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HALF-DELOCALIZATION OF EIGENFUNCTIONS FOR THE

LAPLACIAN ON AN ANOSOV MANIFOLD

NALINI ANANTHARAMAN AND STÉPHANE NONNENMACHER

Abstract. We study the high-energy eigenfunctions of the Laplacian on a compact Rie-
mannian manifold with Anosov geodesic flow. The localization of a semiclassical measure
associated with a sequence of eigenfunctions is characterized by the Kolmogorov-Sinai
entropy of this measure. We show that this entropy is necessarily bounded from below
by a constant which, in the case of constant negative curvature, equals half the maximal
entropy. In this sense, high-energy eigenfunctions are at least half-delocalized.

1. Introduction

The theory of quantum chaos tries to understand how the chaotic behaviour of a classical
Hamiltonian system is reflected in its quantum version. For instance, let M be a compact
Riemannian C∞ manifold, such that the geodesic flow has the Anosov property — the ideal
chaotic behaviour. The corresponding quantum dynamics is the unitary flow generated by
the Laplace-Beltrami operator on L2(M). One expects that the chaotic properties of
the geodesic flow influence the spectral theory of the Laplacian. The Random Matrix
conjecture [4] asserts that the high-lying eigenvalues should, after proper renormalization,
statistically resemble those of a large random matrix, at least for a “generic” Anosov
metric. The Quantum Unique Ergodicity conjecture [21] (see also [3, 24]) deals with the
corresponding eigenfunctions ψ: it claims that the probability density |ψ(x)|2dx should
approach (in a weak sense) the Riemannian volume, when the eigenvalue E becomes large.
In fact a stronger property should hold for the Wigner transform Wψ, a distribution on
the cotangent bundle T ∗M which describes the distribution of the wave function ψ on
the phase space T ∗M . We will adopt a semiclassical point of view, that is consider the
eigenstates of eigenvalue unity of the semiclassical Laplacian −~

2△, in the semiclassical
limit ~ → 0. Weak limits of the distributionsWψ are called semiclassical measures: they are
invariant measures of the geodesic flow, on the unit energy layer E . The Quantum Unique
Ergodicity conjecture asserts that on an Anosov manifold there exists a unique semiclassical
measure, namely the Liouville measure on E . In other words, in the semiclassical régime
all eigenfunctions become uniformly distributed over E .

It has been known for some time that, for manifolds with an ergodic geodesic flow (with
respect to the Liouville measure), then almost all eigenfunctions become uniformly dis-
tributed over E , in the semiclassical limit: this property is dubbed as Quantum Ergodicity
[22, 26, 6]. The possibility of exceptional sequences of eigenstates with different semiclas-
sical limits remains open in general. The Quantum Unique Ergodicity conjecture asserts
that such sequences do not exist for an Anosov manifold [21].
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So far the most precise results on this question were obtained for Anosov manifolds M
with arithmetic properties: see Rudnick–Sarnak [21], Wolpert [25]. Recently, Lindenstrauss
[19] proved that all “arithmetic” eigenstates become asymptotically equidistributed (these
are believed to exhaust the full family of eigenstates). The proof uses the arithmetic
properties of the eigenstates, and cannot be extended to more general Anosov manifolds.

To motivate the conjecture, one may instead invoke the following dynamical explanation.
By the Heisenberg uncertainty principle, an eigenfunction cannot be strictly localized on
a submanifold in phase space. Its microlocal support must contain a symplectic cube
of volume ~

d, where d is the dimension of M . Since ψ is invariant under the quantum
dynamics, which is semiclassically approximated by the geodesic flow, the fast mixing
property of the latter will spread this cube throughout the energy layer, showing that the
support of the eigenfunction must also spread throughout E .

This argument is however too simplistic. First, Colin de Verdire and Parisse showed
[7], on a surface of revolution of negative curvature, that eigenfunctions can concentrate
on a single periodic orbit in the semiclassical limit, despite the exponential unstability
of that orbit. Their construction shows that one cannot use purely local features, such
as instability, to rule out localization of eigenfunctions on closed geodesics. Second, the
argument above is based on the classical dynamics, and does not take into account the
interferences of the wavefunction with itself, after a long time. Faure–Nonnenmacher–
De Bièvre exhibited in [11] a simple example of a symplectic Anosov dynamical system,
namely the action of a linear hyperbolic automorphism on the 2-torus, the quantization
of which does not satisfy the Quantum Unique Ergodicity conjecture. Precisely, they
construct a family of eigenstates for which the semiclassical measure consists in two ergodic
components: half of it is the Liouville measure, while the other half is a Dirac peak on a
single unstable periodic orbit. It was also shown that this half-localization on a periodic
orbit is maximal for the cat map [12]. Another type of semiclassical measure was recently
obtained by Kelmer a quantized automorphism on a higher-dimensional torus [15]: it
consists in the Lebesgue measure on some invariant co-isotropic subspace of the torus.
For these torus automorphisms, the existence of exceptional eigenstates is due to some
nongeneric algebraic properties of the classical and quantized systems.

In a previous paper [2], we discovered how to use an information-theoretic variant of
the uncertainty principle [17, 20], called the Entropic Uncertainty Principle, to constrain
the localization properties of eigenfunctions in the case of another toy model, the Walsh-
quantized baker’s map. For any dynamical system, the complexity of an invariant measure
can be described through its Kolmogorov-Sinai entropy. In the case of the Walsh-baker’s
map, we showed that the entropy of semiclassical measures must be at least half the entropy
of the Lebesgue measure. Thus, our result can be interpreted as a “half-delocalization”
of eigenstates. The Walsh-baker model being very special, it was not clear whether the
strategy could be generalized to more realistic systems, like geodesic flows or more general
symplectic systems quantized “à la Weyl”.

In this paper we show that it is the case: the strategy used in [2] is rather general,
and its implementation to the case of Anosov geodesic flows only requires more technical
suffering.
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2. Main result.

Let M be a compact Riemannian manifold. We will denote |·|x the norm on T ∗
xM given

by the metric. The geodesic flow (gt)t∈R is the Hamiltonian flow on T ∗M generated by the
Hamiltonian

H(x, ξ) =
|ξ|2x
2
.

In the semiclassical setting, the corresponding quantum operator is −~2△
2

, which generates

the unitary flow (U t) = (exp(it~△
2
)) acting on L2(M).

We denote by (φk)k∈N an orthonormal basis of L2(M) made of eigenfunctions of the
Laplacian, and by ( 1

~2
k
)k∈N the corresponding eigenvalues:

−~
2
k△φk = φk, with ~k+1 ≤ ~k .

We are interested in the high-energy eigenfunctions of −△, in other words the semiclassical
limit ~k → 0.

The Wigner distribution associated to an eigenfunction φk is defined by

Wk(a) = 〈Op~k
(a)φk, φk〉L2(M), a ∈ C∞

c (T ∗M) .

Here Op~k
is a quantization procedure, set at the scale ~k, which associates a bounded op-

erator on L2(M) to any smooth phase space function a with nice behaviour at infinity (see
for instance [8]). If a is a function on the manifold M , we have Wk(a) =

∫
M
a(x)|φk(x)|2dx:

the distribution Wk is a microlocal lift of the probability measure |φk(x)|2dx into a phase
space distribution. Although the definition of Wk depends on a certain number of choices,
like the choice of local coordinates, or of the quantization procedure (Weyl, anti-Wick,
“right” or “left” quantization...), its asymptotic behaviour when ~k −→ 0 does not. Ac-
cordingly, we call semiclassical measures the limit points of the sequence (Wk)k∈N, in the
distribution topology.

Using standard semiclassical arguments, one easily shows the following [6]:

Proposition 2.1. Any semiclassical measure is a probability measure carried on the energy
layer E = H−1(1

2
) (which coincides with the unit cotangent bundle E = S∗M). This

measure is invariant under the geodesic flow.

If the geodesic flow has the Anosov property — for instance if M has negative sectional
curvature — then there exist many invariant probability measures on E , in addition to the
Liouville measure. For instance, the geodesic flow has countably many periodic orbits, each
of them carrying an invariant probability measure. There are still many others, like the
equilibrium states obtained by variational principles [14]. The Kolmogorov-Sinai entropy,
also called metric entropy, of a (gt)-invariant probability measure µ is a nonnegative number
hKS(µ) that describes, in some sense, the complexity of a µ-typical orbit of the flow. For
instance, a measure carried on a closed geodesic has zero entropy. An upper bound on the
entropy is given by the Ruelle inequality: since the geodesic flow has the Anosov property,
the energy layer E is foliated into unstable manifolds of the flow, and for any invariant
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probability measure µ one has

(2.1) hKS(µ) ≤
∣∣∣∣
∫

E

log Ju(ρ)dµ(ρ)

∣∣∣∣ .

In this inequality, Ju(ρ) is the unstable Jacobian of the flow at the point ρ ∈ E , defined
as the Jacobian of the map g−1 restricted to the unstable manifold at the point g1ρ (the
average of log Ju over any invariant measure is negative). If for instance M has dimension
d and has constant sectional curvature −1, this inequality just reads hKS(µ) ≤ d− 1. The
equality holds in (2.1) if and only if µ is the Liouville measure on E [18]. Our central result
is the following

Theorem 2.2. Let µ be a semiclassical measure associated to the eigenfunctions of the
Laplacian on M . Then its metric entropy satisfies

(2.2) hKS(µ) ≥ 3

2

∣∣∣∣
∫

E

log Ju(ρ)dµ(ρ)

∣∣∣∣− (d− 1)λmax ,

where d = dimM and λmax = limt→±∞
1
t
log supρ∈E |dgtρ| is the maximal expansion rate of

the geodesic flow on E .
In particular, if M has constant sectional curvature −1, this means that

(2.3) hKS(µ) ≥ d− 1

2
.

The first author proved in [1] that the entropy of such a semiclassical measure is bounded
from below by a positive (hardly explicit) constant. The bound (2.2) in the above theorem
is much sharper in the case of constant curvature. On the other hand, if the curvature
varies a lot (still being negative everywhere), the right hand side of (2.2) may actually be
negative, in which case the above bound is trivial. We believe this to be but a technical
shortcoming of our method, and would actually expect the following bound to hold:

(2.4) hKS(µ) ≥ 1

2

∣∣∣∣
∫

E

log Ju(ρ)dµ(ρ)

∣∣∣∣ .

In this paper we only treat the case of the geodesic flow, but our methods can be easily
adapted to the case of a more general Hamiltonian flow, assumed to be Anosov on some
compact energy layer. The quantum operator is then any standard ~-quantization of the
Hamiltonian function.

Although this paper is overall in the same spirit as [1], certain aspects of the proof
are quite different. We recall that the proof given in [1] required to study the quantum
dynamics far beyond the Ehrenfest time — i.e. twice the time it takes for the dynamics
to “delocalize” a wavepacket microlocalized in a ball of radius ~

1/2. In this paper we will
study the dynamics until twice the Ehrenfest time, but not beyond. In variable curvature,
the fact that the Ehrenfest time depends on the initial position seems to be the reason why
the bound (2.2) is probably not optimal.

Quantum Unique Ergodicity would mean that hKS(µ) =
∣∣∫

E
log Ju(ρ) dµ(ρ)

∣∣. We believe
however that (2.4) is the optimal result that can be obtained without using more precise
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information, like for instance upper bounds on the multiplicities of eigenvalues. Indeed, in
the above mentioned examples of Anosov systems where the Quantum Unique Ergodicity
conjecture is wrong, the bound (2.4) is actually sharp [11, 15, 2]. In those examples, the
spectrum has semiclassically very high degeneracies, which allows for much freedom to se-
lect the eigenstates, and could be responsible for the failure of Quantum Unique Ergodicity.
Such high degeneracies are not expected to happen in the case of the Laplacian on a neg-
atively curved manifold. For the moment, however, we have no clear understanding of the
precise relation between spectral degeneracies and failure of Quantum Unique Ergodicity.

Acknowledgements. Both authors were partially supported by the Agence Nationale
de la Recherche, under the grant ANR-05-JCJC-0107-01. S. Nonnenmacher also thanks
Maciej Zworski for interesting discussions.

3. Outline of the proof

3.1. Weighted entropic uncertainty principle. Our main tool is an adaptation of the
entropic uncertainty principle first introduced in [17, 20]. This principle states that if a
unitary matrix has “small” entries, then any if its eigenvectors must have a “large” Shannon
entropy. For our purposes, we introduce a variant of this principle, including weights.

Let (H, ‖·‖) be a Hilbert space, and suppose we are given a quantum partition of unity,
that is a family of bounded operators P = (Pj)j=1,...,N on H, satisfying

(3.1)

N∑

j=1

Pj P
∗
j = IH.

This implies in particular that for all Ψ ∈ H, ‖Ψ‖2 =
∑

j‖P ∗
j Ψ‖2. For Ψ ∈ H we will

denote Ψj
def
= P ∗

j Ψ, j = 1, . . . , N .
Let (αj > 0)j=1,...,N be a family of weights. Using the partition P, the vector space H

can be endowed with the following norms, which are equivalent to ‖·‖ if N is finite :

‖Ψ‖(α)
p

def
=

(
N∑

j=1

αp−2
j ‖Ψj‖p

)1/p

, 1 ≤ p <∞ , and ‖Ψ‖(α)
∞

def
= max

j
(αj ‖Ψj‖) .

Notice that for p = 2, we have ‖·‖(α)
2 = ‖·‖.

Any bounded operator T : H −→ H can be split into the N2 operators Tjk
def
= P ∗

j T Pk.
This way, T acts on Ψ ∈ H as follows:

(TΨ)j =

N∑

k=1

TjkΨk , j = 1, . . . , N .

Suppose we have two closed subspaces H′, H′′ ⊂ H such that

∀j = 1, . . . , N , P ∗
j (H′) ⊂ H′′,

equivalently, ∀j, ∀Ψ ∈ H′, Ψj ∈ H′′ .
(3.2)
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For instance, one may have H′ = H′′ = H, but we will be interested in situations where
these three space are all different.

Let (αj), (βj) be two families of positive weights. For any (a, b) ∈ [0, 1]2, we define the
following norms on the operator T :

‖T‖(β),(α)
1/b,1/a = sup

Ψ∈H′, ‖Ψ‖
(β)
1/b

=1

‖T Ψ‖(α)
1/a .

In particular, for a = 0, b = 1 one has

‖T‖(β),(α)
1,∞ = sup

Ψ∈H′, ‖Ψ‖
(β)
1 =1

max
j

(αj ‖(TΨ)j‖) .

From the assumption (3.2), we have, for any Ψ ∈ H′ and any index j,

‖(TΨ)j‖ = ‖
∑

k

TjkΨk‖ ≤
∑

k

βk‖Tjk‖H′′,H β
−1
k ‖Ψk‖ ≤ max

k
(βk‖Tjk‖H′′,H) ‖Ψ‖(β)

1 ,

where ‖T‖H′′,H is the norm of the operator T when restricted to H′′. As a result,

‖T‖(β),(α)
1,∞ ≤ max

j,k
(αjβk‖Tjk‖H′′,H)

def
= cα,βH′′ .

