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Abstract

In this paper, we propose a global method for estimating théam of a camera
which films a static scene. Our approach is direct, fast abdsto and deals with adja-
cent frames of a sequence. It is based on a quadratic ap@taimof the deformation
between two images, in the case of a scene with constant grefitea camera coordi-
nate system. This condition is very restrictive but we shbat provided translation
and depth inverse variations are small enough, the erromptinab flow involved by
the approximation of depths by a constant is small. In thigext, we propose a new
model of camera motion, that allows to separate the imagermetion in a similar-
ity and a “purely” projective application, due to change pfical axis direction. This
model leads to a quadratic approximation of image defoonatiat we estimate with
an M-estimator; we can immediatly deduce camera motiompeters.

1 Introduction

The estimation of camera motion plays a crucial role in mamyains of computer vision
such as the recovery of scene structure, medical imagiggneanted reality and so on. This
is a difficult task since the motion of a pixel between two i@adepends not only on the
six parameters of camera motion between the two successagei captures, but also on
the depth at the corresponding point in the static scenestiBgimethods can be classified
as features correspondences-based approaches, whidtaleptical flow methods and
direct methods, which are global.

Among all proposed methods using features correspondenoescan mention re-
cursive techniques based on extended Kalman filfgr§] [1, 23hwnack camera motion
and estimate the structure of the scene. The essentialkmatrich was first defined by
Longuet-Higgins in EB], is often estimated, as only a fewregpondences in two images
are sufficient; the number of required correspondencesudsed by Faugeras et al. in
[, B.[8]. In the case of an uncalibrated camera, the anabgpproach is described i [7]
with the fundamental matrix.

The use of optical flow avoids the choice of “good” featureapgauthors use the basic
bilinear constraint linking optical flow, camera veloc#tiend depths of projected points; in
[B], Bruss and Horn apply an algebraic computation to rentueeth from the bilinear
constraint and use numerical optimization techniquesgkleand Jepson, iﬁ|[9], decouple



the translational velocity from the rotational velocitydamse linear subspace methods. Ma
etal. in [1§] and Brooks et al. i [11] use a different apptowith the epipolar differential
constraint: a differential essential matrix is determirfiexan the optical flow, leading to

a unique camera velocity estimation. Another well-knowprapch is based on motion
parallax, notably developped by Tomasi and Shi@ [12], Laamdl Cipolla in EB] and
Irani et al. in ]. Tomasi et al. propose iE[14] a companisd algorithms which only
use optical flow for estimating camera motion.

Finally, direct methods use directly the content of a coublanages. They are gen-
erally based on the constraint of constant illuminatiosdalalled optical flow constraint),
that is minimized by a least square approach, on the parasrafta given motion model.
Different assumptions are used to avoid estimating depittal@oints; for example, Horn
and Weldon in[[1]6] and Bergen et al., {1]17], assume that épgtdmap is locally constant.
In [Lg], Negahdaripour and Horn consider that it is planagwadratic.

Let us notice that features correspondences-based tegmigprk best with well sep-
arated views, when the displacement (especially the &#oslor the so-called baseline)
between frames is sufficiently large. On the contrary, @bflow methods and direct meth-
ods, based on infinitesimal approximations, are well-aethfti very small motions.

Our method deals with adjacent frames of a sequence, so aitow baselines and
restricted camera rotations. It is a direct method, verydasd robust, based on a quadratic
approximation of image deformation.

The outline of the paper is as follows. In Section 2, we déscdur framework. We
recall the image deformation generated by camera motioren;,TWwe show that we can
assume in the deformation formula that depth of projectedtpds constant (in camera
coordinate system) under following condition: the procafadhe norm of translation with
the maximal variation of inverse depth has to be sufficieshall. Thus, two consecutive
images are linked by a planar transformation. In this cante® introduce in Section 3
the registration group, used for modeling image defornmagienerated by a camera dis-
placement. We also propose a new camera motion decomppghiat separates image
deformation in a “purely” projective deformation, due tcacige of optical axis direction,
and a similarity. As camera displacement is restricted, tain a quadratic approxima-
tion of optical flow between two adjacent frames. This appnation is used in Section
4 to define an algorithm of motion estimation; we show estiomatesults on synthetic se-
guences and use motion estimations on real video sequastaa®$aicing and simplified
augmented reality. Concluding remarks are given in Se&ion

2 Framework

2.1 Pinhole camera model

A camera projects a pointin 3D space on a 2D image. This amsition can be described
using the well-known pinhole camera moo@l [7] presentedg’urﬁl].. The camera is lo-
cated onC, the optical center, and directed bythe optical axis. The camera projects a
point M of the 3D space on the plarfe : {Z = f.}. The planeR is called the retinal
plane andf. the focal length. The projection of M is then the intersection of the optical
ray (CM) with R.

Let ¢ be the intersection of the optical axis wifh. If (X,Y, Z) are the coordinates
of M in the camera coordinate systéif, ¢, j, k) and(z, y) the coordinates ofn in the
orthogonal basiée, 7, j), the relationship betweeir, y) and(X, Y, Z) is following

$:fc%

Y= fc%

As f. just acts as a scaling factor on the image, we choose in tipisrpaithout loss of



generality, to set the focal length to one. Th¢nwill be the unit of camera and image
coordinate systems.

