
HAL Id: hal-00105041
https://hal.science/hal-00105041v1

Submitted on 10 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component-based Development using the B method
Arnaud Lanoix, Jeanine Souquières

To cite this version:
Arnaud Lanoix, Jeanine Souquières. Component-based Development using the B method. 2006.
�hal-00105041�

https://hal.science/hal-00105041v1
https://hal.archives-ouvertes.fr

Component-based Development using the B

method

Arnaud Lanoix and Jeanine Souquières

LORIA – Nancy-Université, CNRS
Campus scientifique

F-54506 Vandoeuvre-Lès-Nancy
{lanoix, souquier}@loria.fr

Abstract. In component-based software development approaches, com-
ponents are considered as black boxes. Components communicate through
required and provided interfaces which describe their visible behaviors.
In the best cases, the provided interfaces are checked compatible with the
corresponding required interfaces, but in general cases, adapters have to
be introduced to connect them. Compatibility between required and pro-
vided interfaces concerns the interface signatures, behavioral aspects and
protocol level. We propose to specify component interfaces in B in order
to verify these three levels of interoperability. The use of B assembling
and refinement mechanisms eases the verification of the interoperability
between interfaces and the correctness of the component assembly. The
verification is done by the B prover.
Keywords: component-based development, provided interface, required
interface, interoperability, compatibility, adaptation, assembly

1 Introduction

Recent works have shown that assembling components independently produ-
ced [1] and taking into account the verification of their assembly with appro-
priate tools is a promising approach. The underlying idea is to develop software
systems by assembling existing parts, as it is common in other engineering dis-
ciplines. Among the advantages of such an approach, we can cite: (i) reusability
of trustworthy software components, (ii) reduction of the costs of development
due to the reusability, and (iii) flexibility of systems developed by this approach.
But this approach is not currently well supported by standard design methods
nor adapted to critical applications. On the one hand, current technologies of
components design do not take into account safety requirements, on the other
hand, development and certification processes of critical software, based on for-
mal methods, is not well suited to component-based approaches.

The development of component-based systems introduces a fundamental evo-
lution in the way systems are acquired, integrated, deployed and modified. Sys-
tems are designed by examining existing components (potentially off-the-shelf)
to see how they meet the expected requirements and decide how they can be inte-
grated to provide the expected functionalities. Finally, the system is engineered

2 Arnaud Lanoix and Jeanine Souquières

by assembling the selected components with some locally developed pieces of
code.

Components are black-boxes units of composition which contractually specify
interfaces and explicit dependencies. An interface describes services offered and
required by a component without disclosing the component implementation.
Component interfaces are the only access to the component informations and
functionalities. The offered services by a component are described by provided
interfaces and the needed services are described by required interfaces.

For different components independently developed, to be deployed and to
work together, they must interoperate, i.e. their interfaces must be compatible
through different levels of compatibility depending on the requirements of the
developed system. The syntactic level covers signature aspects of attributes and
methods provided or required by the interfaces whereas the semantic level con-
cerns behavioral aspects of the considered methods and the protocol level covers
the allowed sequence of method calls.

The availability of formal languages and tool support for specifying interfaces
and checking their compatibility is necessary in order to verify the interoperabil-
ity of components. The idea to define component interfaces using B has been
introduced in an earlier paper [2]. Semantics and protocols of the component ser-
vices can be easily modeled by the B formalism. The use of the B refinement [3]
to prove that two components are compatible at the signature and semantics
levels has been explored in [4]. To guarantee interoperability of components,
each connection of a required interface with another provided interface has to
be considered. In the best cases, a provided interface – after some renaming –
constitutes an implementation of the required interface. In the general cases,
to construct a working system out of components, adapters have to be defined,
connecting the required methods and attributes to the provided ones [5]. An
adapter is seen as a new component that realizes the required interface using
the provided interface. At the signature level, it expresses the mapping between
required and provided variables and at the behavioral and protocol levels, it
expresses how the required methods are implemented in terms of the provided
ones.