A simple adaptation of the Riesz-Thorin interpolation theorem [9] shows that the function

(a, b) → log‖T‖(β),(α)
1/b,1/a is a convex function on [0, 1]2. Thus, if we know that ‖T‖2,2 =

‖T‖(β),(α)
2,2 ≤ 1, we get

(3.3) ∀t ∈ [0, 1], ∀Ψ ∈ H′, ‖TΨ‖(α)
2

1−t

≤ (cα,βH′′ )
t ‖Ψ‖(β)

2
1+t

.

If T is an isometry, then in the limit t ց 0 the inequality (3.3) implies the following
entropic uncertainty relation:

Theorem 3.1. Let H be a Hilbert space and P = (Pj)j=1,...,N be a family of bounded
operators on H forming a partition of unity (3.1).

Given some positive real numbers (αj)j=1,...,N , define the α-pressure (with respect to the
partition P) of a normalized state Ψ ∈ H

pα(Ψ) = pα,P(Ψ)
def
= −

N∑

j=1

‖Ψj‖2 log‖Ψj‖2 −
N∑

j=1

‖Ψj‖2 logα2
j

where Ψj = P ∗
j Ψ.

Let H′,H′′ ⊂ H be closed subspaces such that P ∗
j H′ ⊂ H′′ for all j, and let T : H −→ H

be an isometry. Define

cα,βH′′ (T )
def
= max

j,k
(αj βk ‖P ∗

j T Pk‖H′′,H).

Then, for any normalized Ψ ∈ H′ we have

pα(T Ψ) + pβ(Ψ) ≥ −2 log cα,βH′′ (T ).
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The first term in the pressure is the entropy hP(Ψ) of Ψ with respect to the parti-
tion P, while the second term is the average of log(α2

j ) along the probability distribution

(‖Ψj‖2)j=1,...,N . The inequality proved in [20] corresponds to the case when H = H′ = H′′,
αj = βj = 1 for all j, and the Pj are projectors on a given orthonormal basis, in which
case it reads

h(T Ψ) + h(Ψ) ≥ −2 log max
i,j

|Tij |.
If the matrix elements of T in a given basis are small, then Ψ and TΨ cannot simultaneously
have small entropies in this basis.

3.2. Applying the entropic uncertainty principle to the Laplacian eigenstates.

In this section we apply theorem 3.1 to spaces and operators related to the flow of the
Laplacian on M , thereby obtaining informations on its eigenstates. The basic Hilbert
space is H = L2(M). We will successively define the appropriate quantum partition,
auxiliary subspaces H′, H′′, weights (αj), (βj) and isometry T .

3.2.1. Smooth partition of unity. We start with a decomposition of the configuration space
into small cells of diameter ε > 0. More precisely, let (Ωk)k=1,...,K be an open cover of
M such that all Ωk have diameters ≤ ε, and let (Pk)k=1,...,K be a family of smooth real
functions on M , with suppPk ⋐ Ωk, such that

(3.4) ∀x ∈M,
K∑

k=1

P 2
k (x) = 1 .

The notation Pk will also denote the operator of multiplication by Pk(x) on the Hilbert

space L2(M)
def
= H: the above equation shows that they form a quantum partition of unity

(3.1), which we will call P(0).

3.2.2. Energy localization. From now on we denote by ψ~ any eigenstate of the Laplacian
satisfying the equation

(3.5) (−~
2 △−1)ψ~ = 0 .

In the semiclassically setting, such an eigenstate is associated with the energy layer E =
E(1/2) = {ρ ∈ T ∗M, H(ρ) = 1/2}. Starting from the full cotangent bundle T ∗M , we
restrict ourselves to a compact phase space by introducing an energy cutoff near E . To
optimize our estimates, we will need this cutoff to depend on ~ in a “sharp” way. For
some fixed δ ∈ (0, 1), we consider a smooth function χδ ∈ C∞(R; [0, 1]), with χδ(t) = 1 for
|t| ≤ e−δ/2 and χδ(t) = 0 for |t| ≥ 1. Then, we rescale that function to obtain a family of
~-dependent cutoffs near E :

(3.6) ∀~ ∈ (0, 1), ∀n ∈ N, ∀ρ ∈ T ∗M, χ(n)(ρ; ~)
def
= χδ

(
e−nδ ~

−1+δ(H(ρ) − 1/2)
)
.

The cutoff χ(0) is localized in an energy interval of length 2~
1−δ. Choosing 0 < Cδ < δ−1−1,

we will only consider indices n ≤ Cδ| log ~|, such that the “widest” cutoff will be supported
in an interval of microscopic length 2~

1−(1+Cδ)δ << 1. In our applications, we will take δ
small enough, such that Cδ > 4/λmax.
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These cutoffs can be quantized into pseudo-differential operators Op(χ(n)) = OpE,~(χ
(n))

described in Section 6.1 (the quantization uses a nonstandard pseudodifferential calculus
drawn from [23]). It is shown there (see Proposition 6.4) that if ψ~ satisfies (3.5), one has

‖
(
Op(χ(0)) − 1

)
ψ~‖ = O(~∞) ‖ψ~‖ .

(here and below, the norm ‖·‖ will either denote the Hilbert norm on H = L2(M), or the
corresponding operator norm). In order to apply the formalism of §3.1, we will use the
cutoff Op(χ(0)) to construct a closed subspace of L2(M) which contains the eigenstate ψ~

when ~ is small enough. Precisely, we fix some large integer No > 0, and define for each
0 < ~ ≤ 1 the subspace

(3.7) H′
~

def
= {Ψ ∈ L2(M), ‖

(
Op(χ(0)) − 1

)
Ψ‖ ≤ ~

No‖Ψ‖} ⊂ H .

3.2.3. Refinement of the partition under the Schrödinger flow. We denote by U t = exp(it~△
/2) the quantum propagator. With no loss of generality, we will assume that the injectivity
radius of M is greater than 2, and work with U = U1, which quantizes the flow at time
one, g1. The ~-dependence will often be implicit in our notations.

For any time n ∈ N we define a new quantum partition of unity, obtained by evolving
and refining the initial partition P(0) under the quantum evolution, until time n: for any
sequence of symbols ǫ = (ǫ0 · · · ǫn), ǫi ∈ [1, K] (we say that the sequence ǫ is of length
|ǫ| = n), we define the operators

Pǫ = PǫnUPǫn−1 . . . UPǫ0

P̃ǫ = U−nPǫ = Pǫn(n)Pǫn−1(n− 1) . . . Pǫ0 .
(3.8)

Throughout the paper we will use the notation A(t) = U−tAU t for the quantum evolution
of an operator A. The family of operators {Pǫ}|ǫ|=n obviously satisfies the resolution of

identity
∑

|ǫ|=n PǫP
∗
ǫ

= IdL2, and therefore forms a quantum partition which we call P(n).

The operators P̃ǫ also have this property, they will be used in the proof of the subadditivity,
see sections 3.2.6 and 5.

To apply the entropic uncertainty principle to the partition P(n), we need to construct
subspaces H′′

~,n ⊂ H similar to (3.7) but satisfying the requirement of Theorem 3.1, that is
P ∗

ǫ
H′

~
⊂ H′′

~,n, for any ǫ of length n. Using results of section 6.4 (namely the first statement
of Corollary 1 and the norm estimate (6.13)), we obtain that for ~ small enough and any
n ≤ C| log ~|,

∀Ψ ∈ H′
~
, ∀|ǫ| = n, ‖Op(χ(n))P ∗

ǫ
Ψ − P ∗

ǫ
Ψ‖ ≤ 3~

No ‖Ψ‖ .
We therefore define the second space appearing in the entropic uncertainty principle:

(3.9) H′′
~,n

def
=
{
Ψ ∈ L2(M), ‖

(
Op(χ(n)) − 1

)
Ψ‖ ≤ 3~

No ‖Ψ‖
}
.

Remark 1. If Ψ ∈ H′
~

or Ψ ∈ H′′
~
, we will use the fact that

PǫnUPǫn−1U . . . UPǫ0Ψ = P f
ǫnUP

f
ǫn−1

U . . . UP f
ǫ0Ψ + O(~No)‖Ψ‖ .
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Here P f
ǫj

= Op~(Pǫj f), where f is a smooth, compactly supported function in T ∗M which

takes the value 1 in a neighbourhood of E , and n ≤ C| log ~|. This follows from the
discussion of Section 6 and means that we may insert the energy cutoff Op

~
(f) at each

step when we apply Pǫ to Ψ. If Ψ = ψ~ satisfies (3.5), then the remainder is of order
O(~∞).

3.2.4. Unstable Jacobian for the geodesic flow. The operator appearing in the entropic
uncertainty principle will be a certain power of the propagator, T = Un, which is obviously
an isometry. The power n will be taken equal to the one defining the refined partition P(n),
see §3.2.3. The coefficient cα,βH′′ is therefore defined in terms of the norm ‖P ∗

ǫ
′ Un Pǫ‖H′′

~,n,H
.

The whole Section 4 will be devoted to obtaining a good upper bound for that norm, given
in the theorem 3.2 below.

In order to express this upper bound, we need to recall a few definitions pertaining
to Anosov flows. For any λ > 0, the geodesic flow gt is Anosov on each energy layer
E(λ) = H−1(λ) ⊂ T ∗M . This implies that for each ρ ∈ E(λ), the tangent space TρE(λ)
splits into

TρE(λ) = Eu(ρ) ⊕ Es(ρ) ⊕ RXH(ρ) .

The unstable Jacobian Ju(ρ) at the point ρ is defined as the Jacobian of the map g−1,
restricted to the unstable subspace at the point g1ρ: Ju(ρ) = det

(
dg−1

|Eu(g1ρ)

)
(the unstable

spaces at ρ and g1ρ are equipped with the induced Riemannian metric). This Jacobian

can be “coarse-grained” as follows in a neighbourhood Eε def
= E([1/2− ε, 1/2+ ε]) of E . For

any pair of symbols (ǫ0, ǫ1) ∈ [1, K]2, we define

(3.10) Ju1 (ǫ0, ǫ1)
def
= sup

{
Ju(ρ) : ρ ∈ T ∗Ωǫ0 ∩ Eε, g1ρ ∈ T ∗Ωǫ1

}

if the set on the right hand side is not empty, and Ju1 (ǫ0, ǫ1) = e−Λ otherwise, where
Λ > 0 is a fixed large number. For any sequence of symbols ǫ of length n, we define the
coarse-grained Jacobian

(3.11) Jun (ǫ)
def
= Ju1 (ǫ0, ǫ1) . . . J

u
1 (ǫn−1, ǫn) .

Although Ju and Ju1 (ǫ0, ǫ1) are not necessarily everywhere smaller than unity, there exists
C, λmin > 0 such that, for any n > 0, all the coarse-grained Jacobians of length n satisfy

(3.12) Jun(ǫ) ≤ C e−n(d−1) λmin .

We can now give our central estimate, proven in Section 4.

Theorem 3.2. Given a partition P(0) and δ, δ′ > 0 small enough, there exists ~P(0),δ,δ′ such

that, for any ~ ≤ ~P(0),δ,δ′, for any positive integer n ≤ (1−δ′)| log ~|
λmax

and any pair of sequences
ǫ, ǫ′ of length n,

(3.13) ‖P ∗
ǫ
′ Un Pǫ‖H′′

~,n,H
≤ C ~

−(d−1+cδ) Jun(ǫ)1/2 Jun(ǫ′) .

The subspace H′′
~,n was defined in (3.9). The constants c, C only depend on the manifold.
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3.2.5. Applying the entropic principle. Once we have fixed δ′ > 0, we take ~ small enough
and consider the “Ehrenfest time”

(3.14) n = nE
def
= ⌊(1 − δ′)| log ~|

λmax

⌋ .

We then apply the entropic uncertainty principle (Thm 3.1) to the following objects:

• we consider the quantum partition of unity P = P(n) = (P ∗
ǫ
)|ǫ|=n made of sequences

of length n
• the weights are given by αǫ = Jun(ǫ)−1 and βǫ = Jun(ǫ)−1/2

• we use the unitary operator T = Un

• the spaces H′ def
= H′

~
, H′′ def

= H′′
~,n were defined in (3.7, 3.9). For ~ small enough,

these spaces satisfy the condition (3.2) and contain the solutions of (3.5), by the
results of section 6.

Following the notations of paragraph 3.1, for any normalized Ψ ∈ H′ we denote Ψǫ = P ∗
ǫ

Ψ.
The entropy of Ψ with respect to the partition P(n) reads

(3.15) hn(Ψ) = hP(n)(Ψ) = −
∑

|ǫ|=n

‖Ψǫ‖2 log‖Ψǫ‖2 .

Similarly, the pressure of Ψ associated to the weights α or β reads

pn,α(Ψ) = hn(Ψ) + 2
∑

|ǫ|=n

‖Ψǫ‖2 log Jun(ǫ),(3.16)

pn,β(Ψ) = hn(Ψ) +
∑

|ǫ|=n

‖Ψǫ‖2 log Jun(ǫ).(3.17)

Applying notations of Thm. 3.1, the estimate (3.13) can be rewritten as

cα,βH′′ (U
n) ≤ C ~

−(d−1+cδ) .

Notice that the ǫ-dependence in the right hand side of (3.13) has now been absorbed in
the weights αǫ, βǫ. The entropic uncertainty principle of Theorem 3.1 implies that, for ~

small enough and ψ~ satisfying (3.5) (and therefore eigenstate of Un), the pressures of ψ~

with respect to the partition P(n) are bounded as follows:

pn,α(ψ~) + pn,β(ψ~) ≥ −2 log cα,βH′′ (U
n) ≥ 2(d− 1 + cδ) log ~ + O(1)

≥ −2
(d− 1 + cδ)λmax

(1 − δ′)
n + O(1) .

(3.18)

3.2.6. Subadditivity until the Ehrenfest time. Before taking the limit ~ → 0, we prove that
a similar lower bound holds if we replace n ≍ | log ~| by some fixed no, and P(n) by the
corresponding partition P(no). This is due to the following subadditivity property, which is
the semiclassical analogue of the classical subadditivity of pressures for invariant measures.
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Proposition 3.3 (Subadditivity). Let (ψ~) be normalized eigenstates satisfying (3.5). Fix
δ′ > 0 and no ∈ N. There is a function R(~) = O(~δ

′/4) such that the following inequality

holds for ~ small enough, uniformly for all n ∈ N with no + n ≤ (1−δ′)| log ~|
λmax

:

pno+n,α(ψ~) ≤ pno,α(ψ~) + pn−1,α(ψ~) +R(~) .

The same inequalities hold for pno+n,β(ψ~).

