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Abstract

This paper presents the solution of the constrained Sylvester equation associated to linear
descriptor systems. This problem has been recently studied in [1], where sufficient conditions
for the existence of the solution are given. In the present paper, a simple and direct method
is developed to solve this problem. This method shows that the conditions given in [1] are
necessary and sufficient.
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1 Introduction

Many problems in control and systems theory are solved by computing the solution of Sylvester
equations. As it is well known, these equations have important applications in stability analysis,
in observers design, in output regulation with internal stability, and in the eigenvalue assignment
(see, e.g [1], [2], [3], [4]). Sylvester equations associated with descriptor systems (or generalized
Sylvester equations) have received wide attention in the literature, see [1], [2], [3], [4]. Recently,
sufficient conditions for the existence of the solution to these equations under a rank constraint
have been given in [1]. The present paper considers the problem studied in [1]. A new approach
to solve these equations is developed, necessary and sufficient conditions are presented.

Consider the linear time-invariant multivariable system described by

Eẋ = Ax + Bu, (1a)

y = Cx, (1b)

where x ∈ IRn is the state vector, y ∈ IRp the output vector, and u ∈ IRm the input vector. The
matrices E ∈ IRn×n, A ∈ IRn×n, B ∈ IRn×m, and C ∈ IRp×n are known constant matrices, with
rank(E) = q < n, rank(B) = m and rank(C) = p < q.

Consider the Problem 1 studied in [1], which can be formulated as follows:
Let D be a region in the open left half complex plane, D ⊆ C−, symmetric with respect to the

real axis. The problem is to find matrices T ∈ IR(q−p)×n, Z ∈ IR(q−p)×n, and HT ∈ IR(q−p)×(q−p),
such that
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TA − HT TE = −ZC, (2)

with σ(HT ) ⊂ D, under the rank constraint

rank





TE
LA
C



 = n, (3)

where σ(HT is the spectrum of HT and L ∈ IR(n−q)×n is any full row rank matrix satsfying LE = 0.
The Sylvester equation (2) has a close relation with many problems in linear control theory of

descriptor systems, such as the eigenstructure assignment [4], [5], and the state observer design.
The observer design problem can be formulated as follows [1]:

For the descriptor system (1), consider a reduced-order observer of the form

ż(t) = HTz(t) + TBu(t) − Zy(t), (4a)

x̂(t) = Sz(t) + N̄ ȳ + Ny(t), (4b)

where z ∈ IR(q−p) is the state of the observer and ȳ ∈ IR(n−q) is a fictitious output. As shown in
[1], if Problem 1 is solved for some matrices T , Z and HT and if we compute the matrices S, N̄

and N such that
[

S N̄ N
]





TE
LA
C



 = I, then, for observer (4) we have:

i) limt→∞(z(t) − TEx(t)) = 0,
ii) for ȳ(t) = −LBu(t), the estimated state x̂(t) satisfies limt→∞(x(t) − x̂(t)) = 0.

Remark 1 Notice that for L = 0, Problem 1 is reduced to finding matrices T ∈ IR(n−p)×n,
Z ∈ IR(n−p)×n, and HT ∈ IR(n−p)×(n−p), such that

TA − HT TE = −ZC, (5)

with σ(HT ) ⊂ D, under the rank constraint

rank

[

TE
C

]

= n. (6)

These conditions are those required for the observer design with order (n − p), see [5]. ❏

2 Main results

In this section we will present a new and simple solution to Problem 1. Necessary and sufficient
conditions to solve this problem are also given.

Since matrix E ∈ IRn×n is singular and rank(E) = q < n, there exist two nonsingular matrices
P and Q of appropriate dimensions such that

Ec = PEQ =

[

Iq 0
0 0

]

, Ac = PAQ =

[

A11 A12

A21 A22

]

, CQ =
[

C1 C2

]

, TP−1 =
[

T1 T2

]

,

and LP−1 =
[

L1 L2

]

.
According to this partitioning, equation LE = 0 becomes

[

L1 L2

]

Ec = 0, which leads to

L1 = 0 and L2 ∈ IR(n−q)×(n−q) is an arbitrary nonsingular matrix, since L is of full row rank.
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Therefore, equation (3) can be written as

rank





TE
LA
C



 = rank





TP−1Ec

LP−1Ac

CQ



 = rank





T1 0
L2A21 L2A22

C1 C2



 = n, (7)

or equivalently

rank





TE
LA
C



 = rank





T1 0
A21 A22

C1 C2



 = n, (8)

since L2 is a nonsingular matrix.
Now equation (2) can be written as

TP−1Ac − HT TP−1Ec = −ZCQ, (9)

then using the above results we obtain

T1A11 − HT T1 = JC1, (10a)

T1A12 = JC2, (10b)

with σ(HT ) ⊂ D, and where J = −
[

T2 Z
]

, C1 =

[

A21

C1

]

, and C2 =

[

A22

C2

]

.