In this paper, we generalize the previous results, taking into account more
general situations with the use of both cases of interfaces for different compo-
nents to be connected. The use of the B method and tools allows us to give a
special attention to correctness, increasing confidence in the developed systems:
correctness of specifications, as well as correctness of the followed process with
verification aspects.

In the following, we present the case study of a simple access control system
defined in terms of components with a special focus on the identification compo-
nent, itself defined in terms of components. Section 3 presents a simple case of
trustworthy component assembly. Section 4 presents a more general case of com-
ponent assembly. Some related works are discussed in Section 5 and Section 6
concludes the paper.

Component-based Development using the B method 3

2 Case Study: a Simple Access Control System

We illustrate our purpose with the case study of a simple access control system
which manages the access of authorized persons to existing buildings [6]. Persons
who are authorized to enter the building have an access card with some identi-
fication information stored on it. Turnstiles block the entrance and the exit of
each building until an authorization is given. We will focus on the Identification

component which is composed of a card reader and two lights, a green light and
a red light. The lights indicate if the authorization has been accepted (the green
light turns on during a fixed time of 30 seconds) or denied (the red light turns
on during a fixed time of 30 seconds). The two lights cannot be turned on at the
same time. The card is ejected and must be taken by the person before the light
turns off. If the person does not take the card within some time limit, the card
is retracted and kept by the system.

2.1 Overall architecture of the system

Identification

<< interface >>

ID_Re
green_sw : SWITCH

red_sw : SWITCH

readId()

acceptId()

refuseId()

AccessControl

DB_Re DB_Pr

Turnstile

Re

Turnstile

Pr

<< enumeration >>

SWITCH
Off

On

<< interface >>

ID_Pr
id_status : ID_STATUS

idInserted()

idRead(id : ID)

idEjected()

idTaken()

idRetracted()

<< enumeration >>

ID_STATUS
IWait

IInserted

IRead

IEjected

ID_Pr_PSM

IWait IInserted

IReadIEjected

idInserted()

idRead(id0)

idEjected()
idTaken()

idRetracted()

Fig. 1. Partial view of the architecture of the access control system

A partial view of the architecture of the access control system is given Fig-
ure 1 as a UML 2.0 composite structure diagram [7]. Such diagrams contain
named rectangles corresponding to the components of the system; here, we have
depicted two components, AccessControl corresponding to the system require-
ments and Identification component, with a dotted line box, to denoted that it
is the component we want to define. Components are connected by means of

4 Arnaud Lanoix and Jeanine Souquières

interfaces which may be required or provided. Required interfaces explicit con-
text dependencies of a component and are denoted using the “socket” notation
whereas provided interfaces explain which functionalities the considered compo-
nent provides and are denoted using the “lollipop” notation.

Two interfaces have been outlined in Figure 1, modeled by class diagrams
with their different attributes and methods. ID Pr corresponds to the provided
interface of AccessControl related to the Identification component and ID Re to
its required interface. Enumerated data types are defined using the stereotype
“enumeration”. As an example of an interface specification, the usage protocol
of the ID Pr provided interface is modeled by a Protocol State Machine (PSM).
This PSM specifies the order of the allowed method calls of ID Pr from its initial
state.

MODEL

ID Pr
SEES

Type
VARIABLES

id status
INVARIANT

id status ∈ ID STATUS
INITIALISATION

id status := IWait
OPERATIONS

idInserted =
PRE id status = IWait
THEN id status := IInserted
END ;

idRead(id) =
PRE id0 ∈ ID ∧

id status = IInserted
THEN id status := IRead
END ;

idEjected =
PRE id status = IRead
THEN id status := IEjected
END ;

idTaken =
PRE id status = IEjected
THEN id status := IWait
END ;

idRetracted =
PRE id status = IEjected
THEN id status := IWait
END

END

(a) Provided interface ID Pr

MODEL

ID Re
SEES

Type
VARIABLES

green sw,
red sw

INVARIANT

green sw ∈ SWITCH ∧
red sw ∈ SWITCH ∧
¬(green sw = On ∧red sw = On)