The proof is given in §5. The reason why no + n needs to be bounded by the Ehrenfest
time is that Egorov’s property, an essential ingredient, is violated for larger times.

Equipped with this subadditivity, we may finish the proof of the Theorem. Let no ∈ N

be fixed and n = nE (see (3.14)). Using the Euclidean division n = q(no + 1) + r (with
r ≤ no), Proposition 3.3 implies that for ~ small enough,

pn,α(ψ~)

n
≤ pno,α(ψ~)

no
+
pr,α(ψ~)

n
+
R(~)

no
.

Using (3.18) and the fact that pr,α(ψ~) + pr,β(ψ~) stays uniformly bounded when ~ → 0,
we find

(3.19)
pno,α(ψ~)

no
+
pno,β(ψ~)

no
≥ −2

(d− 1 + cδ)λmax

(1 − δ′)
+ O(1/n) .

We are now dealing with the partition P(no) of fixed refinement n0.

3.2.7. End of the proof. Let us take a subsequence of (ψ~k
) such that the Wigner measures

Wk = Wψ~k
converge to a semiclassical measure µ on E , invariant under the geodesic flow

(see Prop. 2.1). We may take the limit ~k → 0 (so that n → ∞) in the above expression.
Because ψ~k

are eigenstates of U , the norms appearing in the definition of hno(ψ~k
) can be

alternatively written as

(3.20) ‖P ∗
ǫ
ψ~k

‖ = ‖P̃ ∗
ǫ
ψ~k

‖ = ‖Pǫ0Pǫ1(1) · · ·Pǫno
(no)ψ~k

‖ .
For any sequence ǫ of length no, the laws of pseudodifferential calculus imply the conver-

gence of ‖P̃ ∗
ǫ
ψ~k

‖2 to µ({ǫ}), where {ǫ} is the function P 2
ǫ0 (P 2

ǫ1 ◦ g1) . . . (P 2
ǫno

◦ gno) on
T ∗M . Thus hno(ψ~k

) semiclassically converges to the classical entropy

hno(µ) = hno(µ, (P
2
k )) = −

∑

|ǫ|=no

µ({ǫ}) logµ({ǫ}) .

As a result, the left hand side of (3.19) converges to

(3.21)
2

no
hno(µ) +

3

no

∑

|ǫ|=no

µ({ǫ}) log Juno
(ǫ) .

Since µ is gt-invariant and Juno
has the multiplicative structure (3.11), the second term in

(3.21) can be simplified:
∑

|ǫ|=no

µ({ǫ}) log Juno
(ǫ) = no

∑

ǫ0,ǫ1

µ({ǫ0ǫ1}) log Ju1 (ǫ0, ǫ1) .
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We have thus obtained the lower bound

(3.22)
hno(µ)

no
≥ −3

2

∑

ǫ0,ǫ1

µ({ǫ0ǫ1}) log Ju1 (ǫ0, ǫ1) −
(d− 1 + cδ)λmax

(1 − δ′)
.

δ and δ′ could be taken arbitrarily small, and at this stage they can be let vanish.

The Kolmogorov–Sinai entropy of µ is by definition the limit of the first term hno(µ)
no

when
no goes to infinity, with the notable difference that the smooth functions Pk should be
replaced by characteristic functions associated with some partition M =

⊔
kOk. Thus, let

us consider such a partition of diameter ≤ ε/2, such that µ does not charge the boundaries
of the Ok. By convolution we can smooth the characteristic functions (1lOk

) into a smooth
partition of unity (P 2

k ) satisfying the conditions of section 3.2.1 (in particular, each Pk is
supported on a set Ωk of diameter ≤ ε). The lower bound (3.22) holds with respect to the
smooth partition (P 2

k ), and does not depend on the derivatives of the Pk: as a result, that
lower bound carries over to the characteristic functions (1lOk

).
We can finally let no tend to +∞, then let the diameter ε/2 of the partition tend to 0.

From the definition (3.10) of the coarse-grained Jacobian, the first term in the right hand
side of (3.22) converges to the integral −3

2

∫
E
log Ju(ρ)dµ(ρ) as ε → 0, which proves (2.2).

�

The next sections are devoted to proving, successively, Theorems 3.2 and Proposition 3.3.

4. The main estimate: proof of Theorem 3.2

4.1. Strategy of the proof. We want to bound from above the norm of the operator
P ∗

ǫ
′ Un Pǫ, acting from the space H′′

~,n to H = L2(M). This norm can be obtained as
follows:

‖P ∗
ǫ
′ Un Pǫ‖H′′

~,n,H
= sup

{
|〈Φ, P ∗

ǫ
′ Un PǫΨ〉| : Ψ ∈ H′′

~,n, Φ ∈ H, ‖Ψ‖ = ‖Φ‖ = 1
}
.

From the definition (3.9) of the space H′′
~,n, and using the fact that the operators Pǫ are

contracting, we may insert the cutoff Op(χ(n)) between Pǫ and Ψ, up to a remainder
OL2(~No). Using Corollary 1, we may as well insert Op(χ(4n)) on the left of Pǫ

′ , up to an
error OL2(~∞).

In this section we will prove the following

Proposition 4.1. For ~ small enough, any time n ≤ (1−δ′)| log ~|
λmax

, any sequences ǫ, ǫ′ of

length n and any normalized states Ψ, Φ ∈ L2(M), one has

|〈Pǫ
′ Op(χ(4n)) Φ, Un Pǫ Op(χ(n))Ψ〉| ≤ C ~

−(d−1)−cδ Jun(ǫ)1/2Jun(ǫ′) .

Here we have taken δ small enough such that Cδ > 4/λmax, the constants C and c =
2 + 5/λmax only depend on the Riemannian manifold M .

For such times n, the right hand side in the above bound is larger than C ~
1
2
(d−1), in

comparison to which the errors O(~No) are negligible, provided No has been chosen large
enough. Theorem 3.2 therefore follows from the above proposition.
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4.2. Decomposition of Op(χ)Ψ into elementary states. In Proposition 4.1, we apply
the cutoff Op(χ(n)) on Ψ, respectively Op(χ(4n)) on Φ. To avoid too cumbersome notations,
we treat both cases at the same time, denoting both cutoffs by χ = χ(∗), and their associated
quantization by Op(χ). The original notations will be restored only when needed. The
energy cutoff χ is supported on a microscopic energy interval, where it varies between 0
and 1. In spite of those fast variations in the direction transverse to E , it can be quantized
such as to satisfy some sort of pseudodifferential calculus. As explained in Section 6.3, the

quantization Op
def
= OpE,~ (see (6.11)) uses a family of Fourier Integral Operators (Uκj

)
associated with local canonical maps (κj). Each κj sends an open bounded set Vj ⊂ T ∗M
intersecting E to Wj ⊂ R

2d, endowed with coordinated (y, η) = (y1, . . . , yd, η1, . . . , ηd), such
that H ◦ κj = η1 + 1/2. In other words, each κj defines a set of local flow-box coordinates
(y, η), such that y1 is the time variable and η1 + 1/2 the energy, while (y′, η′) ∈ R

2(d−1) are
symplectic coordinates in a Poincaré section transverse to the flow.

4.2.1. Integral representation of Uκj
. Since κj is defined only on Vj , one may assume that

Uκj
u = 0 for functions u ∈ L2(M \ πVj) (here and below π will represent either the

projection from T ∗M to M along fibers, or from R
2d
y,η to R

d
y). If Vj is small enough, the

action of Uκj
on a function Ψ ∈ L2(M) can be represented as follows:

[Uκj
Ψ](y) = (2π~)−

k+d
2

∫

πVj

e
i
~
S(z,y,θ) a~(z, y, θ) u(z) dz dθ ,

where
– θ takes values in an open neighbourhood Θj ⊂ R

k for some k ≥ 0,
– the Lagrangian manifold generated by S is the graph of κj,
– a~(z, y, θ) has an asymptotic expansion a~ ∼ ∑

l≥0 ~
l al, and it is supported on πVj ×

πWj × Θj.
When applying the definition (6.11) to the cutoff χ, we notice that the product χ(1−φ) ≡

0, so that Op(χ) is given by the sum of operators Op(χ)j = U∗
κj

Opw
~
(χj)Uκj

, each of them

effectively acting from L2(πVj) to itself. We denote by δj(x; z) the kernel of the operator
Op(χ)j : it is given by the integral

(4.1) δj(x; z) = (2π~)−(k+2d)

∫
e−

i
~
S(x,y,θ)e

i
~
〈y−ỹ,η〉e

i
~
S(z,ỹ,θ̃)×

ā~(x, y, θ) a~(z, ỹ, θ̃)ϕj(y, η)χ(η1) dy dθ dỹ dθ̃ dη .

For any wavefunction Ψ ∈ L2(M), we have therefore

(4.2) [Op(χ)Ψ](x) =
∑

j

∫

πVj

Ψ(z)δj(x; z) dz .

We temporarily restore the dependence of δj(x; z) on the cutoffs, calling δ
(n)
j (x; z) the

kernel of the operator Op(χ(n))j. In order to prove Proposition 4.1, we will for each set
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(j, j′, z, z′), obtain approximate expressions for the wavefunctions U t Pǫδ
(n)
j (z), respectively

Pǫ
′δ

(4n)
j′ (z′), and use these expressions to bound from above their overlaps:

Lemma 4.2. Under the assumptions and notations of Proposition 4.1, the upper bound

|〈U−n/2Pǫ
′ δ

(4n)
j′ (z′), Un/2 Pǫ δ

(n)
j (z)〉| ≤ C ~

−(d−1)−cδ Jun(ǫ)1/2Jun(ǫ′) .

holds uniformly for any j, j′, any points z ∈ πVj, z′ ∈ πVj′ and any n-sequences ǫ, ǫ′.

Using (4.2) and the Cauchy-Schwarz inequality ‖Ψ‖L1 ≤
√

Vol(M) ‖Ψ‖L2 , this Lemma
yields Proposition 4.1.

In the following sections we study the action of the operator Pǫ on the state δ(z) = δ
(∗)
j (z)

of the form (4.1). By induction on n, we propose an Ansatz for that state, valid for times
n = |ǫ| of the order of | log ~|. Apart from the sharp energy cutoff, this Ansatz is similar
to the one described in [1].

4.3. WKB Ansatz for the first step. The first step of the evolution consists in ap-
plying the operator UPǫ0 to δ(z). For this aim, we will use the decomposition (4.1) into
WKB states of the form a(x)eiS(x)/~, and evolve such states individually through the above
operator. We briefly review how the propagator U t = eit~△/2 evolves such states.

4.3.1. Evolution of a WKB state. Consider an initial state u(0) of the form u(0, x) =

a~(0, x) e
i
~
S(0,x), where S(0, •), a~(0, •) are smooth functions defined on a subset of Ω ⊂M ,

and a~ expands as a~ ∼∑k ~
k ak. This represents a WKB (or Lagrangian) state, supported

on the Lagrangian manifold L(0) = {(x, dxS(0, x)), x ∈ Ω}.
Then, for any integer N , the state ũ(t)

def
= U tu(0) can be approximated, to order ~

N , by
a WKB state u(t) of the following form:

(4.3) u(t, x) = e
iS(t,x)

~ a~(t, x) = e
iS(t,x)

~

N−1∑

k=0

~
kak(t, x) .

Since we want u(t) to solve ∂u
∂t

= i~△xu
2

up to a remainder of order ~
N , the functions S

and ak must satisfy the following partial differential equations:

(4.4)





∂S
∂t

+H(x, dxS) = 0 (Hamilton-Jacobi equation)

∂a0
∂t

= −〈dxa0, dxS(t, x)〉 − a0
△xS(t,x)

2
(0-th transport equation) ,

∂ak

∂t
=

i△ak−1

2
− 〈dak, dS〉 − ak

△S
2

(k-th transport equation) .

Assume that, on a certain time interval — say s ∈ [0, 1] — the above equations have a
well defined smooth solution S(s, x), meaning that the transported Lagrangian manifold
L(s) is of the form L(s) = {(x, dxS(s, x))}, where S(s) is a smooth function on the open
set πL(s). Under these conditions, we denote as follows the induced flow on M :

(4.5) gtS(s) : x ∈ πL(s) 7→ πgt
(
x, dxS(s, x)

)
∈ πL(s+ t) ,
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This flow satisfies the property gtS(s+τ) ◦ gτS(s) = gt+τS(s). We then introduce the following

(unitary) operator T tS(s), which transports functions on πL(s) into functions on L(s+ t):

(4.6) T tS(s)(a)(x) = a ◦ g−tS(s+t)(x)
(
J−t
S(s+t)(x)

)1/2
.

Here J tS(s)(x) is the Jacobian of the map gtS(s) at the point x (measured with respect to the

Riemannian volume on M). It is given by

(4.7) J tS(s)(x) = exp
{∫ t

0

△S
(
s+ τ, gτS(s)(x))

)
dτ
}
.

The 0-th transport equation in (4.4) is explicitly solved by

(4.8) a0(t) = T tS(0) a0 , t ∈ [0, 1] ,

and the higher-order terms k ≥ 1 are given by

(4.9) ak(t) = T tS(0)ak +

∫ t

0

T t−sS(s)

(
i△ ak−1

2
(s)

)
ds .

The function u(t, x) defined by (4.3) satisfies the approximate equation

∂u

∂t
= i~

△u
2

− i~N e
i
~
S(t,x)△aN−1

2
(t, x) .

From Duhamel’s principle and the unitarity of U t, the difference between u(t) and the
exact solution ũ(t) is bounded, for t ∈ [0, 1], by

(4.10) ‖u(t) − ũ(t)‖L2 ≤ ~
N

2

∫ t

0

‖△aN−1(s)‖L2 ds ≤ C t ~N
(N−1∑

k=0

‖ak(0)‖C2(N−k)

)
.

The constant C is controlled by the volumes of the sets πL(s) (0 ≤ s ≤ t ≤ 1), and by a
certain number of derivatives of the flow g−tS(s+t) (0 ≤ s+ t ≤ 1).

4.3.2. The Ansatz for time n = 1. We now apply the above analysis to study the evolution
of the state δ(z) given by the integral (4.1). Until section 4.5.2, we will consider a single
point z. Selecting in (4.1) a pair (y, θ) in the support of a~, we consider the state

u(0, x) = e−
i
~
S(x,y,θ) āǫ0

~
(x, y, θ), where aǫ0

~
(x, y, θ)

def
= Pǫ0(x) a~(x, y, θ) .

