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An elastic, plastic, viscous model for slow shear of a liquid foam
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B.P. 87, F-38402 St Martin d’Heres Cedex, France.
(Dated: July 6, 2007)

We suggest a scalar model for deformation and flow of an amorphous material such as a foam
or an emulsion. To describe elastic, plastic and viscous behaviours, we use three scalar variables:
elastic deformation, plastic deformation rate and total deformation rate; and three material specific
parameters: shear modulus, yield deformation and viscosity. We obtain equations valid for different
types of deformations and flows slower than the relaxation rate towards mechanical equilibrium. In
particular, they are valid both in transient or steady flow regimes, even at large elastic deformation.
We discuss why viscosity can be relevant even in this slow shear (often called “quasi-static”) limit.
Predictions of the storage and loss moduli agree with the experimental literature, and explain with
simple arguments the non-linear large amplitude trends.

I. INTRODUCTION

Elastic materials deform reversibly [1]; plastic materi-
als can be sculpted, that is, they can be deformed into a
new shape and keep it [2]; and viscous materials flow [3].
A wide variety of materials display a combination of these
properties, such as elasto-plastic metals and rocks, visco-
elastic polymer solutions or visco-plastic mineral suspen-
sions [4-6].

Liquid foams, that is gas bubbles separated by liquid
walls, are visco-elasto-plastic [7-9]: they are elastic at
low strain, plastic at high strain and flow under high
shear rate. This is also the case for other concentrated
suspensions of deformable objects in a liquid [4, 10, 11],
such as droplets in emulsions, vesicles suspensions, or red
blood cells in blood.

Despite a large literature on experiments and simula-
tions (see [9] for a review), we lack an unified theoretical
description of foams. There is no consensus yet on a cen-
tral question: what are the physically relevant variables?
A series of statistical models focus on fluctuations and
their correlations [12-16]. Conversely, recent contribu-
tions [17-23] focus on average macroscopic quantities to
obtain a more classical continuous description.

Here we choose to group three macroscopic quantities
which are measurable as averages on microscopical de-
tails [17]: (i) Elastic deformation is a state variable [24]
reversibly stored by the foam’s microstructure, that is,
the shape of bubbles [25, 26]; it determines the elas-
tic contribution to the stress. (ii) Plastic deformation
results in energy dissipation analogous to solid friction.
(iii) Large scale velocity gradients are associated with a
viscous friction. Each of the three mechanical behaviors
is associated with a material specific parameter: elastic
modulus, yield deformation and viscosity.

For simplicity, we assume here that these parameters
are constant and the equations are linear. We consider
here homogeneous deformation of a material, not depend-
ing on space coordinates. We consider only the magni-
tude of deformation, but not spatial orientation: the ma-
terial state variables are all scalars. This represents an
incompressible liquid foam, where the deformation is a

pure shear. We assume that this shear is slow enough so
that the foam is always close to mechanical equilibrium,
but quick enough to neglect coarsening such as due to gas
diffusion between bubbles, or bubble coalescence due to
soap film breakage. Although this model is minimal, it is
written with enough generality to enable for extensions
to higher dimensions using tensors (the correspondance
with tensors introduces a factor 1/2, see section IV C),
to higher shear rates, and to other ingredients such as
external forces (to be published).

This article is organised as follows. Section II intro-
duces a visco-elasto-plastic model (egs. 3,7) based on two
scalar variables: the elastic deformation and the (slow)
shear rate (Fig. 3). The rate of plastic deformation is
determined by both the applied shear rate, and the cur-
rent state of the elastic deformation (or equivalently the
elastic part of the stress) rather than by the total stress
[27, 28]. Section III presents scalar predictions of creep
and oscillatory responses. The storage and loss mod-
uli predicted as a function of the strain amplitude agree
with experimental data without any adjustable parame-
ters, using only the three model-independent parameters
determined by experiments (yield point, shear modulus,
viscosity). The agreement becomes very good if we de-
scribe the plastic yielding as a gradual transition spread-
ing between an onset value of deformation and a satura-
tion value (eq. 5). Section IV summarises and discusses
our model, and opens some perspectives.