Figure 1:Pinhole camera model.

2.2 Camera motion

Let D be a displacement of the camera or in an equivalent way aadispient of the
planeR. The movemenD may be written in a unique way d3 = (R, t), whereR is a
rotation with axis containing’ andt a translation. The set of displacemefis= (R, t)
forms the Lie group of rigid transformationsit¥ calledS E(3), which denotes the special
Euclidian group. The displacement = (R, t) transforms a poinfi/ belonging toR3
in M’ = RM + t. Thus, the camera is identified before the displacemerithy, j, k)
and after the displacement b¢"’, R(i), R(j), R(k)), with CC’ = t. In the following, we
denote

aq b1 C1 tl
R=1as b2 Co and t= |t
az by c3 i3

Let now f andg be two adjacent images in a sequence defined on rectangutain®
K of RandK’ of R’ (with f. = 1). Let M be a pointinR? such that its projections. and
m’ onR andR’ belong toK andK’. We denoten = (z,y) in (¢, 4,j) andm’ = (2/,y’)
in (¢, R(i), R(j)). Thus, if we make the assumption of constant illuminatioe have

fl@y) =g y),
and the two points are linked by

a1r + azy +az — <%, R(i))

o —
1@ + 2y + ¢3 — {7y B(K))
(1)
;L b1z + boy + b3 — <Z(;‘,y) ) R(])>
y = 1% + ¢y + c3 — (Z(;_’y) , R(k))
and
arx’ + by +e1 + ﬁ
azx’ + b3y Fezt Z/(_,fﬁ_’y,)
2

azx’ + boy’ + c2 + T y)

asx’ + bsy’ + c3 + 721(?,1/)

)

whereZ(z,y) andZ'(2’',y’) are the depths aff respectively inNC, 1, 7, k) and C’, R(i),
R(j), R(K)).



2.3 Depths approximation by a constant

We now wish to approximate the depths by a constant in the dwadlas Kll) anc{[Z) Let
Zy belong toR?, . By a Taylor expansion of equatloﬁ 1) %Q— about L we obtain

,  mztay+az— <ZLO,R(Z')>+
xr =
a1z + cay + ez — (5=, R(k))

(zew — #) < tR()) + {t, R(k))——metate )

(claz+ch+C37(ZL0,R(k)>)
+o (Z(alz y) ZL{))

biz + by + b3 — (£, R(i»

—~

c1x + coy + ¢c3 — Z—U,R (k))
t,R t,R k bix+boy+bs .
Z(z,y) < < ( )> (CII+C2y+C37<ZL/O7R(k)>)
(Z(I y) Zo

Thus, if for all (z,y) € K, (ﬁ - ZLU) |I£]] is small enough with respect to the image

coordinates, we can substitutg in place ofZ (z, y).
We now make some numerical and technical assumptions thditt restrictive and
so are likely verified by a couple of consecutive images.

Hypothesis 1 — Let D = (R,t) € SE(3) and K be the rectangular domain wheyeis
defined. LetZ be the depth function of projected points, definedsan/Ve assume that

1
a1z + coy + ez — (m, R(k))

QO

Hypothesis 2 — Let D = (R,t) € SE(3) and K be the rectangular domain whete

is defined, having maximal dimensién Let Z be the depth function of projected points,
defined on¥’. For two matching pointéz, y) and(2’, ') (in the sense of formulaf| (1) and
@)), we suppose that

max{|z’ —z|, |y —y|} < =

The first hypothesis comes from the fact that the variatiooptfcal axis direction
and its translation along the axis between two consecutive acquisitions, have to be very
small so that images were workable. The second one fornsullagelimitation of points
displacements between two images; we assume that the twparmnts of optical flow
can not be larger than the half of image larger dimension.

With these two assumptions, we show in Apper@ix A the follugviheorem.

Theorem 1 — Let D = (R,t) € SE(3) and K be the rectangular domain whergis
defined, and having maximal dimensibnLet Z be the depth function of projected points,
defined onk’, bounded byZ;,,; > 0 and Z,,,,. We assume that and D verify hypothesis

fl and[?. If
1 1 2(L+1)
— <
(me Z) o 2D < 3)

then there exist€, > 0 so that we can replac(z, y) by Z, in the equationg[1) with an
error bounded by.




The value ofZ, that minimizes: is

7 1 1 27 sup Zi
Zo = argmin max | ———— — — | = ——surZinf
Zo (xy)ek 1 Z(z,y)  Zo Zsup + Zing

We can also show that we can substitute the s&pia place ofZ'(z/, ') in equations[{2)
with an error bounded by + &’ if

t|(L+1 ! 4
oz I+ <e @

For small values of ande’, conditions KB) anc{[4) can be verified in the following cases
e if there is no translation, depths do not appear in formiisid [B),

e if t # 0, the scene must be far enough from the camera for verifyimglition @).
The variations of amplitude df/Z must also be small enough for verifying condition
(E): the further the scene takes place from the camera, tfyebare the authorized
variations of depth.