Notice that this state is compactly supported in Ωǫ0 . We will choose a (large) integer N > 0
(see the condition at the very end of §4.6), truncate the ~-expansion of āǫ0

~
to the order

Ñ = N + k + 2d, and apply to that state the WKB evolution described in the previous
section, up to order Ñ and for times 0 ≤ t ≤ 1. We then obtain an approximate state
āǫ0

~
(t, x; y, θ) e−

i
~
S(t,x;y,θ). By the superposition principle, we get the following representation

for the state U tPǫ0 δ(z):

(4.11) [U tPǫ0 δ(z)](x) = (2π~)−
d+1
2

∫
v(t, x; z, η1)χ(η1) dη1 + OL2(~N) ,
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Ω

L(0)
0

z*T

L(0)

L(1)

1

0

Figure 4.1. Sketch of the Lagrangian manifolds L0
η1

(0) situated above Ωǫ0

and centered at z (center ellipse, dark pink), its image L0
η1

(1) through the

flow (external annulus, pale pink) and the intersection L1
η1(0) of the latter

with T ∗Ωǫ1 . The thick arrows show the possible momenta at points x ∈M .

where for each energy parameter η1 we took

(4.12) v(t, x; z, η1) = (2π~)−k−
3d−1

2

∫
e−

i
~
S(t,x;y,θ) e

i
~
〈y−ỹ,η〉 e

i
~
S(z,ỹ,θ̃)×

āǫ0
~

(t, x; y, θ) a~(z; ỹ, θ̃)ϕj(y, η) dy dθ dỹ dθ̃ dη
′

(η′ = (η2, . . . , ηd)). The reason why we integrate over all variables but η1 lies in the sharp
cutoff χ: due to this cutoff one cannot apply a stationary phase analysis in the variable η1.

At time t = 0, the state v(0, •; z, η1) is a WKB state, supported on the Lagrangian
manifold

L0
η1

(0) =
{
ρ ∈ E(1/2 + η1), π(ρ) ⊂ Ωǫ0 , ∃τ ∈ [−1, 1], g−τρ ∈ T ∗

zM
}
.

This Lagrangian is obtained by propagating the sphere
{
ρ = (z, ξ), |ξ| =

√
1 + 2η1

}
on

the interval τ ∈ [−1, 1], and keeping only the points situated above Ωǫ0 . The projection
of L0

η1(0) on M is not one-to-one: the point z has infinitely many preimages, while other
points x ∈ Ωǫ0 have in general two preimages (x, ξx) and (x,−ξx).
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Let us assume that the diameter of the partition ε is less than 1/6. For 0 < t ≤ 1,
v(t; z, η1) is a WKB state supported on L0

η1
(t) = gtL0

η1
(0). If the time is small, L0

η1
(t) still

intersects T ∗
zM . On the other hand, all points in E(1/2 + η1) move at a speed

√
1 + 2η1 ∈

[1 − 2ε, 1 + ε], so for times t ∈ [3ε, 1] any point x ∈ πL0
η1(t) is at distance greater than ε

from Ωǫ0 . Since the injectivity radius of M is ≥ 2, such a point x is connected to z by a
single short geodesic arc. Furthermore, since x is outside Ωǫ0 , there is no ambiguity about
the sign of the momentum at x: in conclusion, there is a unique ρ ∈ L0

η1
(t) sitting above

x (Fig. 4.1).
For times 3ε ≤ t ≤ 1, the Lagrangian L0

η1
(t) can therefore be generated by a single

function S0(t, •; z, η1). Equivalently, for any x in the support of v(t, •; z, η1), the integral

(4.12) is stationary at a unique set of parameters •c = (yc, θc, ỹc, θ̃c, η
′
c), and leads to an

expansion (up to order ~
N):

(4.13)

v(t; z, η1) = v0(t; z, η1) + O(~N) , where v0(t, x; z, η1) = e
i
~
S0(t,x;z,η1) b0

~
(t, x; z, η1) .

The above discussion shows that L0
η1

def
= ∪3ε≤t≤1L0

η1
(t) is a Lagrangian manifold which

can be generated by a single function S0(•; z, η1) defined on πL0
η1

. The phase functions

S0(t, •; z, η1) obtained through the stationary phase analysis depend very simply on time:

S0(t, x; z, η1) = S0(x; z, η1) − (1/2 + η1) t .

The symbol b0
~

is given by a truncated expansion b0
~

=
∑N−1

k=0 ~
k b0k. The principal symbol

is

b00(t, x; z, η1) = āǫ00 (t, x; yc, θc) a0(z; ỹc, θ̃c) ,

while higher order terms b0k are given by linear combination of derivatives of āǫ0
~

(t, x; •) a~(z; •)
at the critical point • = •c. Since āǫ0

~
(0, •; yc, θc) is supported inside Ωǫ0, the transport

equation (4.9) shows that b0
~
(t, •; z, η1) is supported inside πL0

η1
(t).

If we take in particular t = 1, the state

(4.14) v0(1; z) = (2π~)−
d+1
2

∫
v0(1; z, η1)χ(η1) dη1

provides an approximate expression for U Pǫ0δ(z), up to a remainder OL2(| suppχ| ~N− d+1
2 ).

4.4. Iteration of the WKB Ansätze. In this section we will obtain an approximate
Ansatz for Pǫn . . . UPǫ1UPǫ0δ(z). Above we have already performed the first step, obtaining
an approximation v0(1; z) of UPǫ0δ(z), which was decomposed into fixed-energy WKB
states v0(1; z, η1). The next steps will be performed by evolving each component v0(1; z, η1)
individually, and integrating over η1 only at the end. Until Lemma 4.3 we will fix the
variable (z, η1), and omit them in our notations when no confusion may arise.

Applying the multiplication operator Pǫ1 to the state v0(1) = v0(1; z, η1), we obtain
another WKB state which we denote as follows:

v1(0, x) = b1
~
(0, x) e

i
~
S1(0,x) , with

{
S1(0, x) = S0(1, x; z, η1) ,

b1
~
(0, x) = Pǫ1(x) b

0
~
(1, x; z, η1) .
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This state is associated with the manifold

L1(0) = L0
η1(1) ∩ T ∗Ωǫ1 .

If this intersection is empty, then v1(0) = 0, which means that Pǫ1U v(0; z, η1) = O(~N).
In the opposite case, we can evolve v1(0) following the procedure described in §4.3.1. For
t ∈ [0, 1], and up to an error OL2(~N), the evolved state U tv1(0) is given by the WKB
Ansatz

v1(t, x) = b1
~
(t, x) e

i
~
S1(t,x) , b1

~
(t) =

N−1∑

k=0

b1k(t) .

The state v1(t) is associated with the Lagrangian L1(t) = gtL1(0), and the function b1
~
(t)

is supported inside πL1(t). The Lagrangian L1 def
= ∪0≤t≤1L1(t) is generated by the function

S1(0, x), and for any t ∈ [0, 1] we have S1(t, x) = S1(0, x) − (1/2 + η1) t.

4.4.1. Evolved Lagrangians. We can iterate this procedure, obtaining a sequence of ap-
proximations

(4.15) vj(t) = U t Pǫjv
j−1(1) + O(~N) , where vj(t, x) = bj

~
(t, x) e

i
~
Sj(t,x) .

To show that this procedure is consistent, we must check that the Lagrangian manifold
Lj(t) supporting vj(t) does not develop caustics through the evolution (t ∈ [0, 1]), and that
it can be generated by a single function Sj(t). We now show that these properties hold,
due to the assumptions on the classical flow.

The manifolds Lj(t) are obtained by the following procedure. Knowing Lj−1(1), which
is generated by the phase function Sj−1(1), we take for Lj(0) the intersection

Lj(0) = Lj−1(1) ∩ T ∗Ωǫj .

If this set is empty, we then stop the construction. Otherwise, this Lagrangian is evolved
into Lj(t) = gtLj(0) for t ∈ [0, 1]. Notice that the Lagrangian Lj(t) corresponds to
evolution at time j + t of a piece of L0(0): it is made up of the image under the geodesic
flow of pieces of the sphere S∗

zM . If the geodesic flow is Anosov, the geodesic flow has no
conjugate points [16]. This means that gtL0(0) will not develop caustics: in other words,
the phase functions Sj(t) will never become singular.

On the other hand, when j → ∞ the Lagrangian gj+tL0(0) will spread out over M , and
cover all points x ∈ M many times, so that many phase functions are needed to describe
the different sheets (see §4.5.3). However, the small piece Lj(t) ⊂ gj+tL0(0) is generated
by only one of them. Indeed, because the injectivity radius is ≥ 2, any point x ∈ Ωǫj can
be connected to another point x′ ∈M by at most one geodesic of length

√
1 + 2η1 ≤ 1+ ε.

This ensures that, for any j ≥ 1, the manifold Lj = ∪t∈[0,1]Lj(t) is generated by a single
function Sj(0) defined on πLj, or equivalently by Sj(t) = Sj(0) − (1/2 + η1) t (this Sj is
a stationary solution of the Hamilton–Jacobi equation, and we will often omit to show its
time dependence in the notations).

Finally, we recall that L0(0) was obtained by propagating a sphere centered at z. Since
the geodesic flow on E(1/2+η1) is Anosov, the sphere bundle is uniformly transverse to the
strong stable foliation [16]. As a result, under the geodesic flow a piece of sphere becomes
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exponentially close to an unstable leaf when t → +∞. The Lagrangians Lj thus become
exponentially close to the weak unstable foliation as j → ∞. This transversality argument
is crucial in our choice to decompose the state Ψ into components δ(z, η1).

4.4.2. Exponential decay of the symbols. We now analyze the behaviour of the symbols
bj

~
(t, x) appearing in (4.15), when j → ∞. These symbols are constructed iteratively:

starting from the function bj−1
~

(1) =
∑N−1

k=0 b
j−1
k (1) supported inside πLj−1(0), we define

(4.16) bj
~
(0, x) = Pǫj (x) b

j−1
~

(1, x) , x ∈ πLj(0) .

The WKB procedure of §4.3.1 shows that for any t ∈ [0, 1],

(4.17) U t vj(0) = vj(t) +Rj
N(t) ,

where the transported symbol bj−1
~

(t) =
∑N−1

k=0 ~
k bj−1

k (t) is supported inside πLj(t). The
remainder satisfies

(4.18) ‖Rj
N (t)‖ ≤ C t ~N

(N−1∑

k=0

‖bjk(0)‖C2(N−k)

)
.

To control this remainder when j → ∞, we need to bound from above the derivatives of
bj

~
. Lemma 4.3 below shows that all terms bjk(t) and their derivatives decay exponentially

when j → ∞, due to the Jacobian appearing in (4.6).
To understand the reasons of the decay, we first consider the principal symbol bj0(1, x).

It satisfies the following recurrence:

(4.19) bj0(1, x) = T 1
Sj(Pǫj × bj−1

0 (1))(x) = Pǫj(g
−1
Sj (x)) bj−1

0 (1, g−1
Sj (x))

√
J−1
Sj (x) .

Iterating this expression, and using the fact that 0 ≤ Pǫj ≤ 1, we get at time n and for
any x ∈ πLn(0):

(4.20) |bn0 (0, x)| ≤ |b00(1, g−n+1
Sn (x))| ×

(
J−1
Sn−1(x) J

−1
Sn−2(g

−1
Sn (x)) · · · J−1

S1 (g−n+2
Sn (x))

)1/2

.

Since the Lagrangians Lj converge exponentially fast to the weak unstable foliation, the
associated Jacobians satisfy for some C > 0:

∀j ≥ 2, ∀ρ = (x, ξ) ∈ Lj(0),

∣∣∣∣∣
J−1
Sj (x)

J−1
Su(ρ)(x)

− 1

∣∣∣∣∣ ≤ C e−j/C .

Here Su(ρ) generates the local weak unstable manifold at the point ρ (which is a Lagrangian
submanifold of E(1/2 + η1)). The product of Jacobians in (4.20) therefore satisfies, uni-
formly with respect to n and ρ ∈ Ln(0):

n−1∏

j=1

J−1
Sn−j(g

−j+1
Sn (x)) = eO(1)

n−1∏

j=1

J−1
Su(g−j+1ρ)

(g−j+1
Sn (x)) = eO(1) J1−n

Su(ρ)(x) , n→ ∞ .
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The Jacobian J−1
Su(ρ) measures the contraction of g−1 along Eu(ρ): so does the Jacobian

Ju(ρ) defined in §3.2.4, but with respect to different coordinates. When iterating the
contraction n times, the ratio of these Jacobians remains bounded:

J1−n
Su(ρ)(x) = eO(1)

n−1∏

j=1

Ju(g−j+1ρ) , n→ ∞ .

We finally express the upper bound in terms of the “coarse-grained” Jacobians (3.10,3.11).
Since ρ ∈ Ln(0) ⊂ T ∗Ωǫn and g−jρ ∈ T ∗Ωǫn−j

for all j = 1, . . . , n − 1, we obtain the
following estimate on the principal symbol bn0 (0):

(4.21) ∀n ≥ 1 ‖bn0 (0)‖∞ ≤ C ‖b00(1; z, η1)‖∞ Jun−1(ǫ1 · · · ǫn)1/2 .

The constant C only depends on the Riemannian manifold M . Finally, by construction
the symbol b00(1; z, η1) is bounded uniformly with respect to the variables (z, η1) (assuming
|η1| < ε).

The following lemma shows that the above bound extends to the full symbol bn
~
(0, x)

and its derivatives (which are supported on πLn(0)).

Lemma 4.3. Take any index 0 ≤ k ≤ N and m ≤ 2(N − k). Then there exists a constant
C(k,m) such that

∀n ≥ 1, ∀x ∈ πLn(0), |dmbnk(0, x)| ≤ C(k,m)nm+3k Jun(ǫ0 · · · ǫn)1/2 .

This bound is uniform with respect to the parameters (z, η1). For (k,m) 6= (0, 0), the
constant C(k,m) depends on the partition P(0), while C(0, 0) does not.

Before giving the proof of this lemma, we draw somes consequences. Taking into account
the fact that the remainders Rj

N (1) are dominated by the derivatives of the bjk (see (4.18)),
the above statement translates into

∀j ≥ 1, ‖Rj
N (1)‖L2 ≤ C(N) j3N Juj (ǫ0 · · · ǫj)1/2

~
N .

A crucial fact for us is that the above bound also holds for the propagated remainder
PǫnU · · ·UPǫj+1

Rj
N(1), due to the fact that the operators PǫjU are subunitary. As a result,

the total error at time n is bounded from above by the sum of the errors ‖Rj
N(1)‖. We

obtain the following estimate for any n > 0:

(4.22) ‖PǫnUPǫn−1 · · ·Pǫ1U v(0; z, η1) − vn(0; z, η1)‖ ≤ C(N) ~
N

n∑

j=0

j3N Juj (ǫ0 · · · ǫj)1/2 .

From the fact that the Jacobians Juj decay exponentially with j, the last term is bounded

by C(N)~N . This bound is uniform with respect to the data (z, η1).
By the superposition principle, we obtain the following

Corollary 4.4. For small enough ~ > 0, any point z ∈ πVj, and any sequence ǫ of
arbitrary length n ≥ 0, we have

Pǫ δj(z) = (2π~)−
d+1
2

∫
vn(0; z, η1)χ(η1) dη1 + OL2(| suppχ| ~N− d+1

2 ) .
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Here we may take χ = χ(n′) with an arbitrary 0 ≤ n′ ≤ Cδ| log ~| (see (3.6) and the
following discussion).