INITIALISATION

green sw, red sw := Off, Off
OPERATIONS

readId =
PRE green sw 6= red sw
THEN green sw, red sw := Off, Off
END ;

acceptId =
PRE green sw = Off ∧

red sw = Off
THEN green sw := On
END ;

refuseId =
PRE green sw = Off ∧

red sw = Off
THEN red sw := On
END

END

(b) Required interface ID Re

Fig. 2. B Models for the interfaces of AccessControl

B models for the provided and required interfaces of AccessControl are given
Figure 2:

Component-based Development using the B method 5

– the ID Pr B model reflects the ID Pr PSM. The variable id status has four
possible states and its initial state is IWait. After an idInserted() call, its state
is changed to IInserted, that is reflected in the B model,

– the ID Re B model expresses the required behaviors about the lights. Two
variables green sw and red sw reflects the lights state. The green light must
be turned on if the authorization has been accepted (acceptId), otherwise the
red light must be turned on (refuseId). An invariance property expresses that
the two lights cannot be turned on at the same time.

It is to be noted that B models can be obtained from UML 2.0 diagrams by
applying systematic derivation rules [8,9]. In this paper, we consider that the B
models are given with the interface description of each component.

2.2 Existing components

We dispose of three existing components, namely CardReader, Timer and Multi-

Lights. Their functionalities are known by their interface descriptions in UML
2.0 associated to B models for behavioral and protocol specifications.

The component CardReader. This component reads information from an access
card. It is equipped with two interfaces, as presented Figure 3, a provided one
named Card Pr with three methods (read(), eject() and retract()) and a required
one named Card Re which gives information to its controller by the way of five
methods.

CardReader

<< interface >>

Card_Pr

card0 : CR_STATUS

read()

eject()

retract()

<< enumeration >>

CR_STATUS

CWait

CRead

CEject

<< interface >>

Card_Re

id_status : ID_STATUS

idInserted()

idRead(id : ID)

idEjected()

idTaken()

idRetracted()

Fig. 3. Component CardReader and its interfaces Card Pr and Card Re

The component Timer. As presented Figure 4, this component has two inter-
faces. The provided one, Timer Pr, offers two functionalities: it can be started
with a fixed time and interrupted before the timeout is reached. When the time-
out is reached, the timer sends this information through its required interface
Timer Re.

6 Arnaud Lanoix and Jeanine Souquières

Timer << interface >>

Timer_Pr

status : SWITCH

start(time : Integer)

interrupt()

<< interface >>

Timer_Re

timeReached()

Fig. 4. Component Timer and its interfaces Timer Pr and Timer Re

The component MultiLights. This component presented Figure 5 is a light box
that proposes several color lights. It offers, by the way of its provided interface
MLight Pr, the next functionalities: the chosen light can be turned on and turned
off. When the light is turned off, one can choose a light color from predefined
ones.

MultiLights

<< interface >>

MLight_Pr

color : COLOR

switch : SWITCH

choose(new : COLOR)

on()

off()

<< enumeration >>

COLOR

Blue

Green

Red

Yellow

Fig. 5. Component MultiLights and its provided interface MLight Pr

2.3 The component Identification

The component Identification can be defined by a composition of the three existing
components, namely CardReader, Timer and MultiLights. In order to be connected
to the access control system, it requires an interface compatible with ID Pr and
provides another interface compatible with ID Re. Its architecture is depicted
Figure 6:

– the provided interface ID Pr of AccessControl can be directly connected to the
required interface of the component CardReader, Card Re,

– the required functionalities of ID Re have to be defined by using the com-
ponents CardReader, Timer and MultiLights through their interfaces Card Pr,
Timer Re, Timer Pr and MLight Pr. To manage the interactions between all
these interfaces, a component Assembly is introduced.

