The first inequality is a consequence of (1 + x)−1 ≥ 1 − x for any x ∈ (0, 1)

and the second one is a consequence of 0 < α < 1. Similarly, recalling (5.13), (5.14) and

(5.15), we get, for all large k,

PηM+1−L

{

d+(ηM) < ν+((−∞, ηM+2])
}

≥ γM − L

2 γM + L
≥ c18,

with c18 > 0. Moreover, combining (2.2) and the fact that γM−p ≤ γ
(2+ε′)( 1

2
− ε′

6
)

M−p for 0 ≤ p ≤ M

yields

PηM−p+1

{

d+(ηM−p) ≥ γ2+ε′

M−p

}

≤ c19γ
−ε′/6
M−p , 1 ≤ p ≤ M,

PηM+1−L

{

d+(ηM) ≥ γ2+ε′

M

}

≤ c19γ
−ε′/6
M ,

for all large k and for some c19 > 0. Therefore, we obtain Q′
0 ≥ c20 for some c20 > 0 and

recalling (3.6) we get, for 1 ≤ p ≤ M,

Q′
p ≥ γM−p+1

γM−p
(1 − c21γ

−β′′

M−p),

where β ′′ := min{α(1 − α), β ′} > 0 (β ′ is defined in (3.6)) and c21 > 0. Observe that

γ−β′′

M−p ≤ γ−β′′

M for 1 ≤ p ≤ M , and that γ−β′′

M → 0, k → ∞. Recalling the fact that

log(1 − x) ≥ −c12 x, for x ∈ [0, 1/2), we obtain

inf
y∈IηM+1−L

Q′
0,y

M
∏

p=1

inf
y∈IηM−p+1

Q′
p,y ≥ c20

γM

γ0
exp

{

−c22

M
∑

p=1

γ−β′′

M−p

}

,
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where c22 := c12c21.

Recall that for any β ′′ > 0, there exists c23 > 0 such that
∑M

p=1 γ−β′′

M−p ≤ c23 γ−β′′

M . Then,

recalling (5.19), this yields, for all large k,

P+
k,ℓ ≥ c24

γM

γ0
Pz {G(jk, ℓ) , H(jk, ℓ)} ,(5.20)

with c24 > 0. To bound Pz{G(jk, ℓ) , H(jk, ℓ)} from below, we apply successively the strong

Markov property at (TM−i)0≤i≤M such that

Pz {G(jk, ℓ) , H(jk, ℓ)} ≥ Pz {H(jk, ℓ)}
M
∏

p=0

Qp,

where

Qp := Pηp

{

ν+((−∞, ηp+1]) ≤ min
{

d+(ηp+1 + jk/5), γ2+ε′

p

}}

, 0 ≤ p ≤ M.

Recall that P{A , B} ≥ P{A} − P{Bc}. Then (2.2) yields, for 1 ≤ p ≤ M,

Pηp

{

ν+((−∞, ηp+1]) ≤ γ2+ε′

p

}

≥ 1 − c25γ
−ε′/6
p ,

with c25 > 0. Moreover, using Lemma 2.1, we get, for 1 ≤ p ≤ M,

Pηp

{

d+(ηp+1 + jk/5) ≤ ν+((−∞, ηp+1])
}

≤ c26
γp

jk
,

with c26 > 0. Therefore, observing that, for 1 ≤ p ≤ M, we have γp

jk
≤ γ1

jk
= j−α

k → 0, k → ∞,

and using the fact that log(1 − x) ≥ −c12 x, for x ∈ [0, 1/2), we get that

M
∏

p=1

Qp ≥ exp

{

−c27

M
∑

p=1

(

γ−ε′/6
p +

γp

jk

)

}

,(5.21)

where c27 := c12 max{c25, c26}.
Recalling that

∑M
p=1 γ

−ε′/6
p ≤ c28 γ

−ε′/6
M and

∑M
p=1 γp ≤ c29 γ1 = o(jk) for some c28, c29 > 0,

(5.21) yields

Pz {G(jk, ℓ) , H(jk, ℓ)} ≥ c30 Q0 Pz {H(jk, ℓ)} ,(5.22)

for some c30 > 0. Observe that Donsker’s theorem implies that there exists c31 > 0 such that

min{Pz{H(jk, ℓ)}, Q0} ≥ c31. Therefore, assembling (5.20) and (5.22), we get

P+
k,ℓ ≥ c32

γM

γ0

,
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where c32 := c24 c30 c2
31.

Recalling (5.12) and θk = ⌊ jk/γM⌋ − 1, we get, uniformly in z ∈ Ijk−1
,

Pz {Eenv(jk)} ≥ c32 θk
γM

γ0

≥ c33,

for all large k and for some c33 > 0, which concludes the proof of (5.6). �
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