Proof of Lemma 4.3. The transport equation (4.8,4.9) linking bj to bj−1,

bjk(t) = T tSj b
j
k(0) + (1 − δk,0)

∫ t

0

T t−sSj

( i△ bjk−1(s)

2

)
ds , k = 0, . . . , N − 1 ,

bjk(0) = Pǫj × bj−1
k (1) ,

(4.23)

can be m times differentiated. We can write the recurrence equations for the m-differential
forms dmbjk(t) as follows:
(4.24)

dmbjk(t, x) =
∑

ℓ≤m

T tSjdℓb
j−1
k (1, x).θjmℓ(t, x) +

∑

ℓ≤m

∫ t

0

T t−s
Sj dℓ+2bjk−1(s, x).α

j
mℓ(t, s, x) ds .

Above we have extended the transport operator T tS defined in (4.6) to multi-differential
forms on M . Namely,

(T tSj dℓb)(x)
def
=
√
J−t
Sj (x) dℓb(g−tSj (x))

is an ℓ-form on (Tg−t
S (x)M)ℓ. The linear form θjmℓ(t, x) sends (TxM)m to (Tg−t

Sj (x)M)ℓ (resp.

αjmℓ(t, s, x) sends (TxM)m to (Tgs−t

Sj (x)M)ℓ+2). These forms can be expressed in terms of

derivatives of the maps g−t
Sj , g

s−t
Sj at the point x, and θjmℓ also depends on m− ℓ derivatives

of the function Pǫj . These forms are uniformly bounded with respect to j, x and t ∈ [0, 1].
We only need to know the explicit expression for θjmm:

(4.25) θjmm(t, x) = Pǫj
(
g−tSj (x)

)
×
(
dg−tSj (x)

)⊗m
.

Since the above expressions involve several sets of parameters, to facilitate the bookkeeping
we arrange the functions bkj (t, x) and the m-differential forms dmbjk(t, x), m ≤ 2(N − k),

inside a vector bj. We will denote the entries by b
j
(k,m) = dmbjk, and with 0 ≤ k ≤ N − 1,

m ≤ 2(N − k):

bj = bj(t, x)
def
=
(
bj0, db

j
0, . . . . . . , d

2Nbj0,

bj1, db
j
1, . . . , d

2(N−1)bj1,

. . . ,

bjN−1, . . . , d
2bjN−1

)
.

(4.26)

The set of recurrence equations (4.24) may then be cast in a compact form, using three
operator-valued matrices Mj

∗ (here the subscript j is not a power, but reminds the La-
grangian Lj on which the transformation is based):

(4.27) (I −M
j
1)b

j = (Mj
0,0 + M

j
0,1)b

j−1 .
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The first matrix act as follows on the indices (k,m):

(
M

j
1 bj
)
(k,m)

(t) =
∑

ℓ≤m

∫ t

0

ds T t−sSj b
j
(k−1,ℓ+2)(s) . α

j
mℓ(t, s) .

Since M
j
1 relates bk to bk−1, it is obviously a nilpotent matrix of order N . The matrix

M
j
0,1: (

M
j
0,1b

j−1
)
(k,m)

(t) =
∑

ℓ<m

T tSj b
j−1
(k,ℓ)(1) . θjmℓ(t) ,

which relates m-derivatives to ℓ-derivatives, ℓ < m, is also nilpotent. Finally, the last
matrix M

j
0,0 acts diagonally on the indices (k,m):

(4.28)
(
M

j
0,0b

j−1
)
(k,m)

(t) = T tSj b
j−1
(k,m)(1) . θjmm(t) .

From the nilpotence of M
j
1, we can invert (4.27) into

bj =
( N−1∑

kj=0

[Mj
1]
k
j

)(
M

j
0,0 + M

j
0,1

)
bj−1 ,

where [M]k denotes the k-th power of the matrix M. The above expression can be iterated:

(4.29) bn =

N−1∑

k1,...,kn=0

1∑

α1,...,αn=0

[Mn
1 ]kn Mn

0,αn
[Mn−1

1 ]kn−1 Mn−1
0,αn−1

. . . [M1
1]
k1 M1

0,α1
b0 .

Notice that the first step M1
0,α1

b0 only uses the vector b0 at time t = 1, where it is
well-defined.

From the nilpotence of M
j
1 and M

j
0,1, the terms contributing to bn(k,m) must satisfy∑

kj ≤ k and
∑
αj ≤ m+ 2(

∑
kj). In particular,

∑
kj ≤ N ,

∑
αj ≤ 2N , so for n large,

all terms in (4.29) are made of few (long) strings of successive matrices M
j
0,0, separated by

a few matrices M
j
0,1 or M

j
1 (the total number of matrices M

j
0,1 or M

j
1 in each term is at

most 3N). As a result, the total number of terms on the right hand side grows at most
like O(nm+3k) when n→ ∞.

Using the fact that θjmℓ and αjmℓ are uniformly bounded, the actions of the nilpotent

matrices M
j
1, M

j
0,1 induce the following bounds on the sup-norm of b

j
k,m(t):

sup
0≤t≤1

‖Mj
1b

j
(k,m)(t)‖ ≤ C max

m′≤m+2
sup

0≤t≤1
‖bj(k−1,m′)(t)‖ ,

sup
0≤t≤1

‖(Mj
0,1b

j−1)(k,m)(t)‖ ≤ C(m) max
m′≤m−1

‖bj−1
(k,m′)(1)‖ .

(4.30)

The constant C(m) depends on the partition P(0): for a partition of diameter ε, it is of
order ε−m.

On the other hand, for any pair (k,m), the “diagonal” action (4.28) on b
j
(k,m) is very

similar with its action on b
j
(0,0), which is the recurrence relation (4.19). The only difference
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comes from the appearance of the m-forms θjmm instead of the functions θj00. From the
explicit expression (4.25) and the fact that 0 ≤ Pǫj ≤ 1, one easily gets

|(Mj
0,0b

j−1)(k,m)(t, x)| ≤
√
J−t
Sj (x) |dg−t

Sj (x)|m |bj−1
(k,m)(1, g

−t
Sj (x))| .

By contrast with (4.30), in the above bound there is no potentially large constant prefactor
in front of the right hand side. This allows us to iterate this inequality, and obtain a bound
similar with (4.20). Indeed, using the composition of the maps g−1

Sj and their derivatives,
we get for any j, j′ ∈ N and t ∈ [0, 1]:

(4.31) |(Mj+j′

0,0 · · ·Mj
0,0b

j−1)(k,m)(t, x)| ≤
√
J−t−j′

Sj′+j (x) |dg−t−j′
Sj+j′ (x)|m |bj−1

(k,m)(1, g
−t−j′

Sj′+j (x))| .
As we explained above, the flow gt acting on Lj is asymptotically expanding except in
the flow direction, because gtLj converges to the weak unstable manifold. As a result, the

inverse flow g−j
′

acting on Lj+j′ ⊂ gj
′Lj, and its projection g−j

′

Sj+j′ , have a tangent map

dg−j
′

Sj+j′ uniformly bounded with respect to j, j′. In each “string” of operators M∗
0,0, the

factor dg−j
′

S can be replaced by a uniform constant. For each term in (4.29), we can then
iteratively combine the bounds (4.30,4.31), to get

|(MnMn−1 · · ·M1b0)(k,m)(t, x)| ≤ C
√
J−t−n+1
Sn (x) ‖b0(1)‖

Summing over those terms, we obtain

(4.32) |bn(k,m)(t, x)| ≤ C̃(k,m)nm+3k
√
J−t−n+1
Sn (x) ‖b0(1)‖ .

The Jacobian on the right hand side is the same as in the bound (4.20). We can thus follow
the same reasoning and replace J−t−n+1

Sn by Jun(ǫ) to obtain the lemma. �

This ends the proof of Lemma 4.3 and Corollary 4.4. We proceed with the proof of our

main Lemma 4.2, and now describe the states U−n/2Pǫ
′ δ

(4n)
j′ (z′) and Un/2 Pǫ δ

(n)
j (z).

4.5. Evolution under U−n/2 and Un/2. Applying Corollary 4.4 with n′ = 4n, resp.
n′ = n, we have approximate expressions for the states appearing in Lemma 4.2:

Pǫ δ
(n)
j (z) = (2π~)−

d+1
2

∫
vn(0; z, η1, ǫ)χ

(n)(η1) dη1 + OL2(enδ ~
N− d−1

2 ) ,(4.33)

Pǫ
′ δ

(4n)
j′ (z′) = (2π~)−

d+1
2

∫
vn(0; z′, η′1, ǫ

′)χ(4n)(η′1) dη
′
1 + OL2(e4nδ

~
N− d−1

2 ) ,(4.34)

we notice that for n ≤ | log ~|
λmax

the remainders are of the form O(~N−N1) for some fixed N1.
To prove the bound of Lemma 4.2, we assume n is an even integer, and consider the

individual overlaps

(4.35)
〈
U−n/2vn(0; z′, η′1, ǫ

′), Un/2 vn(0; z, η1, ǫ)
〉
,

Until the end of the section, we will fix z, η1, z
′, η′1 and omit them in the notations. On the

other hand, we will sometimes make explicit the dependence on the sequences ǫ′, ǫ. We
then need to understand the states U−n/2 vn(0; ǫ′) and Un/2 vn(0; ǫ).
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4.5.1. Backwards iteration of vn(0; ǫ′). We use WKB approximations to describe the backwards-
evolved state U−jvn(0; ǫ′). Before entering into the details, let us sketch the backwards
evolution of the Lagrangian Ln = Ln(0; ǫ′) supporting vn(0) = vn(0; ǫ′) (for a moment we
omit to indicate the dependence in ǫ′). Since Ln had been obtained by evolving L0 and

truncating it at each step, for any 0 ≤ t ≤ n − 1, the Lagrangian Ln(−t) def
= g−tLn will

be contained in Ln−⌊t⌋−1(1 − {t}), where we decomposed the time t into its integral and
fractional part. This Lagrangian projects well onto the base manifold, and is generated by
the function Sn(−t) = Sn−⌊t⌋−1(1− {t}) (which satisfies the Hamilton-Jacobi equation for
negative times). This shows that the WKB method of §4.3.1, applied to the backwards
flow U−t acting on vn(0), can be formally used for all times 0 ≤ t ≤ n − 1. The evolved
state can be written as

(4.36) U−t vn(0) = vn(−t) + R̂N(−t) ,
and vn(−t) has the WKB form

(4.37) vn(−t) = bn
~
(−t) eiS

n(−t)/~ , bn
~
(−t) =

N−1∑

k=0

~
k bnk(−t) .

The symbols bnk(−t) are obtained from bnk(0) using the backwards transport equations (see
Eqs. (4.8, 4.9)):

bn0 (−t) = T−t
Sn(0) b

n
0 (0) =

(
J tSn(−t)

)1/2
bn(0) ◦ gtSn(−t) ,(4.38)

bnk(−t) = T−t
Sn(0) b

n
k(0) −

∫ t

0

T−t+s
Sn(−t)

(i△ bnk−1

2
(−s)

)
ds .(4.39)

These symbols are supported on πLn(−t). We need to estimate their Cm norms uniformly
in t. The inverse of the Jacobian J tSn(−t) approximately measures the volume of the La-

grangian Ln(−t). Since the latter remains close to the weak unstable manifold as long as
n − t >> 1, the backwards flow has the effect to shrink it along the unstable directions.
Thus, for n − 1 ≥ t >> 1, Ln(−t) consist in a thin, elongated subset of Ln−⌊t⌋−1 (see
figure 4.2), with a volume of order

(4.40) Vol(Ln(−t)) ≤ C
(
inf
x
J tSn(−t)(x)

)−1 ≤ C Ju⌊t⌋(ǫ
′
n−⌊t⌋ · · · ǫ′n) , 0 ≤ t ≤ n− 1 .

When differentiating bn0 (−t), the derivatives of the flow gtSn(−t) also appear. Since Ln(−t)
is close to the weak unstable manifold, the derivatives become large as t >> 1:

|∂αx gtSn(−t)(x)| ≤ C(α) etλ+ , where λ+
def
= λmax(1+δ′/2) , 0 ≤ t ≤ n−1, x ∈ πLn(−t) .

Hence, for any t ≤ n− 1 and index 0 ≤ m ≤ 2N the m-derivatives of the principal symbol
can be bounded as follows:

∀t ≤ n− 1, |dmbn0 (−t, x)| ≤ C
(
J tSn(−t)(x)

)1/2 |dgtSn(−t)(x)|m ‖bn0 (0)‖Cm

≤ C Ju⌊t⌋(ǫ
′
n−⌊t⌋ · · · ǫ′n)−1/2 etmλ+ ‖bn0 (0)‖Cm

≤ C Jun−⌊t⌋(ǫ
′
0 · · · ǫ′n−⌊t⌋)

1/2 etmλ+ .

(4.41)
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In the last line we used the estimates of Lemma 4.3 for ‖bn(0)‖Cm. ¿From now on we
will abbreviate Jun−⌊t⌋(ǫ

′
0 · · · ǫ′n−⌊t⌋) by Jun−⌊t⌋(ǫ

′). By iteration, we similarly estimate the

derivatives of the higher-order symbols (k < N, m ≤ 2(N − k)):

(4.42) ∀t ≤ n− 1, |dmbnk(−t, x)| ≤ C Jun−⌊t⌋(ǫ
′)1/2 et(m+2k)λ+ .

We see that the higher-order symbols may grow faster (with t) than the principal one. As a
result, when t becomes too large, the expansion (4.37) does not make sense any more, since
the remainder in (4.36) becomes larger than the main term. From (4.10), this remainder
is bounded by

‖R̂N(−t)‖ ≤ ~
N

2

∫ t

0

‖△bnN−1(−s)‖ ds ≤ C ~
N et 2N λ+ Jun−⌊t⌋(ǫ

′)1/2 .

We see that this remainder remains smaller than the previous terms if t ≤ (1−δ′)| log ~|
2λmax

.

Since we assume n ≤ (1−δ′)| log ~|
λmax

, the WKB expansion still makes sense if we take t = n/2.

To ease the notations in the following sections, we call wn/2
def
= vn(−n/2) the WKB state

approximating U−n/2vn(0), its phase function Sn/2 = Sn(−n/2) and its symbol c
n/2
~

(x)
def
=

bn
~
(−n/2, x), all these data depending on ǫ′. The above discussion shows that

(4.43) ‖U−n/2 vn(0; ǫ′) − wn/2(ǫ′)‖ = ‖R̂N(−n/2)‖ ≤ C ~
Nδ′/2 Jun/2(ǫ

′)1/2 .

We will select an integer N large enough (Nδ′ >> 1), so that the above remainder is
smaller than the estimate Jun(ǫ′)1/2 we have on ‖vn(ǫ′)‖.