To prove the correctness of the proposed assembly, we must prove that:

– the required interface Card Re of CardReader is compatible with the provided
interface ID Pr of AccessControl,

Component-based Development using the B method 7

Identification

CardReader

Timer

MultiLights

Card_Pr

Card_Re

MLight_Pr

Timer_Pr

Timer_Re

Assembly

ID_Pr

ID_Re

AccessControl

Fig. 6. Architecture of the component Identification

– the assembly of the provided interfaces Card Pr, Timer Pr and MLight Pr

• provides the required interface ID Re of AccessControl,
• provides the required interface Timer Re of Timer.

3 Simple Case of Trustworthy Component Assembly

Interoperability means the ability of components to communicate and cooperate
despite differences in their implementation language, their execution environ-
ment, or their model abstraction [10]. Two components are interoperable if all
their interfaces are compatible [4]. More precisely, for each required interface of
a considered component, there exist a compatible interface which is provided by
another existing component. Three main levels of interfaces compatibility are
considered and checked:

– the syntactic level covers static aspects and concerns the interface signature.
Each attribute of the required interface must have a counterpart in the pro-
vided one; for each method of the required interface, there exist an operation
of the provided interface with the same signature,

– the semantic level covers behavioral aspects,
– the protocol level deals with the expression of functional properties (like the

order in which a component expects its methods to be called).

A provided interface can propose more functionalities (attributes, methods,
behaviors, protocols, etc.) than the required one needs, but all the functionalities
used by the required interface must be proposed by the provided one.

The B notation has been used in an earlier paper to define component inter-
faces [2] because its underlying concepts of machine and refinement fit well with

8 Arnaud Lanoix and Jeanine Souquières

CardReader AccessControl

<< interface >>

Card_Re

...

<< interface >>

ID_Pr

...

<< use >>

<< realize >>

<< realize >>

Fig. 7. Compatibility between Card Re and ID Pr

components interoperability [4] and the method is equipped with powerful tool
support [11,12].

Figure 7 presents a visualization, using a UML composite diagram, of the
compatibility problem between the required interface Card Re of the component
CardReader and the provided interface ID Pr of the component AccessControl:

ID Pr realizes Card Re

Using the B method, we have to prove that the B model of ID Pr is a correct
refinement of the B model of Card Re. To do this, we propose the next schema,
modeled by a B refinement machine, named Connector as presented Figure 8
which:

– refines the B model of the required interface Card Re,
– extends the B model of the provided interface Id Pr.

MODEL

 Card_Re

...

END

MODEL

 ID_Pr

...

END

REFINEMENT

 Connector

REFINES

 Card_Re

EXTENDS

 Id_Pr

END

REFINES EXTENDS

Fig. 8. B schema of the connection between Card Re and ID Pr

The methods of the provided interface implements directly the methods of
the required interface. The B extends assembly mechanism corresponds to the
inclusion of the model where each operation of the included machine is pro-
moted [13].

The proof of the refinement is obvious. That means that the required interface
Card Re of the component CardReader is compatible with the provided interface
ID Pr of AccessControl. The interoperability is verified at the signature, semantic
and protocol levels. As a consequence, Connector implements Card Re in terms of
ID Pr.

Component-based Development using the B method 9

In the general case, to construct a working system out of components, adapters
have to be defined, connecting the required interfaces to the provided ones. An
adapter is a new component that realizes the required interface using the pro-
vided interface. At the signature level, it expresses the mapping between required
and provided variables and, at the behavioral and protocol levels, it expresses
how the required operations are implemented in terms of the provided ones.
In [5], we have study the adapter specification and its verification using B. We
have given a B model of the adaptation that must refine the B model of the
required interface including the provided incompatible interface.

4 General Case of Component Assembly

The general case of component assembly concerns the use of both type of inter-
faces for different components to be connected. We define a new specific com-
ponent that manages all the considered components through their required and
provided interfaces. This assembling component realizes all the required interfaces
of the considered components using their provided interfaces.

Multi

Lights

Access

Control

Card

Reader

Timer Assembly

<< interface >>
Card_Pr

...

<< interface >>
Timer_Pr

...

<< interface >>
MLight_Pr

...

