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ABSTRACT : 

We report on new simple and efficient multipass amplifiers using prisms or corner cubes to 

perform several passes in different planes of incidence. This scheme provides an optimized 

overlap between the signal passes and the pumped volume. We investigated our amplification 

geometry with Nd:YAG and Nd: YVO4 crystals : the use of a low doped (0.3%) Nd:YVO4 crystal 

allowed better thermal behaviour and higher performances. We amplified a pulsed microlaser (110 

mW of average power at 1064 nm) and obtained a diffraction-limited output beam with an average 

power of 5.7 W for 15 W of pump power and a small-signal gain of 56 dB in a 6-pass 

configuration.  

 

PACS : 42.55 Xi ; 42.60 By ; 42.60 Da 

1 Introduction 

Passively Q-switched microchip lasers are very simple, compact and reliable 

sources that can provide single mode, high repetition rate, near infrared and sub-

nanosecond pulses with diffraction limited output [1-3]. They are consequently of 

strong interest for many applications : thanks to high peak power pulses, efficient 

conversion from 1064 nm to UV (355 nm) can be obtained in non linear crystals. 

However the available average power in the UV is limited to a few  tens of 

milliwatts, which is not enough for applications in the material processing domain 

such as integrated circuit repair or rapid prototyping: in those case several watts of 

near infrared radiation are needed to reach several hundreds of milliwatts in the 

UV. A very fruitful approach to increase the energy per pulse is the use of a 

MOPA (Master Oscillator Power Amplifier) design with a microlaser oscillator 
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and an amplifier [4]. In order to raise the microlaser output up to multiwatt level, 

the design of the amplifier is then critical : it has to provide both high gain and 

efficient energy extraction in the same time. A solution widely used is to make the 

laser beam pass several times into the amplifier[5-10] : the first passes allow 

strong amplification whereas the last passes extract the energy stored in the 

crystal. Various methods have been described in the literature: a first classical 

arrangement is to form an optical resonator in which the number of passes could 

be large (on the order of 100). Such regenerative amplifiers [5] produce large total 

gain but are relatively complex and expensive since active elements have to be 

used in the cavity to extract the signal. Another way to achieve multipass 

amplification is to make the signal beam pass several times through the crystal 

with geometrical path slightly different each time [6-10]. The number of pass is 

reduced (typically 10) and this configuration is much less complicated than the 

previous one. In the case of Nd-doped crystals, the geometrical multipass allows 

good extraction efficiency for relatively high input power. For example, 

Plaessman et al [6] obtained, with a 14-pass confocal planar geometry and a 

Nd:YAG crystal, an extracted power of 2.3 W  and a gain of about 7 dB for 13W 

of pump power. However, the geometrical multipass amplifiers described in the 

literature are for the most part planar, resulting in a non-optimal overlap between 

the gain volume and the laser beams. Planar multipass geometry consequently 

reduces the available gain, leading to an increase of the number of passes 

necessary to reach optimal performances. Some tri-dimensionnal schemes, where 

the signal beams travel in different planes of incidence, were described [9-10] but 

were inserted in much more complex structures and lacked of either simplicity or 

compactness. In this paper we describe a novel simple and compact 3D 

architecture that allows optimal overlap between the different passes in the gain 

medium and the pump volume, leading to a very efficient extraction of the energy 

stored in the crystal. We experimented our multipass system with Nd:YAG 

Nd:YVO4 crystals. 

 

2 Experimental setup 

The principle of our 3D scheme can be compared with the so-called thin disk 

structure [11, 12], but here the pump and signal are exchanged. The structure used 
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is shown on figure 1 : the signal beam from a microlaser is focused in the gain 

medium through a 1064 nm AR coated lens L. We used a doublet to minimize 

spherical aberrations. A dichroïc plane mirror M coated on the rear face of the 

crystal reflects the beam back towards the doublet. At this time the beam has 

made two passes in the gain (in a plane marked by the path "1-2" on figure 1). An 

AR-coated right-angle prism then allows a lateral shift of the beam, that is, the 

laser beam now travels in another plane of incidence. The beam is then redirected 

toward the crystal through the same lens L (pass "3" on figure 1). After another 

reflexion on the mirror M, the signal beam has traveled 4 times in the crystal in 

two different planes, namely 1-2 and 3-4. This path is again repeated 2 times with 

two other prisms such leading to a total of eight passes in the gain medium in four 

different planes of incidence (see figure 1b).  