4.5.2. Evolution by Un/2. We now study the forward evolution Un/2 vn(0; ǫ). From now on
we omit to indicate the dependence in the parameter t = 0. Using the smooth partition
(3.4), we decompose Un/2 as:

Un/2 =
∑

αi,1≤i≤n/2

P 2
αn/2

U P 2
αn/2−1

U · · ·P 2
α1
U

def
=
∑

α

Qα .

The operators (Qα) are very similar with the (Pα) of Eq. (3.8): the cutoffs Pk are replaced
by their squares P 2

k . As a result, the iterative WKB method presented in the previous
sections can be adapted to obtain approximate expressions for each stateQα v

n(ǫ), similarly
as in (4.22):

Qα v
n(ǫ) = v

3
2
n(ǫα) + OL2(

√
Jun(ǫ) ~

N) , v
3
2
n(x; ǫα) = b

3
2
n

~
(x; ǫα) e

i
~
S

3
2 n(x;ǫα) .

Here ǫα is the sequence of length 3n/2 with elements ǫ0 · · · ǫnα1 · · ·αn/2. That state is

localized on the Lagrangian manifold L 3
2
n(ǫα). The symbols b

3
2
n

k (ǫα) and their derivatives
satisfy the bounds of Lemma 4.3. The state Un/2vn(ǫ) is therefore given by a sum of
contributions

(4.44) Un/2vn(ǫ) =
∑

α

v
3
2
n(ǫα) + OL2

(
~
N−NK

)
.
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3n/2
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3n/2
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Ω ε’n/2

3n/2
L (   )εβ
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−n/2 n

ε

ε;
3n/2

l0L(    )

Figure 4.2. Decomposition of
(
gn/2Ln(ǫ)

)
∩T ∗Ωǫ′

n/2
into connected leaves

(here we show two of them, in pink). The leaf ℓ contains the components

L 3
2
n(ǫα), L 3

2
n(ǫβ) while the leaf ℓ0 contains L 3

2
n(ǫγ). We also show the

elongated leaf g−n/2Ln(ǫ′) supporting the state wn/2(ǫ′) (in blue). This state

might interfere with v
3
2
n(ǫ, ℓ0), but not with v

3
2
n(ǫ, ℓ) or any other leaf above

Ωǫ′
n/2

.

Here NK is a constant depending on the cardinal K of the partition P(0), and we assumed

n ≤ | log ~|
λmax

. The integer N will be taken large enough, such that ~
N−NK is smaller than the

remainder appearing in (4.43).

4.5.3. Grouping terms into connected Lagrangian leaves. To compute the overlap (4.35),
we do not need the full sum (4.44), but only the components α such that the support of

v
3
2
n(ǫα) intersects the support of wn/2(ǫ′), which is inside Ωǫ′

n/2
. Thus, we can restrict

ourselves to the set of sequences

A
def
=
{

α : πL 3
2
n(ǫα) ∩ Ωǫ′

n/2
6= ∅
}
⊂ {1, . . . , K}n/2 .

For n >> 1, the Lagrangian
⋃

α∈A L 3
2
n(ǫα), which is a strict subset of gn/2Ln(ǫ), is the

disjoint union of a large number of connected leaves, which we denote by L 3
2
n(ǫ, ℓ), ℓ ∈ [1, L]



HALF-DELOCALIZATION 27

(see Figure 4.2). Each leaf L 3
2
n(ǫ, ℓ) corresponds to geodesics of length n/2 from Ωǫn to

Ωǫ′
n/2

in a definite homotopy class. As a consequence, if ρ, ρ′ belong to two different leaves

ℓ 6= ℓ′, there must be a time 0 < t < n
2

such that the backwards images g−tρ, g−tρ′ are at
a distance larger than D > 0 (D is related to the injectivity radius). The total number of
leaves above Ωǫ′

n/2
can grow at most like the full volume of gn/2L(ǫ), so that

L ≤ C en(d−1)λ+/2 ≤ C ~
−(d−1)/2 .

Each leaf L 3
2
n(ǫ, ℓ) is the union of a certain number of components L 3

2
n(ǫα), and we group

the corresponding sequences α into the subset Aℓ ⊂ {1, . . . , K}n/2:

L 3
2
n(ǫ, ℓ) =

⋃

α∈Aℓ

L 3
2
n(ǫα) .

We obviously have A =
⊔
ℓAℓ. All components L 3

2
n(ǫα) with α ∈ Aℓ are generated by the

same phase function S
3
2
n(ǫα)

def
= S

3
2
n(ǫ, ℓ), so that the state

(4.45) v
3
2
n(x; ǫ, ℓ)

def
=
∑

α∈Aℓ

v
3
2
n(x; ǫα) = b

3
2
n

~
(x; ǫ, ℓ) e

i
~
S

3
2 n(x;ǫ,ℓ)

is a Lagrangian state supported on L 3
2
n(ǫ, ℓ), with symbol

b
3
2
n

~
(x; ǫ, ℓ) =

∑

α∈Aℓ

b
3
2
n

~
(x; ǫα) .

By inspection one can check that, at each point ρ ∈ L 3
2
n(ǫ, ℓ), the above sum over α ∈ Aℓ

has the effect to insert partitions of unity
∑

k P
2
k = 1 at each preimage g−j(ρ), j =

0, . . . , n
2
− 1. As a result, the principal symbol will satisfy the same type of upper bound

as in (4.20):

|b
3
2
n

0 (x; ǫ, ℓ)| ≤ |bn(g−n/2S (x))| J− 1
2
n

S (x)1/2 ≤ C J
− 3

2
n

S (x)1/2 , with S = S
3
2
n(ǫ, ℓ) .

The same argument holds for the higher-order terms and their derivatives. Besides, because

the action of g−3n/2 on L 3
2
n(ǫ, ℓ) is contracting, for any x ∈ Ωǫ′

n/2
the Jacobian J

− 3
2
n

S (x) is

of the order of Ju3
2
n
(ǫα), where α can be any sequence in Aℓ (all these Jacobians are of the

same order). We will use

Ju3
2
n
(ǫ, ℓ) = max

α∈Aℓ

Ju3
2
n
(ǫα) .

Hence, the full symbol b
3
2
n

~
(x; ǫ, ℓ) satisfies the same bounds as in Lemma 4.3:

(4.46) |dmb
3
2
n

k (x; ǫ, ℓ)| ≤ C nm+3k Ju3
2
n
(ǫ, ℓ)1/2 , k ≤ N − 1, m ≤ 2(N − k) .
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4.6. Overlaps between the Lagrangian states. Putting together (4.43, 4.45, 4.44),
the overlap (4.35) is approximated by the following sum:

〈
U−n/2vn(ǫ′), Un/2 vn(ǫ)

〉
=

L∑

ℓ=1

〈wn/2(ǫ′), v 3
2
n(ǫ, ℓ)〉 + O(~Nδ

′/2) , where(4.47)

〈wn/2(ǫ′), v 3
2
n(ǫ, ℓ)〉 =

∫
e

i
~

(
S

3
2 n(x;ǫ,ℓ)−Sn/2(x;ǫ′)

)
c̄
n/2
~

(x; ǫ′) b
3
2
n

~
(x; ǫ, ℓ) .(4.48)

Each term is the overlap between the WKB state wn/2(ǫ′) supported on g−n/2Ln(ǫ′), and

the WKB state v
3
2
n(ǫ, ℓ) supported on L 3

2
n(ǫ, ℓ), both Lagrangians sitting above Ωǫ′

n/2
.

The sup-norms of these two states, governed by the principal symbols c
n/2
0 (ǫ′), b

3
2
n

0 (ǫ, ℓ),
are bounded by

(4.49) ‖wn/2(ǫ′)‖L∞ ≤ C Jun/2(ǫ
′)1/2, ‖v 3

2
n(ǫ, ℓ)‖L∞ ≤ C Ju3

2
n
(ǫ, ℓ)1/2 .

Here C > 0 is independent of all parameters, including the diameter ε of the partition.

The integral (4.47) takes place on the support of c
n/2
~

(x; ǫ′), that is (see (4.40)), on a set
of volume O(Jun/2(ǫ

′
n/2 · · · ǫ′n)). It follows that each overlap (4.48) is bounded by

(4.50) |〈wn/2(ǫ′), v 3
2
n(ǫ, ℓ)〉| ≤ C Jun/2(ǫ

′)1/2 Ju3
2
n
(ǫ, ℓ)1/2 Jun/2(ǫ

′
n/2, . . . , ǫ

′
n) .

We show below that the above estimate can be improved for almost all leaves ℓ, when one

takes into account the phases in the integrals (4.48). Actually, for times n ≤ (1−δ′)| log ~|
λmax

,

there is at most a single term ℓ0 in the sum (4.47) for which the above bound is sharp;
for all other terms ℓ, the phase oscillates fast enough to make the integral negligible.
Geometrically, this phase oscillation means that the Lagrangians L 3

2
n(ǫ, ℓ), g−n/2Ln(ǫ′) ⊂

Ln/2(ǫ′) are “far enough” from each other (see Fig. 4.2). The “distance” between two
Lagrangians above Ωǫ′

n/2
is actually measured by the height

H
(
L 3

2
n(ǫ, ℓ),Ln/2(ǫ′)

) def
= inf

x∈Ωǫ′
n/2

|dS 3
2
n(x; ǫ, ℓ) − dSn/2(x; ǫ′)| .

The overlap between “distant” leaves can be estimated through a nonstationary phase
argument:

Lemma 4.5. Assume that, for some δ′′ < δ′/2 and n ≤ (1−δ′)| log ~|
λmax

, the height

H
(
L 3

2
n(ǫ, ℓ),Ln/2(ǫ′)

)
≥ ~

1−δ′′

2 .

Then for ~ small enough the overlap

(4.51) |〈wn/2(ǫ′), v 3
2
n(ǫ, ℓ)〉| ≤ C ~

Nδ′′
√
Jun/2(ǫ

′)Ju3
2
n
(ǫ, ℓ) .

The constant C > 0 is uniform with respect to ǫ′, ǫ and the implicit parameters z, z′, η1, η
′
1.
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Proof. Let us call s(x) = S
3
2
n(x; ǫ, ℓ) − Sn/2(x; ǫ′) the phase function appearing in the

integral (4.48). Notice that the assumption on the height means that |ds(x)| ≥ ~
1−δ′′

2 for

all x. We then expand the product c̄
n/2
~

b
3
2
n

~
and keep only the first N terms:

c̄
n/2
~

(x; ǫ′) b
3
2
n

~
(x; ǫ, ℓ) = a~(x) +RemN (x) , a~(x) =

N−1∑

k=0

~
k ak(x) .

From the estimates (4.42,4.46), we control the sup-norm of the remainder:

‖RemN‖L∞ ≤ C ~
Nδ′/2

√
Jun/2(ǫ

′)Ju3
2
n
(ǫ, ℓ) .

Through the Leibniz rule we control the derivatives of ak:

‖ak‖Cm ≤ C nm+3k
√
Jun/2(ǫ

′)Ju3
2
n
(ǫ, ℓ) e

n
2
(m+2k)λ+ , k ≤ N − 1, m ≤ 2(N − k) .

For each k < N and m ≤ 2(N − k), we have at our disposal the following nonstationary
phase estimate [13, Section 7.7]:

∣∣∣
∫
ak(x) exp

( i
~
s(x)

)
dx
∣∣∣ ≤ C ~

m
∑

m′≤m

sup
x

( |dm′

ak(x)|
|ds(x)|2m−m′

)

≤ C ~
mδ′′−k(1−δ′/2)

√
Jun/2(ǫ

′)Ju3
2
n
(ǫ, ℓ) .

Here we used the assumption on |ds(x)| and the fact that δ′′ < δ′/2. By taking m = N −k
for each k and summing the estimate over k, we get:

∣∣∣
∫
a~(x) exp

( i
~
s(x)

)
dx
∣∣∣ ≤ C ~

Nδ′′
√
Jun/2(ǫ

′)Ju3
2
n
(ǫ, ℓ) .

Since δ′/2 > δ′′, the remainder RemN yields a smaller contribution, which ends the proof.
�

We now show that there is at most one Lagrangian leaf L 3
2
n(ǫ, ℓo) which can be very

close to Ln/2(ǫ′):
Lemma 4.6. Take as above δ′′ < δ′/2, assume the diameter ε is much smaller than the

injectivity radius, and for ~ small enough take n ≤ (1−δ′)| log ~|
λmax

.

If there is some ℓo ∈ {1, . . . , L} such that the height H
(
L 3

2
n(ǫ, ℓo),Ln/2(ǫ′)

)
≤ ~

1−δ′′

2 ,

then for any ℓ 6= ℓo we must have H
(
L 3

2
n(ǫ, ℓ),Ln/2(ǫ′)

)
> ~

1−δ′′

2 .

Proof. Assume ab absurdo the existence of ρo ∈ L 3
2
n(ǫ, ℓo), ρ ∈ L 3

2
n(ǫ, ℓ) and ρ′1, ρ

′
2 ∈

Ln/2(ǫ′), such that the Riemannian distances d(ρo, ρ
′
1) ≤ ~

1−δ′′

2 and d(ρ, ρ′2) ≤ ~
1−δ′′

2 . When
applying the backwards flow for times 0 ≤ t ≤ n

2
, these points depart at most like

d(g−tρo, d
−tρ′1) ≤ C etλ+ ~

1−δ′′

2 ≤ C ~
δ′/4−δ′′/2 ,

d(g−tρ, d−tρ′2) ≤ C etλ+ ~
1−δ′′

2 ≤ C ~
δ′/4−δ′′/2 .
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Besides, on this time interval the points g−tρ′1, g
−tρ′2 remain in the small Lagrangian piece

g−tLn/2(ǫ′) of diameter ≤ ε, so that d(g−tρo, g
−tρ) ≤ ε. Since ε has been chosen small, this

contradicts the property that the points g−tρo, g
−tρ must depart at a distance ≥ D (see

the discussion at the beginning of §4.5.3). �

If there exists a leaf ℓo such that H(L 3
2
n(ǫ, ℓo),Ln/2(ǫ′)) ≤ ~

1−δ′′

2 , there is a point ρo ∈
L 3

2
n(ǫ, ℓo) such that g−jρo stays at small distance from Ln/2−j(ǫ′) for all j = 0, . . . , n/2−1,

and therefore satisfies πg−jρo ∈ Ωǫ′
n/2−j

. This shows that the set Aℓo contains the sequence

(ǫ′1 · · · ǫ′n/2)
def
= ǫ̃′. The overlap corresponding to this leaf is bounded as in (4.50), and we

replacing Ju3
2
n
(ǫ, ℓo) by Ju3

2
n
(ǫǫ̃′) we obtain

(4.52) |〈wn/2(ǫ′), v 3
2
n(ǫ; ℓo)〉| ≤ C Jun (ǫ′) Jun(ǫ)1/2 .