<< interface >>
ID_Re

...

<< realize >>

<< realize >>

<< use >>

<< use >>

<< interface >>
Timer_Re

...

<< realize >>

<< realize >>

<< realize >>

<< use >>

<< use >>

<< use >>

Fig. 9. UML composite diagram of Assembly

A UML architecture of this assembling component is given Figure 9 for the
running example. The different interactions with the three components intro-
duced previously, CardReader, Timer and MultiLights are outlined in order to fulfill
the required interface ID Re of AccessControl and Timer Re of Timer. The compo-
nent Assembly:

– realizes the required interfaces ID Re of AccessControl,
– realizes the required interfaces Timer Re of Timer,
– using the provided interfaces Card Pr, Timer Pr and MLight Pr of the three

existing components.

10 Arnaud Lanoix and Jeanine Souquières

A B architecture of the component Assembly is given Figure 10 with two levels
of B models:

– the B abstract model, Assembly abs, which extends all the required interfaces,
– the B refinement model, Assembly, which

• includes all the provided interfaces and
• refines the abstract model Assembly abs.

MODEL

 ID_Re

...

END

REFINEMENT

 Assembly

REFINES

 Assembly_abs

INCLUDES

...

END

EXTENDS

REFINES

MODEL

 Timer_Re

...

END

MODEL

 Timer _Pr

...

END MODEL

 Card_Pr

...

END

MODEL

 MLight_Pr

...

END

MODEL

 Assembly_abs

EXTENDS

 ID_Re,

 Timer_Re

END

EXTENDS

INCLUDES

INCLUDES

INCLUDES

Fig. 10. B architecture of the component Assembly

For the running example, the B refinement model Assembly is given Figure 11:

– the three available components are included,
– its gluing invariant expresses how to obtain the required attributes green sw

and red sw from the attributes of the provided interfaces,
– the operations clause describes all the required methods in terms of the

provided ones.

Let us consider the method acceptId(). It is called by AccessControl when the
card has been authorized to enter the building. The required result must be
that a green light is turned on and the card is ejected. The method acceptId() is
enabled only if the card reader had read the card before (reader.card0 = CRead).
First, a timer is started (timer.start(30)). Next, the color’s light is fixed to green
(lights.choose(col)) before the light is turned on (lights.on). Finally the card is
ejected (reader.eject).

The B prover generates 168 obvious proof obligations and 30 “real” proof
obligations which are automatically proved. We conclude that the proposed As-

sembly component is a correct implementation of the required functionalities in
terms of the three existing components. With the B prover, we check

Component-based Development using the B method 11

REFINEMENT

Assembly
REFINES

Assembly abs
SEES

Type
INCLUDES

reader.card Pr,
lights.MLight Pr,
timer.Timer Pr

INVARIANT

(lights.color = Green ∧
lights.switch = On ∧
timer.status = On ∧
reader.card ∈ {Cwait,CEject}

⇒ green sw = On ∧ red sw = Off)
∧ (lights.color = Red ∧

lights.switch = On ∧
timer.status = On ∧
reader.card ∈ {Cwait,CEject}

⇒ green sw = Off ∧ red sw = On)
OPERATIONS

timeReached =
BEGIN

IF lights.switch = On
THEN lights.off
END ;
IF reader.card0 = CEject
THEN reader.retract
END

END ;
readId =

SELECT reader.card0 = CWait
THEN

IF timer.status = On
THEN timer. interrupt
END ;
IF lights.switch = On
THEN lights.off
END ;
reader.read

END ;

acceptId =
SELECT reader.card0 = CRead
THEN

IF timer.status = On
THEN timer.interrupt
END ;
timer.start(30) ;
IF lights.switch = On
THEN lights.off
END ;
IF lights.color 6=Green
THEN

LET col BE col = Green
IN lights.choose(col)
END

END ;
lights.on ;
reader.eject

END ;
refuseId =

SELECT reader.card0 = CRead
THEN

IF timer.status = On
THEN timer.interrupt
END ;
timer.start(30) ;
IF lights.switch = On
THEN lights.off
END ;
IF lights.color 6=Red
THEN

LET col BE col = Red
IN lights.choose(col)
END

END ;
lights.on ;
reader.eject

END

END

Fig. 11. B Model of the component Assembly

12 Arnaud Lanoix and Jeanine Souquières

– that Assembly refines all the required interfaces. This guarantees that the
required behavioral and protocol aspects are preserved by the assembling.
Of course, the signature level is also considered,

– the correctness of the use of the provided interfaces by the inclusion of their
B interface models.