II. MODEL
A. Kinetics
1. FElastic and plastic strain

The elastic deformation U is a state variable, that is
an intrinsic property of the foam’s current deformation
state. We note its time derivative dU/dt. Conversely,
we use a dot for the total strain rate ¢ and the plastic
strain rate €p, emphasising that they are not the time
derivative of a state variable. For instance, the time in-



tegral e = [ dt of the velocity gradient is the gradient
of displacement (more generally, for large deformations,
it is a function of the displacement): it is extrinsic and
explicitly depends on the sample’s past history.

The total applied deformation rate is shared between
elastic deformation U and the plastic deformation rate:

. du
=5 +ép. (1)

In the particular case of an elastic regime, ép = 0,
the elastic deformation U is equal to the total applied
deformation on the material e. Thus, in an elastic regime,
no intrinsic definition of U is necessary.

However, as soon as ép # 0, the situation changes.
U and ¢ become independent variables, and ¢ = [&dt
does not define the elastic deformation. In the extreme
example of a steady flow, dU/dt = 0, then ¢ = ép: U
and € are no longer correlated.

These variables are macroscopic: U is related to the
elastic contribution to macroscopic stress and £p to the
irreversibility of the stress versus total strain curve. In
the specific case of foams, they can be traced back to
detailed properties of the bubbles pattern: independent,
intrinsic definition [24] based on geometry (shape of bub-
bles [26]) for U; and topological rearrangements called
“T1 processes” [14, 29, 30] (using their rate and orienta-
tion [17]) for ép.

2. Sharing the total strain

The problem now is to express how, in eq. (1), € is
shared between dU/dt and €p. We must write a closure
relation between these variables, for instance by express-
ing how £p depends on the current state of elastic de-
formation and on the applied deformation rate: €p (U, €).
We use the following three hypotheses leading to eq. 2.

First we describe an abrupt transition from elastic to
plastic regime, as could be the case for an ordered foam
[31]. To indicate that T1s appear when the absolute value
of deformation |U| exceeds the yield deformation Uy, we
introduce the discontinuous Heaviside function H (which
is zero for negative numbers, and 1 for numbers greater
than or equal to zero). This hypothesis can be relaxed in
the section IT A 3, introducing a more progressive transi-
tion.

Secondly, we account for the hysteresis. Plastic rear-
rangements occur when the deformation rate € and the
current deformation U have the same sign, and again we
express it using H. Else, the deformation rate results in
elastic unloading, and the deformation gets smaller than
the yield deformation.

Thirdly, we use the fact that, in a slowly sheared mo-
tion, the only relevant time scale to fix the rate of plastic
rearrangements is €.

Eventually, the plasticity equation writes:

ép = H(|U[ - Uy) H(U¢) €. (2)

Eq. (2) can be used to close the system of equations.
Injecting it in eq. (1) yields an evolution equation of U
as a function of the applied shear rate é:

=2 [l -H(U| - Uy) H(UZ)]. (3)

In eq. (3) Uy appears as the stable value for U, that
is, a fixed point, at least if € > 0; else, the stable fixed
point is —Uy-.
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FIG. 1: Analog scalar system: an elastic brush whose flexion
is U stick/slipping on wall. We represent several states, for
an imposed oscillatory “painting-like” motion of the handle
g, from rest position 0: (a) onset of sliding to the right, (b)
far-right position, (c) far-left position.

To visualise the direction and the amplitude of the de-
formation U, we suggest an analogy with the motion of a
brush on a wall (Fig. 1). The handle of the brush moves
with an oscillatory position e parallel to the wall (ana-
log of the imposed scalar deformation of the material),
while the displacement of the handle with respect to the
brush tip is U (the analog of the internal elasticity of
the material). The sliding velocity of the contact point is
therefore € p according to equation (1) and is the analog
of plasticity in a material.

8. Gradual transition to plasticity

In a disordered foam, for instance with a wide distri-
bution of bubble sizes, topological rearrangements do not
necessarily occur for the same value of deformation.

We therefore distinguish two different yield deforma-
tions. First, a plasticity yield U,, where deformation
ceases to be reversible, as defined in material sciences.
It is the highest deformation for which there is no T1. It
is characteristic of the microstructure, and can even be
close to zero for a very disordered foam.

Second, a saturation yield Uy, the saturation value of
elastic deformation at which the material can flow with
arbitrary large total deformations (for instance in Bing-
ham fluids). It is the lowest deformation for which the
T1s convert the whole total strain into plastic strain.
That is, Uy is the collapse limit at which a material
structure cannot sustain stress.