According to the above two Lemmas, all the remaining leaves are “far from” Ln/2(ǫ′), and
their contributions to (4.47) sum up to

∑

ℓ 6=ℓo

〈wn/2(ǫ′), v 3
2
n(ǫ; ℓ)〉 = O(~Nδ

′′−(d−1)/2) .

We take N large enough (say, Nδ′′ >> 1), such that this is negligible compared with (4.52).
We finally get, whether such an ℓo exists or not:

|〈U−n/2vn(z′, η′1, ǫ
′), Un/2vn(z, η1, ǫ)〉| ≤ C Jun(ǫ′) Jun(ǫ)1/2 .

To finish the proof of Lemma 4.2, there remains to integrate over the parameters η1, η
′
1

in (4.33). Since χ(n) (resp. χ(4n)) is supported on an interval of length ~
1−δenδ (resp.

~
1−δe4nδ), the overlap of Lemma 4.2 finally satisfies the following bound:

|〈U−n/2Pǫ
′ δ

(4n)
j′ (z′), Un/2 Pǫ δ

(n)
j (z)〉| ≤ C ~

−(d+1) e5δn
~

2−2δ Jun(ǫ′) Jun(ǫ)1/2 .

This is the estimate of Lemma 4.2, with c = 2 + 5/λmax. Proposition 4.1 and Theorem 3.2
follow. �

5. Subadditivity

The aim of this section is to prove Proposition 3.3. It is convenient here to use some
notions of symbolic dynamics. Starting from our partition of unity (Pk)k=1,...,K , we intro-
duce a symbolic space Σ = {1, . . . , K}N. The shift σ acts on Σ by shifting a sequence
ǫ = ǫ0ǫ1 . . . to the left and deleting the first symbol. For ǫ = (ǫ0 · · · ǫn), we denote [ǫ] ⊂ Σ
the subset (n-cylinder) formed of sequences starting with the symbols ǫ0 . . . ǫn. To any
normalized eigenfunction ψ~ we can associate a probability measure µΣ

~
on Σ by letting,

for any n-cylinder [ǫ],

µΣ
~
([ǫ])

def
= ‖PǫnPǫn−1(1) . . . Pǫ0(n)ψ~‖2 = ‖Pǫn(−n)Pǫn−1(−(n− 1)) . . . Pǫ0 ψ~‖2 .

If we denote ǫ = (ǫnǫn−1 · · · ǫ0), this quantity is equal to ‖P̃ ∗
ǫ
ψ~‖2 = ‖P ∗

ǫ
ψ~‖2 (see (3.20)).

To ensure that this defines a probability measure on Σ, one needs to check the following
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compatibility condition

µΣ
~
([ǫ0 . . . ǫn]) =

K∑

ǫn+1=1

µΣ
~
([ǫ0 . . . ǫnǫn+1])

for all n and all ǫ0 . . . ǫn. This identity is obvious from (3.4).

5.1. Invariance until the Ehrenfest time. By the Egorov theorem, if µ is the weak-∗
limit of the Wigner measures Wψ~

on T ∗M , then for every n and any fixed n-cylinder

[ǫ] ⊂ Σ we have µΣ
~
([ǫ])

~→0−−→ µ({ǫ}), where {ǫ} was defined in §3.2.6 as the function
P 2
ǫn (P 2

ǫn−1
◦ g1) . . . (P 2

ǫ0
◦ gn) on T ∗M . This means that the measures µΣ

~
converge to a

measure µΣ
0 defined by µΣ

0 ([ǫ])
def
= µ({ǫ}).

Since the ψ~ are eigenfunctions, µ is localized on E and is (gt)-invariant (Prop. 2.1), so
that µΣ

0 is σ-invariant. For ~ > 0 the measures µΣ
~

are not exactly σ-invariant; yet, we

show below that µΣ
~

is almost invariant under the shift, until the Ehrenfest time | log ~|
λmax

.

As in §6.2, for small γ, ν > 0 we introduce the time Tν,γ,~
def
= (1−γ)| log ~|

2(1+ν)λmax
.

Proposition 5.1. For any given no ∈ N, any cylinder [ǫ] = [ǫ0ǫ1 . . . ǫno ] of length no and
any n ∈ N such that n+ no ≤ 2 Tν,γ,~, one has

∑

ǫi,−n≤i≤−1

µΣ
~
([ǫ−n . . . ǫ−1ǫ0ǫ1 . . . ǫno ]) = µΣ

~
([ǫ0ǫ1 . . . ǫno ]) + O(~γ/2) .

The implied constant is uniform with respect to no and n in the allowed interval. In other
words, the measure µΣ

~
is almost σ-invariant:

σn♯ µ
Σ
~
([ǫ])

def
= µΣ

~
(σ−n[ǫ]) = µΣ

~
([ǫ]) + O(~γ/2) .

Proof. For simplicity we prove the result for no = 0; the argument can easily be adapted
to any no > 0.

We use an estimate on the norm of commutators, proved in Lemma 6.2. If A is an
operator on L2(M), remember that we denote A(t) = U−tAU t. According to Lemma 6.2,
for any smooth observables a, b supported inside Eν = E(1/2 − ν, 1/2 + ν), one has

‖[Op~(a)(t),Op~(b)(−t)]‖L2(M) = O(~γ) ,

or equivalently

‖[Op~(a)(2t),Op~(b)]‖L2(M) = O(~γ),

for any time |t| ≤ Tν,γ,~. This result will be applied to the observables a = Pǫ0 f , b = Pǫj f ,
where f is compactly supported in Eν and identically 1 near E . According to Remark 1,
inserting the cutoff f after each Pǫj only modifies µΣ

~
([ǫ]) by an amount O(~∞). In the

following, we will omit to indicate these insertions and the O(~∞) errors.
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To prove Proposition 5.1, we first write
∑

ǫi,−n≤i≤−1

µΣ
~
([ǫ−nǫ−(n−1) . . . ǫ0]) =

∑

ǫi,−n≤i≤−1

‖Pǫ0Pǫ−1(1) . . . Pǫ−n(n)ψ~‖2

=
∑

〈Pǫ−1(1)P 2
ǫ0
Pǫ−1(1)P̃ ∗

[ǫ−2...ǫ−n](2)ψ~, P̃
∗
[ǫ−2...ǫ−n](2)ψ~〉

=
∑

〈P 2
ǫ0Pǫ−1(1)2P̃ ∗

[ǫ−2...ǫ−n](2)ψ~, P̃
∗
[ǫ−2...ǫ−n](2)ψ~〉

+ O(~γ)
[ ∑

ǫi,−n≤i≤−2

‖P̃ ∗
[ǫ−2...ǫ−n](2)ψ~‖2

]

=
∑

ǫi,−n≤i≤−2

〈P 2
ǫ0
P̃ ∗

[ǫ−2...ǫ−n](2)ψ~, P̃
∗
[ǫ−2...ǫ−n](2)ψ~〉 + O(~γ) .

We have used the identities
∑

ǫ−1
Pǫ−1(1)2 = I and

∑
ǫ−n,...,ǫ−2

‖P̃ ∗
[ǫ−2...ǫ−n] ψ~‖2 = 1.

We repeat the procedure:
∑

ǫi,−n≤i≤−2

〈P 2
ǫ0
P̃ ∗

[ǫ−2...ǫ−n](2)ψ~, P̃
∗
[ǫ−2...ǫ−n](2)ψ~〉

=
∑

〈Pǫ−2(2)P 2
ǫ0
Pǫ−2(2)P̃ ∗

[ǫ−3...ǫ−n](3)ψ~, P̃
∗
[ǫ−3...ǫ−n](3)ψ~〉

=
∑

〈P 2
ǫ0Pǫ−2(2)2P̃ ∗

[ǫ−3...ǫ−n](3)ψ~, P̃
∗
[ǫ−3...ǫ−n](3)ψ~〉

+ O(~γ)
[ ∑

ǫi,−n≤i≤−3

‖P̃ ∗
[ǫ−3...ǫ−n](3)ψ~‖2

]

=
∑

ǫi,−n≤i≤−3

〈P 2
ǫ0
P̃ ∗

[ǫ−3...ǫ−n](3)ψ~, P̃
∗
[ǫ−3...ǫ−n](3)ψ~〉 + O(~γ) .

Iterating this procedure n times we obtain
∑

ǫi,−n≤i≤−1

µΣ
~
([ǫ−nǫ−(n−1) . . . ǫ0]) = 〈P 2

ǫ0
ψ~, ψ~〉 + nO(~γ) ,

which proves the Proposition for n0 = 0, since n = O(| log ~|). The proof for any fixed
n0 > 0 is identical. �

5.2. Proof of Proposition 3.3. For ψ~ an eigenstate of the Laplacian, the entropy hn(ψ~)
introduced in (3.15) can be expressed in terms of the measure µΣ

~
:

hn(ψ~) = −
∑

|ǫ|=n

‖P̃ ∗
ǫ
ψ~‖2 log‖P̃ ∗

ǫ
ψ~‖2 = −

∑

|ǫ|=n

µΣ
~
([ǫ]) logµΣ

~
([ǫ])

= −
∑

|ǫ|=n

µΣ
~
([ǫ]) log µΣ

~
([ǫ])

def
= hn(µ

Σ
~
) .

In ergodic theory, the last term is called the entropy of the measure µΣ
~

with respect to the
partition of Σ into n-cylinders. Before using the results of the previous section, we choose
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the parameters ν, γ appearing in Proposition 5.1 such that ν = γ = δ′/2, where δ′ is the

small parameter in Proposition 3.3. This ensures that the time 2 Tν,γ,~ ≥ (1−δ′)| log ~|
λmax

.
We then have, for any fixed no and n such that n+ no ≤ Tν,γ,~,

(5.1) hno+n(µ
Σ
~
) ≤ hn−1(µ

Σ
~
) + hno(σ

n
♯ µ

Σ
~
) = hn−1(µ

Σ
~
) + hno(µ

Σ
~
) + O(~δ

′/4) .

The first inequality is a general property of the entropy, due to the concavity of the loga-
rithm. The second equality comes from the almost invariance of µΣ

~
(Proposition 5.1) and

the continuity of the function x 7→ −x log x.
The pressure for ψ~ (see (3.16)) contains an additional term:
∑

ǫ=ǫ0...ǫn+no

µΣ
~
([ǫ]) log Jun+no

(ǫ)

=
∑

ǫ
′=ǫ0...ǫn

µΣ
~
([ǫ′]) log Jun(ǫ′) +

∑

ǫ
′′=ǫn...ǫn+no

σn♯ µ
Σ
~
([ǫ′′]) log Juno

(ǫ′′)

=
∑

ǫ
′=ǫ0...ǫn

µΣ
~
([ǫ′]) log Jun(ǫ′) +

∑

ǫ
′′=ǫn...ǫn+no

µΣ
~
([ǫ′′]) log Juno

(ǫ′′) + O(~δ
′/4) .

The first equality is due to the factorization property (3.11), while the second is again a
consequence of the almost invariance of µΣ

~
. �

6. Some results of pseudodifferential calculus

6.1. Pseudodifferential calculus on a manifold. In this section we present the stan-
dard Weyl quantization of observables defined on the cotangent of the compact d-dimensional
manifold M (see for instance [10]). The manifold can be equipped with an atlas {fℓ, Vℓ},
such that the Vℓ form an open cover of M , and for each ℓ, fℓ is a diffeomorphism from Vℓ
to a bounded open set Wℓ ⊂ R

d. Each fℓ induces a pullback f ∗
ℓ : C∞(Wℓ) → C∞(Vℓ). We

denote by f̃ℓ the induced canonical map between T ∗Vℓ and T ∗Wℓ:

(x, ξ) ∈ T ∗Vℓ 7→ f̃ℓ(x, ξ) = (fℓ(x), (Dfℓ(x)
−1)T ξ) ∈ T ∗Wℓ ,

(AT is the transposed of A) and by f̃ ∗
ℓ : C∞(T ∗Wℓ) → C∞(T ∗Vℓ) the corresponding pull-

back. One then chooses a smooth partition of unity on M adapted to the charts {Vℓ},
namely a set of functions ϕℓ ∈ C∞

c (Vℓ) such that
∑

ℓ ϕℓ = 1 on M .
Any observable a ∈ C∞(T ∗M) can now be split into a =

∑
j aℓ, with aℓ = ϕℓ a, each

term being pushed to ãℓ = (f̃−1
ℓ )∗aℓ ∈ C∞(T ∗Wℓ). If a belongs to a nice class of functions

(possibly depending on ~), for instance the space of symbols

(6.1) a ∈ Sm,k = Sk(〈ξ〉m)
def
=
{
a = a~ ∈ C∞(T ∗M), |∂αx∂βξ a| ≤ Cα,β~

−k 〈ξ〉m−|β|
}
,

then Weyl-quantization associates to each ãℓ a pseudodifferential operator on S(Rd):

(6.2) ∀u ∈ S(Rd) , Opw
~
(ãℓ) u(x) =

1

(2π~)d

∫
e

i
~
〈x−y,ξ〉ãℓ

(
x+ y

2
, ξ; ~

)
u(y) dy dξ .
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To pull this pseudodifferential operator back on C∞(Vℓ), one takes a smooth cutoff ψℓ ∈
C∞
c (Vℓ) such that ψℓ(x) = 1 close to suppϕℓ. The quantization of a ∈ Sm,k is finally

defined as follows:

(6.3) ∀u ∈ C∞(M), Op~(a) u =
∑

ℓ

ψℓ × f ∗
ℓ ◦ Opw

~
(ãℓ) ◦ (f−1

ℓ )∗(ψℓ × u) .

The space of pseudodifferential operators image of Sm,k through this quantization is de-
noted by Ψm,k(M). The quantization obviously depends on the cutoffs ϕℓ, ψℓ. How-
ever, this dependence only appears at second order in ~, and the principal symbol map
σ : Ψm,k(M) → Sm,k/Sm,k−1 is intrinsically defined. All microlocal properties of pseudo-
differential operators on R

d are carried over to Ψm,k(M). The Laplacian −~
2△ belongs to

Ψ2,0(M), with principal symbol σ(−~
2△) = |ξ|2x.

It will be useful for us to include classes of symbols more general than (6.1). Following
[8], for any 0 ≤ ǫ < 1/2 we introduce the symbol class

(6.4) Sm,kǫ
def
=
{
a ∈ C∞(T ∗M), |∂αx∂βξ a| ≤ Cα,β ~

−k−ǫ|α+β| 〈ξ〉m−|β|
}
.

The induced functions ãℓ will then belong to the corresponding class on T ∗Wℓ, for which
we can use the results of [8]. For instance, the quantization of any a ∈ S0,0

ǫ leads to a
bounded operator on L2(M) (the norm being bounded uniformly in ~).