5 Related Work

Different works have addressed the composition of B specifications. B assembly
mechanisms such as extends and includes used in this work have been intro-
duced in [3] and defined in terms of component primitives in order to perform
altogether incremental machine construction and proofs of consistency of the
elaborated machines [13]. The extraction of understandable B models from a
monolithic one combined with the refinement mechanism is presented in [14].
In [15], J.–R. Abrial gives a methodology of decomposition of a B model into
sub-models to refine separately each sub-model before recomposing them at the
end of the refinement process. In [16], the B method is extended to allow a par-
allel composition of B models using shared variables to be taken into account.

Butler [17], Treharne and Schneider [18,19] combine B with CSP. They as-
sociate to each B model, a “controller” expressed in CSP, which describes the
communication with other B models. In [20], the composition of B models is
expressed by a set of synchronization constraints on the operations.

In [21], Estevez and Fillottrani analyze how to apply algebraic specifications
with refinement to component development, with a restriction to the use of
modules that are described as class expressions in a formal specification language.
They present several refinement steps for component development, introducing
in each one design decisions and implementation details.

Our work focuses on the verification of interoperability of components through
their interfaces using B assembling and refinement mechanisms.

Zaremski and Wing [22,23] propose an approach to compare two software
components. They determine whether one required component can be substi-
tuted by another one. They use formal specifications to model the behavior of
components and exploit the Larch prover to verify the specification matching of
components.

In [24], a subset of the polyadic π-calculus is used to deal with the compo-
nent interoperability at the protocol level. π-calculus is a well suited language for
describing component interactions. Its main limitation is the low-level descrip-
tion of the used language and its minimalistic semantic. In [25,26], protocols are
specified using a temporal logic based approach, which leads to a rich specifica-
tion for component interfaces. Henzinger and Alfaro [27] propose an approach
allowing the verification of interfaces interoperability based on automata and
game theories: this approach is well suited for checking the interface compatibil-
ity at the protocol level. In [28], the three levels of interface compatibilities are
considered on web service interfaces described by transition systems.

Component-based Development using the B method 13

Several proposals for component adaptation have already been done. The
need of adaptation and assembly mechanisms was recognized in the late nine-
ties [29,30] (see also [31]).

Some practice-oriented studies have been devoted to analyze different issues
when one is faced to the adaptation of a third-party component [32]. A formal
foundation to the notion of interoperability and component adaptation was set
up in [10]. Component behavior specifications are given by finite state machines
which are well known and support simple and efficient verification techniques
for the protocol compatibility. Braccalia & al [33,34] specify an adapter as a
set of correspondences between methods and parameters of the required and
provided components. An adapter is formalized as a set of properties expressed
in π-calculus. From this specification and from both interfaces, they generate a
concrete implementable adapter.

Reussner and Schmit consider a certain class of protocol interoperability
problems in the context of concurrent systems. For bridging component proto-
col incompatibilities, they generate adapters using interface described by finite
parameterized state machines [35,36,37].

Automatic generation of adapters are limited as one had to ensure the de-
cidability of the interfaces inclusion problem, which is necessary to perform au-
tomated interoperability checks; one could only generate adapters for specific
classes of interoperability.

In our approach, we are not only concerned with specific classes of inter-
operability but with adapters in general. We propose to give general schema
to specify and verify adapters, not to generate them automatically. We have
proposed a method consisting of four steps to guide this process [38].