The injected laser beam to be amplified was given by a microlaser from JDS 

Uniphase (High Power Series Nanolaser), providing 110 mW of average power at 

a wavelength of 1064 nm. The pulse duration was about 800 ps and the repetition 

rate was 28 kHz. The pumping geometry is described on figure 2 : the crystal was 

pumped by a fiber coupled laser diode providing up to 15 W CW at 808 nm. The 

core diameter of the fiber was 250 μm, and the numerical aperture 0.2. The output 

of the fiber was imaged in the crystal via two doublets, leading to a pump waist 

radius of about 230 micrometers in the crystal. With no amplification, the 8-pass 

system attenuated the input beam by only 15 %. We choose the focal length of the 

doublet so as to the numerical aperture of the cone formed by the eight beams 

passing through the crystal was slightly smaller than the numerical aperture of the 

pump beam, in order to optimize the overlap between the signal beam path and 

the volume where gain is available. The input beam size was adjusted in order to 

obtain a waist radius of 125 μm in the crystal. 

3 Experimental results 

3.1 Nd:YAG amplifier 

The gain medium used for this experiment was an AR-coated composite Nd:YAG 

crystal formed by a 2 mm long undoped section and a 5 mm long 1.1% doped 

section. The square section is 2 x 2 mm2. A dichroïc mirror (HT @ 808 nm, HR 
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@ 1064 nm) was coated on the rear face of the crystal (see figure 2). The crystal 

absorbed about 85 % of incident pump power. 

We measured the extracted power - defined as the difference between the output 

and the input power -  versus the pump power for a given injected power of 110 

mW. The results were plotted on figure 3, where we can notice that saturation 

appears when pumping above 10W. This saturation is probably due to thermal 

lensing. In fact, the defocus induced by the thermal lens led to a non-optimal 

overlap between the pump and signal beam, and consequently reduced the 

efficiency of the system. Parasitic laser effect (between the prisms and the mirror 

coated on the crystal) has been observed and was considered after measurement as 

negligible (only 10 mW under amplifying conditions). Up-conversion processes 

or ASE losses are also probably involved in the degradation of the performance, 

but their influence is supposed to be very weak : the amplifier is saturated, so 

consequently all the physical effects linked to an important population in the 

upper level (parasitic laser effect, ASE and up-conversion) are reduced . 

At a pump power of 13 W, the crystal was fractured. Therefore, the pump power 

was set to 12 W for the following experiments. 

We plotted the extracted power versus the input power on the amplifier on figure 

4. A maximum extracted power as high as 2.7 W was obtained for an input power 

of 110 mW. It is also interesting to observe the extracted power versus the gain as 

shown on figure 5. We can then deduce the small signal gain from the intercept 

between the curve and the horizontal axis [13] and we obtained for the 8 passes a 

small signal gain of 130 (or 21 dB). For the maximal extracted power (2.7 W) the 

gain is 21. Defining an extraction efficiency η = (Pout-Pin)/Pp where Pout, Pin 

and Pp are the output, input and pump power respectively, we find η = 21 % for 

an input power of 110 mW. The output beam was linearly polarized but the 

thermal lensing in the crystal induced a small degradation of the beam quality, 

leading to a M2 of 1.8.  

The observed saturation at high pump power, coupled with the degradation of the 

spatial quality of the output beam, limits the potential of this Nd:YAG based 

system for high power outputs. We consequently investigate another solution by 

using a low-doped Nd:YVO4 crystal. 
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3.2 Nd:YVO4 amplifier 

The very high emission cross-section of the Nd:YVO4 makes this crystal very 

attractive for efficient amplification if we can solve the thermal problems induced 

by the low thermal conductivity of this crystal. We used a simple 10 mm long, 0.3 

% doped crystal with AR coatings on the two faces. The conjugaison of  low-

doping and relatively long crystal allows a better distribution of the pump power 

inside the gain medium, leading to a weaker and less aberrating thermal lens. It 

also authorizes a higher pumping level (up to 15 W in our case) without the 

breaking problems often observed over 10W of pump power for 1% doped 

samples [14]. We also take benefit of the high-brightness of the pump diode to 

ensure a good overlap between pump and signal over the whole length of the  

crystal Low-doped Nd:YVO4 crystals have often been studied in laser oscillators 

[15-16], but never as amplifiers to our knowledge. However, it is of particular 

interest in this last case to limit the up-conversion effects [17]. The population in 

the excited state is much greater  in the amplifiers than in the oscillators, leading 

to a higher sensitivity to up-conversion trouble. A low doping level induces a 

decrease of the population density and consequently limits the up-conversion 

effects. A higher small signal gain is then expected with this low doping level. 