Define the following matrices C =
[

C1 C2

]

and T = TEQ, then equation (10) becomes

TAc − HTT = JC, (11)

and equation (8) can be written as

rank

[

T

C

]

= n, (12)

where T = TEQ =
[

T1 0
]

, which can also be written as

TF = 0, (13)

with F =

[

0
In−q

]

.

Then Problem 1 reduces to finding matrices T, J, and HT , with σ(HT ) ⊂ D, such that (11) -
(13) are satisfied.

Remark 2 From the above results it is easy to see that condition rank

[

LA
C

]

= n − q + p of

theorem 1 of [1] is equivalent to C being a full row rank matrix. ❏

Before proceeding, let us give the following definition which is useful for the sequel.

Definition 1. System (1) is D-strongly detectable if and only if the following conditions are
satisfied

1) rank

[

A − λE
C

]

= n, ∀λ ∈ C, λ /∈ D,

2) rank





E
LA
C



 = n.
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For the standard systems, where E = I, Definition 1 becomes.

Definition 2. Let A ∈ IRn×n and C ∈ IRp×n be constant matrices, then the pair (C, A) is said to
be D-detectable if and only if

rank

[

λI − A
C

]

= n, ∀λ ∈ C, λ /∈ D. (14)

Before we give our main results, we establish the following lemma.

Lemma 1. The following statements are equivalent
1) System (1) is D-strongly detectable,

2) rank

[

λI − Ac F
C 0

]

= 2n − q, ∀λ ∈ C, λ /∈ D, and rank

[

A22

C2

]

= n − q.

Proof. By using the above transformations we obtain:

rank

[

A − λE
C

]

= rank

[

P (A − λE)Q
CQ

]

= rank





λI − A11 −A12

−A21 −A22

C1 C2



 , (15)

and

rank





E
LA
C



 = rank





PEQ
LP−1PAQ

CQ



 = rank





Iq 0
L2A21 L2A22

C1 C2



 = q + rank

[

A22

C2

]

, (16)

which prove the lemma. ❏

The necessary and sufficient conditions for the existence of the solution to Problem 1 are then
given by the following theorem.

Theorem 1. Under the assumption that matrix C is of full row rank, or rankC = n− q + p, the
necessary and sufficient condition for the existence of the solution to Problem 1 is that system (1)
must be D-strongly detectable.

Proof. Under condition (12), there exists a matrix R, such that T = R − KC and rank

[

T

C

]

=

rank

[

I −K
0 I

] [

R

C

]

= n, or rank

[

R

C

]

= n. In this case (11) becomes equivalent to

(R − KC)Ac − HT (R − KC) = JC, (17)

or
HTR + K1C + KCAc = RAc, (18)

where K1 = J−HT K. From equation (18) it is easy to see that the knowledge of matrices R, HT ,
K1, and K is necessary and sufficient to determine the matrices T and Z of the initial problem.

Now let

[

R

C

]−1

=
[

M1 N1

]

, then post multiplying the two sides of equation (18) by the

nonsingular matrix
[

M1 N1

]

leads to

HT = RAcM1 − KCAcM1, (19)

and
K1 = RAcN1 − KCAcN1. (20)
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On the other hand, equation (13) can be written as (R − KC)F = 0, or

KCF = RF. (21)

The necessary and sufficient condition for the existence of a solution to (21) is that rankCF =

rank

[

RF
CF

]

= rankF = n− q, which is equivalent to

[

A22

C2

]

being of full column rank. Under this

condition, the solution to (21) is given by

K = RF (CF )+ + Y (I − (CF )(CF )+), (22)

where A+ is any generalised inverse of matrix A, satisfying AA+A = A, and Y is an arbitrary
matrix of appropriate dimension. Then substituting this expression in (19) yields

HT = Λ − Y Ω, (23)

where Λ = RAcM1 − RF (CF )+CAcM1 and Ω = (I − (CF )(CF )+)CAcM1.

From (23), σ(HT ) ⊂ D if and only if the pair (Ω, Λ) is D-detectable, or equivalently rank

[

λI − Λ
Ω

]

=

q − p, ∀λ ∈ C, λ /∈ D.