6 Conclusion and Perspectives

We have presented an approach for component-based system and software devel-
opment. Components are considered as black-boxes described by their required
and provided interfaces. To construct a working system out of existing compo-
nents, adapters have to be defined. In this paper, we focus on the component
Assembly which is a new component introduced to manage interactions between
different components to be connected, with both cases of interfaces.

The component Assembly realizes all the required interfaces using its provided
ones. It is defined as a B refinement, including the models of the provided inter-
faces. The B prover guarantees that this component is a correct implementation
of the required functionalities in terms of the existing components. This approach
allows us to verify the interoperability between the connected components at the
three levels: signature, semantic and protocol levels.

We are currently working on alternative versions of compatibility and their
mappings to the B refinement in order to give patterns for the assembly of
components.

14 Arnaud Lanoix and Jeanine Souquières

References

1. Szyperski, C.: Component Software. ACM Press, Addison-Wesley (1999)
2. Chouali, S., Souquières, J.: Verifying the compatibility of component interfaces

using the B formal method. In: International Conference on Software Engineering
Research and Practice. (2005)

3. Abrial, J.R.: The B Book. Cambridge University Press (1996)
4. Chouali, S., Heisel, M., Souquières, J.: Proving Component Interoperability with

B Refinement. In Arabnia, H.R., Reza, H., eds.: International Worshop on For-
mal Aspects on Component Software, CSREA Press (2005) 915–920 To appear in
ENCTS 2006.

5. Mouakher, I., Lanoix, A., Souquières, J.: Component Adaptation: Specification
and Verification. In: Proc. of the 11th Int. Workshop on Component Oriented
Programming (WCOP 2006). (2006) 23–30

6. Afadl2000: Etude de cas : système de contrôle d’accès. In: Journées AFADL,
Approches formelles dans l’assistance au développement de logiciels. (2000) actes
LSR/IMAG.

7. Object Management Group: UML superstructure specification, v2.0 (2005)
8. Meyer, E., Souquières, J.: A systematic approach to transform OMT diagrams to

a B specification. In: Proceedings of the Formal Method Conference. LNCS 1708,
Springer-Verlag (1999) 875–895

9. Ledang, H., Souquières, J.: Contributions for modelling UML state-charts in B. In:
Third International Conference on Integrated Formal Methods - IFM’2002, Turku,
Finland (2002)

10. Yellin, D.D.M., Strom, R.E.: Protocol specifications and component adaptors.
ACM Transactions on Programming Languages and Systems 19(2) (1997) 292–
333

11. Steria – Technologies de l’information: Obligations de preuve: Manuel de référence,
version 3.0. (1998)

12. Clearsy: B4free. Available at http://www.b4free.com (2004)
13. Bert, D., Potet, M.L., Rouzaud, Y.: A study on components and assembly primi-

tives in B. In: Proceedings of 1st Conference on the B method. (1996) 47–62
14. Bontron, P., Potet, M.: Automatic construction of validated B components from

structured developments. In Bowen, J.P., Dunne, S., Galloway, A., King, S., eds.:
ZB2000: Formal Specification and Development in Z and B. Volume 1878 of LNCS.,
Springer-Verlag (2000) 127–147

15. Abrial, J.R.: Discrete system models. Version 1.1 (2002)
16. Attiogbé, J.: Communicating B abstract systems. Research Report RR-IRIN 02.08

(2002) updated july 2003.
17. Butler, M.J.: CSP2B: A practical approach to combining CSP and B. Formal

Aspects of Computing 12 (2000) 182–198
18. Treharne, H., Schneider, S.: Using a process algebra to control B OPERATIONS.