Because of the strong polarization-dependance of the Nd:YVO4 gain, we could 

not use directly our prism-based system with this crystal. Indeed, each right-angle 

prism induced a rotation of the state of polarization of the beam, leading to a gain 

reduction for the most part of the passes. The solution to overcome this drawback 

is to control the state of polarization after each prism. To this end we put three 

small half-waves plates on the beam passes number 3,5, and 7 (figure 1b). Each of 

them can be individually rotated to restore the state of polarization corresponding 

to the highest emission cross section in Nd:YVO4.  

The 8-pass structure could not be studied because of strong parasitic laser effects 

between the prisms and the mirror. We then used our amplifier in a six-pass 

configuration when a parasitic laser power of only a few milliwatts was measured. 

The parasitic lasing effect was measured under amplifying and non-amplifying 

conditions. As the parasitic laser effect creates a beam larger than the amplified 

signal beam, it is possible to isolate the laser effect and to measure it in both 

situations. It appears that the relatively strong (80 mW) laser effect is reduced by 

a factor of 10 (becoming less than 8 mW) when amplifying : when an input signal 
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is injected in the amplifier, the population of the upper level of the lasing 

transition decreases rapidly which leads to a weaker laser effect. 

With this architecture the output power was 4.5 W with a total gain of 43 (16 dB) 

and an optical extraction efficiency of 33% (figures 3,4 and 5). Defining the 

small-signal gain as the extrapolated intercept with the horizontal axis on figure 4 

[13], we obtained 42 dB (15800) of small signal gain. The amplifier shows 

therefore good efficiency for a large range of input power, from several 

microwatts to more than 100 mW. We do not observe any change of the state of 

polarization between input and output beams, and the amplified signal is nearly 

diffraction limited (M2 x= 1.11 and M2 y= 1.13), corresponding to the beam quality 

of the microlaser. 

Although this half-waves plates system gave excellent results, it suffered from an 

increase of complexity and cost. Consequently we designed a much more simple, 

compact and low cost scheme by using corner cube retroreflectors instead of right 

angle prisms to obtain the lateral shift of the signal beam. Indeed, the silver coated 

corner cubes retroreflectors maintain polarization state through the different 

passes, which implies that the half waves plates are not useful anymore. However, 

the corner cube exhibits more losses than prisms (the transmission of a single 

corner cube is about 85%) and stronger parasitic laser effect because of  lower 

alignement sensitivity. As a consequence, we found that the optimized 

configuration in terms of efficiency, compactness and simplicity used only one 

corner cube. In this case, the beam makes 4 passes in the gain medium in two 

planes of incidence (see figure 6).  

With this simplified structure we measured 4 W of output power with a gain of 

37, a small-signal gain as high as 15800 (42 dB) and an optical extraction 

efficiency of 27 % (figure 3,4 and 5). Although the alignment is slightly more 

complex, it is also possible to perform 6-pass configuration with two corner 

cubes. With this scheme (see fig 5), we obtained 5.7 W of output power for a 100 

mW seed power and a small signal gain of more than 56 dB. The extraction 

efficiency reached 36 %. These results are better than those obtained with the 

previous configuration with the prisms and half-wave plates, because the use of 

corner cubes allows better overlap between the signal beams and the pump 

volume : indeed, the angle between the optical axis and the signal beams can be 

smaller with corner cubes than with the prism based system. 
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The typical shape of the input-output curve (figure 4) can be explained in terms of 

gain : for the Nd:YVO4-based amplifier the small signal is as high as 9 per pass 

versus only 1.9 for Nd:YAG. When a small input power is seeded in the amplifier 

the non-saturated gain is very high (not far from 94 for a 4-pass configuration) 

leading to a very strong slope in this regime. When the input signal becomes 

higher, the power achieved after several passes is high enough to strongly saturate 

the amplifier as shown theoretically by Frantz and Nodvik [18]. 

We also measure (Tektronix TDS 7254 oscilloscope) the temporal shape of the 

pulse before entering the amplifier system and after amplification (figure 7). The 

result is a shortening of the pulse duration (from 700 ps to about 500 ps) due to 

the lower gain observed for the end of the pulse caused by gain saturation. 