Now, define the following full column matrices S1 =





R 0
C 0
0 I



, S2 =





I RF (CF )+

0 I − (CF )(CF )+

0 CF )+



,

and the nonsingular matrix S3 =

[

M1 N1 0
0 0 I

]

, then we have

rank

[

λI − Ac F
C 0

]

= rankS1

[

λI − Ac F
C 0

]

S3

= n − q + p + rankS2

[

λI − RAcM1 RF
−CAcM1 CF

]

= 2n − 2q + p + rank

[

λI − Λ
Ω

]

= 2n − q,

if and only if the pair (Ω, Λ) is D-detectable, and using lemma 1, we obtain the result of the
theorem. ❏

From the above results we can give the algorithm to solve Problem 1.

2.1 Algorithm

Let the conditions of theorem 1 be satisfied, then the following method computes the solution
of Problem 1.

Step1: Compute matrices P and Q such that PEQ =

[

I 0
0 0

]

, then compute Ac = PAQ =
[

A11 A12

A21 A22

]

and CQ =
[

C1 C2

]

.

Step2: Find a matrix R such that

[

R

C

]

is nonsingular and let
[

M1 N1

]

=

[

R

C

]−1

. Define D,

and compute the gain matrix Y , using the pole placement method (see [7] and [8]), such that
HT = Λ − Y Ω, and σ(HT ) ⊂ D, then compute K1 and K from (20) and (22).
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Step3: Compute J = K1 + HT K, T = R − KC, T1 = T

[

Iq

0

]

, T2 = −J

[

In−q

0

]

, then deduce

Z = −J

[

0
Ip

]

and T =
[

T1 T2

]

P .

We can make the following remarks.

Remark 3 Contrary to the algorithm presented in [1], where many transformations are used in
addition to the resolution of a Sylvester equation, in our paper the problem is reduced to a pole
placement one which can be solved by the existing robust methods. ❏

Remark 4 When rank(C) = n − q + p − d, for some integer 0 < d ! n − q, we can apply the
above approach to this case, if and only if system (1) is D-detectable. ❏

Remark 5 In the above result, we have introduced a full row rank matrix R such that

[

R

C

]

is

nonsingular. The choice of this matrix is non unique, one can see that the results are independent

of this choice. In fact, let R̄ be another full row rank matrix such that

[

R̄

C

]

is nonsingular,

then there exists a regular matrix θ such that θR̄ = R. By premultiplying (17) by θ we obtain
(R̄ − K̄C)Ac − H̄T (R̄ − K̄C) = J̄C, where J̄ = θJ, H̄T = θHT θ−1, and σ(H̄T ) = σ(HT ), which
shows that the solution given above is independent of the choice of matrix R. ❏

2.2 Regional pole placement in LMI regions

This section discusses the solution of Problem 1 by regional pole placement in LMI regions
of the complex plane. We shall use the same notations as in [1] and define the LMI type region
D ⊆ C− by the existence of two matrices ∆ = ∆T ∈ IR(q−p)×(q−p) and Γ ∈ IR(q−p)×(q−p) such that
D = {λ ∈ C : fD(λ) = ∆ + λΓ + λ̄ΓT < 0}, then we propose the following result.

Theorem 2. Let D ⊆ C
− be an LMI type region, and assume that system (1) is D-strongly

detectable, then there exists a solution to Problem 1, with σ(HT ) ⊂ D if and only if there exist a
symmetric positive definite matrix X ∈ IR(q−p)×(q−p) and a matrix Ψ ∈ IR(q−p)×(q−p) such that

∆ ⊗ X + Γ ⊗ (XΛ) − Γ ⊗ (ΨΩ) + ΓT ⊗ (XΛ)T − ΓT ⊗ (ΨΩ)T < 0, (24)

where Λ = RAcM1−RF (CF )+CAcM1, Ω = (I − (CF )(CF )+)CAcM1, and ⊗ is the Kronecker’s
product. In this case HT = Λ − Y Ω, with Y = X−1Ψ.

Proof. The proof is direct, in fact from [6], σ(HT ) ⊂ D if and only if there exists a symmetric
positive definite matrix X ∈ IR(q−p)×(q−p) such that

∆ ⊗ X + Γ ⊗ (XHT ) + ΓT ⊗ (XHT )T < 0. (25)

From the above result we have HT = Λ − Y Ω, and by substituting this value in (25), and by
putting Ψ = XY we obtain the desired result. ❏

3 Conclusion

In this paper, we have presented a simple method to solve the generalized Sylvester equation
associated to descriptor systems observers and control design. This problem was considered in
[1], where only sufficient conditions were given. We have also given the necessary and sufficient
conditions for the existence of the solution. Solution by LMI regional pole placement was also
presented.
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