In: 1st International Conference on Integrated Formal Methods (IFM’99), York,
Springer Verlag (1999) 437–457

19. Schneider, S., Treharne, H.: Communicating B machines. In Bert, D., Bowen, J.P.,
Henson, M.C., Robinson, K., eds.: Formal specification and development in Z and
B (ZB 2002). Volume 2272 of LNCS., Springer Verlag (2002) 416–435

20. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Synchronized parallel composition
of event systems in B. In Bert, D., Bowen, J.P., Henson, M.C., Robinson, K.,
eds.: Formal specification and development in Z and B (ZB’2002). Volume 2272 of
LNCS., Springer-Verlag (2002) 436–457

Component-based Development using the B method 15

21. Estevez, E., Fillottrani, P.: Algebraic Specifications and Refinement for
Component-Based Development using RAISE. Journal of Computer Science and
Technologie 2(7) (2002)

22. Zaremski, A.M., Wing, J.M.: Signature matching: a tool for using software libraries.
ACM Transactions on Software Engineering and Methodology 4(2) (1995) 146–170

23. Zaremski, A.M., Wing, J.M.: Specification matching of software components. ACM
Transaction on Software Engeniering Methodolology 6(4) (1997) 333–369

24. Canal, C., Fuentes, L., Pimentel, E., Troya, J.M., Vallecillo, A.: Extending CORBA
interfaces with protocols. Comput. J. 44(5) (2001) 448–462

25. Han, J.: A comprehensive interface definition framework for software components.
In: The 1998 Asia Pacific software engineering conference, IEEE Computer Society
(1998) 110–117

26. Han, J.: Temporal logic based specification of component interaction protocols.
In: Proceedings of the Second Workshop on Object Interoperability ECOOP’2000,
Springer-Verlag (2000) 12–16

27. Alfaro, L., Henzinger, T.A.: Interface automata. In: 9 th Annual Aymposium on
Foundations of Software Engineering, FSE, ACM Press (2001) 109–120

28. Beyer, D., Chakrabarti, A., Henzinger, T.A.: Web service interfaces. In: Proceed-
ings of the 14th International World Wide Web Conference (WWW 2005), ACM
Press (2005) 148–159

29. Brown, A.W., Wallnan, K.C.: Engineering of component-based systems. In:
ICECCS ’96: Proceedings of the 2nd IEEE International Conference on Engineer-
ing of Complex Computer Systems (ICECCS ’96), IEEE Computer Society (1996)
414

30. Heineman, G., Ohlenbusch, H.: An evaluation of component adaptation techniques.
Technical Report WPI-CS-TR-98-20, Department of Computer Science, Worcester
Polytechnic Institute (1999)

31. Crnkovic, I., Larsson, S., Chaudron, M.: Component-based development process
and component lifecycle. In: 27th International Conference Information Technology
Interfaces (ITI), IEEE (2005)

32. garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch: Why Reuse is so
Hard. IEEE Software 12(6) (1999) 17–26

33. Braccalia, A., Brogi, A., Turini, F.: Coordinating Interaction Patterns. In Press,
A., ed.: Symposium on Applied Computing (SAC’2001). (2001)

34. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
In: Journal of Systems and Software. (2005)

35. Reussner, R.H.: Adapting Components and Predicting Architectural Properties
with Parameterised Contracts. In Goerigk, W., ed.: Tagungsband des Arbeitstre-
ffens der GI Fachgruppen 2.1.4 und 2.1.9, Bad Honnef. (2001) 33–43

36. Schmidt, H.W., Reussner, R.H.: Generating adapters fo concurrent component
protocol synchronisation. In Crnkovic, I., Larsson, S., Stafford, J., eds.: Proceeding
of the 5th IFIP International conference on Formal Methods for Open Object-based
Distributed Systems. (2002)

37. Reussner, R.H., Schmidt, H.W., Poernomo, I.H.: Reasoning on software archi-
tectures with contractually specified components. In Cechich, A., Piattini, M.,
Vallecillo, A., eds.: Component-Based Software Quality: Methods and Techniques.
(2003)

38. Hatebur, D., Heisel, M., Souquières, J.: A Method for Component-Based Software
and System Development. In Society, I.C., ed.: Proceedings of the 32 nd Euromicro
Conference on Software Engineering And Advanced Applications (CBSE). (2006)
To appear, August.

	Component-based Development using the B method
	Arnaud Lanoix and Jeanine Souquières