The M2 factor was found to be 1.15 in the two directions and the output was 

lineary polarized for all the configurations. 

We then performed frequency doubling and tripling of the output of our amplifier. 

With 4 W of 1064 nm radiation incident on lithium triborate crystals (due to 

unoptimized design), 1.72 W of second harmonic at 532 nm (43 % of conversion 

efficiency) and 650 mW of third harmonic at 355 nm were generated. 

4 Conclusion 

In conclusion, we demonstrate very simple, compact and low cost longitudinally 

pumped multipass amplifiers. Thanks to the use of a new tridimensionnal 

structure based on right angle prisms and a low-doped Nd:YVO4 crystal, we 

obtained a 4.5W diffraction-limited output with a gain of 43 and an extraction 

efficiency of 33%. Another structure based on corner cubes retroreflectors and 

using the same crystal is also described : the simplicity and compactness of the 

system are increased and the performance is strongly enhanced : we reached 5.7W 

of extracted power in a 6-pass structure with a gain of 57 (17.5 dB) and a small 

signal gain of 56 dB. Moreover, the amplifier exhibits efficient behaviour for a 

large range of input powers. The performance of this amplifier present to our 

knowledge the best compromise between gain and extraction efficiency among 

the previously published comparable systems. This amplifier could also be seen as 

an interesting mix between the advantages of bulk crystals systems supporting 

high peak power pulses and of fiber based amplifier systems for its compactness 

and high small signal gain. 
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FIGURE CAPTIONS : 

 

Figure 1 : (a) 3D representation of the circular geometry of the eight passes. M stands for the 

dichroïc mirror coated on the rear face of the crystal, L is the focusing doublet. (b) Front view seen 

from the crystal. Arrows describe the lateral shift induced by the prisms. The beam passes (1-2), 

(3-4), (5-6) and (7-8) define the four planes of incidence (broken lines). 

 
Figure 2 : schematic of the experimental setup and the Nd:YAG composite crystal (in the middle). 

 

Figure 3 : extracted power (defined as the difference between output and input power)  versus the 

pump power for the Nd:YAG crystal and the Nd:YVO4 crystal in two different configurations (see 

text).  

 

Figure 4 : extracted power as a fonction of the input power for the Nd:YAG crystal and the 

Nd:YVO4 crystal in three different configurations (see text). 

 
Figure 5 : extracted power versus the gain in decibels for the Nd:YAG crystal and the Nd:YVO4 

crystal in three different configurations (see text).  

 

Figure 6 : amplifier scheme with the corner cube retroreflector configuration. Lenses L1 and L2  

are used to image the pump in the crystal. The mirror M is AR coated @ 808 nm and HR @ 1064 

nm. A single corner cube is used to perform 4 passes amplification. Bottom right, a 2D front view 

that shows the two planes of incidence (broken lines) used in this structure. 

 

Figure 7 : temporal shape of the pulses before and after amplification. 
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Figure 1 : (a) 3D representation of the circular geometry of the eight passes. M stands for the 

dichroïc mirror coated on the rear face of the crystal, L is the focusing doublet. (b) Front view seen 

from the crystal. Arrows describe the lateral shift induced by the prisms. The beam passes (1-2), 

(3-4), (5-6) and (7-8) define the four planes of incidence (broken lines). 
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Figure 2 : schematic of the experimental setup and the Nd:YAG composite crystal (in the middle). 

 

 
Figure 3 : extracted power (defined as the difference between output and input power)  versus the 

pump power for the Nd:YAG crystal and the Nd:YVO4 crystal in two different configurations (see 

text).  

 

 

 



12 

 
Figure 4 : extracted power as a fonction of the input power for the Nd:YAG crystal and the 

Nd:YVO4 crystal in three different configurations (see text). 

 

 
Figure 5 : extracted power versus the gain in decibels for the Nd:YAG crystal and the Nd:YVO4 

crystal in three different configurations (see text).  
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Figure 6 : amplifier scheme with the corner cube retroreflector configuration. Lenses L1 and L2  

are used to image the pump in the crystal. The mirror M is AR coated @ 808 nm and HR @ 1064 

nm. A single corner cube is used to perform 4 passes amplification. Bottom right, a 2D front view 

that shows the two planes of incidence (broken lines) used in this structure. 

 
 
 

Figure 7 : temporal shape of the pulses before and after amplification. 

 