6.2. Egorov theorem up to logarithmic times. We need analogous estimates to Bouzouina-
Robert’s [5] concerning the quantum-classical equivalence for long times. Our setting is
more general, since we are interested in observables on T ∗M for an arbitrary manifold M .
On the other hand, we will only be interested in the first order term in the Egorov theorem,
whereas [5] described the complete asymptotic development in power of ~.

The evolution is given by the propagator U t on L2(M), which quantizes the flow gt on
T ∗M . We will consider smooth observables a ∈ C∞

c (T ∗M) supported in a thin neighbour-
hood of the energy layer E , say inside the energy strip Eν = E(1/2 − ν, 1/2 + ν) for some
small ν > 0. This strip is invariant through the flow, so the evolved observable at = a ◦ gt
will remain localized inside Eν . If λmax is the maximal expansion rate of the flow on E (see
the definition in Thm 2.2), then by homogeneity the maximal expansion rate inside Eν is√

1 + 2νλmax. If we let λν
def
= (1 + ν)λmax, the successive derivatives of the flow on Eν are

controlled as follows:

(6.5) ∀t ∈ R, ∀ρ ∈ Eν , ‖∂αρ gt(ρ)‖ ≤ Cα eλν |α t| .

Obviously, the derivatives of the evolved observable also satisfy

(6.6) ∀t ∈ R, ∀ρ ∈ Eν , ‖∂αat(ρ)‖ ≤ Ca,α eλν |α t| .

For times of the order of | log ~|, that is, of the order of the Ehrenfest time, each derivative
is bounded by some power of ~

−1. More precisely, for any γ ∈ (0, 1] and any ~ ∈ (0, 1/2),
we call Tν,γ,~ the following time:

(6.7) Tν,γ,~ =
(1 − γ)| log ~|

2λν
.
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Starting from a smooth observable a = a0, the bounds (6.6) show that the family of function
{at = a ◦ gt : |t| ≤ Tν,γ,~} remains in the symbol class S−∞,0

ǫ , with ǫ = 1−γ
2

. Furthermore,
any quasi-norm is uniformly bounded within the family. To prove a Egorov estimate, we
start as usual from the identity

U−t Op~(a)U
t − Op~(a ◦ gt) =

∫ t

0

dsU−s (Diff at−s)U
s,(6.8)

with Diff at
def
=

i

~
[−~

2△,Op~(at)] − Op~({H, at}) .(6.9)

Since −~
2△ belongs to Ψ2,0 ⊂ Ψ2,0

ǫ and Op
~
(at) ∈ Ψ−∞,0

ǫ for times |t| ≤ Tν,γ,~, the
semiclassical calculus of [8, Prop. 7.7] (performed locally on each chart Vj) shows that
Diff at ∈ Ψ−∞,−α

ǫ , with α = 1 − ǫ = 1+γ
2

From the Calderon-Vaillancourt theorem on
Ψ−∞,−α
ǫ [8, Thm. 7.11], we extract a constant Ca > 0 such that, for any small enough

~ > 0 and any time |t| ≤ Tν,γ,~,

‖Diff at‖ ≤ Ca ~
α = Ca ~

1+γ
2 .

We can finally combine the above estimate in (6.8) and use the unitarity of U t (Duhamel’s
principle) to obtain the following Egorov estimate.

Proposition 6.1. Fix ν, γ ∈ (0, 1]. Let a be a smooth, ~-independent observable supported
in Eν. Then, there is a constant Ca such that, for any time |t| ≤ Tν,γ,~, one has

(6.10) ‖U−t Op
~
(a)U t − Op

~
(a ◦ gt)‖ ≤ Ca |t| ~

1+γ
2 .

Let us now consider two observables a, b ∈ C∞
c (Eν), evolve one in the future, the other in

the past. The calculus in S−∞,0
ǫ (with again ǫ = 1−γ

2
) shows that, for any time |t| ≤ Tν,γ,~,

one has

[Op
~
(a ◦ gt), Op

~
(b ◦ g−t)] ∈ S−∞,−γ

ǫ .

Together with the above Egorov estimate and the Calderon-Vaillancourt theorem on Ψ−∞,−γ
ǫ ,

this shows the following

Lemma 6.2. Fix ν, γ ∈ (0, 1]. Let a, b ∈ C∞
c (Eν) be independent of ~. Then there is a

constant C > 0 such that, for small ~ and any time |t| ≤ Tν,γ,~,

‖[U−t Op
~
(a)U t, U t Op

~
(b)U−t]‖ ≤ C ~

γ .

6.3. Cutoff in a thin energy strip. As explained in §3.2.2, we need an energy cutoff
χ(0) localizing in the energy strip of width ∼ ~

ǫ around E , with ǫ ∈ [0, 1) arbitrary close to
1. As a result, the m-th derivatives of χ transversally to E will grow like ~

−mǫ. The symbol
classes (6.4) introduced in the previous sections do not include such functions if ǫ > 1/2.
Yet, because the fluctuations occur close to E and only transversally, it is possible to work
with a “second-microlocal” pseudodifferential calculus which includes such fast-varying,
anisotropic symbols. We summarize here the treatment of this problem performed in [23,
Section 4].
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6.3.1. Local behavior of the anisotropic symbols. For any ǫ ∈ [0, 1), we introduce a class of

symbols Sm,kE,ǫ , made of functions a = a~ satisfying the following properties:

• for any family of smooth vectors fields V1, . . . , Vl1 tangent to E , and of smooth
vector fields W1, . . . ,Wl2 , one has in each energy strip Eν = E(1/2 − ν, 1/2 + ν):

sup
ρ∈Eν

|V1 . . . Vl1 W1 . . .Wl2 a(ρ)| = O(h−k−ǫ l2) .

• away from E , we have |∂αx∂βξ a(ρ)| = O(h−k〈ξ〉m−|β|).

Notice that Sm,k ⊂ Sm,kE,ǫ′ ⊂ Sm,kE,ǫ if 1 > ǫ > ǫ′ ≥ 0.
To quantize this class of symbols, we cover a certain neighbourhood Eν of E by a family

of bounded open sets Vj, such that for each j, Vj is mapped by a canonical diffeomorphism
κj to a bounded open set Wj ⊂ T ∗

R
d, with (0, 0) ∈ Wj . We will denote by (x, ξ) the local

coordinates on Vj ⊂ T ∗M , and (y, η) the image coordinates on Wj . The canonical map κj
is chosen such that H ◦ κ−1

j = η1 + 1/2. In particular, the image of E ∩ Vj is a piece of the
hyperplane {η1 = 0}.

We consider a smooth cutoff function φ supported inside Eν, with φ ≡ 1 in Eν/2, and a
smooth partition of unity (ϕj) such that 1 =

∑
j ϕj on ∪jVj, and suppϕj ⋐ Vj. For any

symbol a ∈ Sm,kE,ǫ , the function a(1 − φ) is supported outside Eν/2, and it belongs to the

standard class Sm,k of (6.1). On the other hand, for each index j the function

aj
def
= (a φϕj) ◦ κ−1

j

is compactly supported inside Wj ⊂ T ∗
R
d. That function can be Weyl-quantized as in

(6.2). Although aj(y, η) can oscillate at a rate ~
−ǫ along the coordinate η1 near {η1 = 0},

for a, b ∈ Sm,kE,ǫ the product Opw
~
(aj) Opw

~
(bj) is still of the form Opw

~
(cj), where the function

cj(y, η) is given by the Moyal product aj♯bj and satisfies an asymptotic expansion in powers
of ~

1−ǫ and ~.
Mimicking the proof of the Calderon-Vaillancourt theorem in [8, Thm. 7.11], we use the

isometry (in L2(Rd)) between Opw
~
(A) and Opw1 (A ◦ T~), where the rescaling

T~(y, η) = (y1~
1−ǫ
2 , y′~1/2; η1~

1+ǫ
2 , η′~1/2) ensures that the derivatives of aj◦T~ are uniformly

bounded in ~. As a consequence we get the following

Proposition 6.3. There exist Nd and C > 0 such that the following bound holds. For any
symbol a ∈ Sm,kE,ǫ and any j, the operator Opw

~
(aj) acts continuously on L2(Rd), and its

norm is bounded as follows:

‖Opw
~
(aj)‖ ≤ ‖aj‖∞ + C

∑

1≤|α|+|β|≤Nd

~
1
2
(|α′|+|β′|+(1−ǫ)α1+(1+ǫ)β1) ‖∂αy ∂βη aj‖∞ .

6.3.2. Global quantization of the anisotropic symbols. We now glue together the various
pieces of a ∈ Sm,kE,ǫ to define its global quantization. First of all, since a(1 − φ) belongs to

the standard class Sm,k of (6.1), we can quantize it as in (6.3).
Then, for each index j we select a Fourier integral operator Uκj

: L2(π(Vj)) → L2(π(Wj)),
elliptic near suppϕj × κj(suppϕj) ⊂ Vj ×Wj , and associated with the diffeomorphism κj
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(an explicit expression is given in §4.2.1). Since aj describes the symbol a in the coordinates
(y, η), it makes sense to pull Opw

~
(aj) back to the original coordinates (x, ξ) using Uκj

. The

quantization of the global symbol a ∈ Sm,kE,ǫ is then defined as follows:

(6.11) OpE,~(a)
def
= Op~(a(1 − φ)) +

∑

j

U∗
κj

Opw
~
(aj)Uκj

.

The Fourier integral operators (Uκj
) can and will be chosen such that OpE,~(1) = Id +

OL2→L2(~∞). The operators OpE,~(a) make up a space Ψm,k
E,ǫ of pseudodifferential operators

on M . The quantization OpE,~ depends on the choice of the cutoffs φ, ϕj , the diffeomor-
phisms κj and the associated FIOs (Uκj

). It is equal to the quantization Op~ for symbols
a supported outside the energy strip Eν; otherwise, it differs from Op

~
by terms O(~).

The space Ψ−∞,k
E,ǫ is invariant under conjugation by FIOs which preserve the energy layer

E . We will apply that property to the propagator U = ei~△/2, which quantizes the flow g1.
One actually has a Egorov property

U−1 OpE,~(a)U = OpE,~(b) , with b− a ◦ g ∈ S−∞,k−1+ǫ
E,ǫ .

One is naturally lead to the definition of an ~-dependent essential support of a symbol
a~ ∈ Sm,kE,ǫ (we will only consider the finite part of the essential support, the infinite part
at |ξ| = ∞ being irrelevant for our purposes). A family of sets (V~ ⊂ T ∗M)~→0 does
not intersect ess − suppa~ iff there exists χ~ ∈ S−∞,0

E,ǫ , with χ~ ≥ 1 on V~, such that

χ~ a~ ∈ S−∞,−∞
E,ǫ . The essential support of a~ is also the wavefront set of its quantization,

WF~(OpE,~(a~)).
The above Egorov property can be iterated to all orders, showing that transports the

wavefront set of an operator A ∈ Ψ−∞,k
E,ǫ is transported classically:

(6.12) WF~

(
U−1 AU

)
= g−1(WF~(A)) .

6.4. Properties of the energy cutoffs. Take some small δ > 0 and Cδ > 0 as in §3.2.2.
One can easily check that the cutoffs χ(n) defined in (3.6), with n ≤ Cδ| log ~|, all belong to
the symbol class S−∞,0

E,ǫ . From the above results, their quantizations Op(χ(n)) = OpE,~(χ
(n))

are continuous operators on L2(M), of norms

(6.13) ‖Op(χ(n))‖ = 1 + O(~δ/2) ,

with an implied constant independent of n. We want to check that these cutoffs have
little influence on an eigenstate ψ~ satisfying (3.5). For this, we invoke the ellipticity of
(−~

2 △−1) ∈ Ψ2,0 ⊂ Ψ2,0
E,ǫ away from E . Using [23, Prop. 4.1], one can adapt the standard

division lemma to show the following

Proposition 6.4. For ~ > 0 small enough and any n ∈ N, 0 ≤ n ≤ C| log ~|, there exists

A
(n)
~

∈ Ψ−2,0
E,ǫ and R

(n)
~

∈ Ψ−∞,−∞
E,ǫ such that

OpE,~(1 − χ(n)) = A
(n)
~

(−~
2△− 1) +R

(n)
~
.
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As a result, for any eigenstate ψ~ = −~
2 △ ψ~, one has

‖ψ~ − OpE,~(χ
(n))ψ~‖ = O(~∞) ‖ψ~‖ .

The implied constant is uniform with respect to n.

This result shows that, for ~ small enough, the eigenstate ψ~ belongs to the space H′
~

defined in (3.7).

We end this section by proving some properties of the cutoffs χ(n). The general idea is
that an eigenstate ψ~ is localized in an energy strip of width ~, so that inserting cutoffs
χ(n) in expressions of the type Op(a)ψ~ has a negligible effect.

Lemma 6.5. The following estimates are uniform for ~ > 0 small enough and 0 ≤ n ≤
Cδ| log ~|:

‖(1 − Op(χ(n+1)))U Op(χ(n))‖ = O(~∞) ,

∀k = 0, . . . , K, ‖(1 − Op(χ(n+1)))U Pk Op(χ(n))‖ = O(~∞) .

Here Pk is any element of the partition of unity (3.4).

Proof. For the symbols χ(n) the essential support (which has been defined above in a rather
indirect way) coincides with the support. The first statement of the Lemma uses the
classical transport of the wavefront set (6.12), applied to Op(χ(n)). Since χ(n) is invariant
through the geodesic flow, U Op(χ(n))U−1 has the same wavefront set as Op(χ(n)). From
the definition (3.6), the support of (1 − χ(n+1)) is at a distance ≥ C ~

ǫ from the support
of χ(n). The calculus on S0,0

E,ǫ then implies that the product (1−Op(χ(n+1))) Op(χ(n)) is in

Ψ−∞,−∞
E,ǫ .

The second statement is a consequence of the first: the calculus on Ψ0,0
E,ǫ, which con-

tains the cutoffs Op(χ(n)) and the multiplication operators Pk, shows that Op(χ(n)) and
Pk Op(χ(n)) have the same wavefront set. �

We draw from this Lemma two properties which we use in the text (see (3.8) for the
definition of Pǫ).

Corollary 1. For any sequence ǫ of length n ≤ Cδ| log ~|, one has

‖(1 − Op(χ(n)))Pǫ Op(χ(0))‖ = O(~∞) .

For any two sequence ǫ, ǫ′ of length n ≤ Cδ| log ~|/4, one has

‖(1 − Op(χ(4n)))P ∗
ǫ
′ Un Pǫ Op(χn))‖ = O(~∞) .
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Holland, 1991

[5] A. Bouzouina and D. Robert: Uniform Semi-classical Estimates for the Propagation of Quantum

Observables, Duke Math. J. 111, 223–252 (2002)
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[7] Y. Colin de Verdière, B. Parisse, Équilibre instable en régime semi-classique I : concentration

microlocale, Comm. Partial Differential Equations 19 no. 9-10, 1535–1563 (1994)
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