With this framework, relationg}(1) anfl (2) betwegandg become

a1z + asy + as — (&, R(1)) bz + boy + bs — (¢, R(j
flay) =g ———— ¢ ()>7 1@+ bay 4 bs = {F, BU)) =go(z,y)
ax+cay+es— (t,R(k)) c1x+ coy+c3 — (t, R(k))
and
a1z’ + by + 1+t asx’ + by +co + 1o
gla'yy)y = BET L TOTA BT TR TOTR = fop( ),
a3x’ 4+ b3y’ + c3 +ts asx’ + b3y’ + c3 + t3

wheret = ZLO In the sequel of the paper, we will assume that conditiﬂmsu(\ﬂ ﬂl) are
verified: we will use applicationg and+ as the relations betweehandg. As we will

consider two consecutive images in a sequence, the tremstas very small.

3 Modelisation

We now consider two consecutive imaggandg in a sequence, obtained before and after
a camera motio® = (R, t).

3.1 Registration group

The applications ands) are projective applications, each defined by six parameteese
for the rotation and three for the translation. Projectippleations are classically repre-
sented in the projective group R?. This group is isomorphic to the special linear group
SL(R3) of invertible matrices. Thus, the applicatiopgndy are associated to the follow-
ing invertible matrices\,, and M,

ar by e+t 1 0 R
./\/lg; =las by c+ta| =R|0 1 <t, R
0 0 7.

)
P ) |=rE ©®
as bg c3 + tg k

and

ay a az — <t, R(’L) 1 0 _
My=|b by b3—ERG) | =R7*|[0 1 —t, | =R 'H.
C1 C2 C3 — <t, R(k’)) 0 0

gt



Our aim is to estimate camera motion through image defoonagiach defined by six
parameters. But the projective group is an eight paramgterg and the matrix decom-
position shows thai\/l;1 # My in SL(R?). Thus we are going to model the projective
transformation in another group, well-adapted: the regfistn group, introduced by Dibos

in [L9)

Definition 1 — Let.4 be the subset of projective applications

A= { ¢ : R? — R? so thatv(z, ) € R?,

a1T + b1y +c1+ o asw + by +co + 3
o(z,y) = :

asx +bsy 4¢3+ azx + bgy +c3 +y

ap by o
whereR= | ay by ¢ | € SO(3) and (a,3,7) € R? }
as b3 C3

The registration group i$.A, ), where the composition lawis deduced from the compo-
sition lawo of S E(3) through the isomorphism

T:A— SE(@3)

Vope A I(¢) = (R, 1)
whereR is the rotation defined above amnd= («, 3,v) is the translation.

More precisely, lety; andg, belong toA4, they correspond to the displacemefts=
(R1,t1) and Dy = (Ra,t2), respectively. Theng, x ¢2 = ¢ whereg is the projective
application associated to the displacem@nt D; o Dy = (R, t) wheret is the translation
with vectort = t; + Ryt and R = R; R. The notationD; o D, means that the camera
first performs the displacement; and second),. Moreover, if¢ belongs toA and is
associated t® = (R, t), theng~! is associated td ~! = (R~1, —R~'t).

The applicationg and+ belong toA; we haveg(z,y) = f(o(z,y)) and f(z,y) =
g(¥(z,y)) with ¢» = o~ in the registration group (but not in the projective group).

By modeling the camera displacement in the registrationgyre/e reduce the problem
to the determination of six parameters of a planar appticatiskz andt are respectively
defined by three parameters.

3.2 Camera motion decomposition

We propose here to decompose a camera motion in order taase ffae image deformation
in two components: a similarity part and a “purely” projeetpart. Indeed, any camera
motion can be decomposed into three basic types of motion:

e atranslation, which produces an homothety translatioherrhagef belonging to
the planer,

e arotation with axig:, which produces a planar rotation ¢n

e arotation with axis in the plang”, i, j) which distortsy.

3.2.1 Decomposition of rotation

Let us consider a camera rotatidghwith axis containingC. We decompose? in two
particular rotationsR2 R;. The first oneR;, with axis A belonging to the planéC, i, j)
transforms the direction of the optical axisin R(k); this rotation induces a projective
deformation of the imag¢. The second on&; is a rotation with axis?(k): R, induces a
planar rotation of the imag®; (f). Any camera rotation can be written in such a way.



This decomposition is interesting because of the inducéarehations of the image.
R, produces a “purely” projective deformation of the imggehereas, creates a planar
rotation of the imageR, (f).

Let us express the rotatidy, with two parameterd? for the location ofA in the plane
(C,i,7) anda for the angle of the rotation. If we denaf®, the rotation matrix with axis
and angle:, the expression aR; in (C, 1, j, k) is

R, = RER! R,
which we denote in the followin&y .. Now, let3 be the angle of the rotatioR; around
the new optical axig(k). We can then write the rotatiaR. in (C, i, j, k)
Ry = RERLRER \R*,.
Finally, the expression of the global rotatiéhis
R = RyRy = RERLRERY ) = Ry o RY;.

Thus, the rotatior? may also be decomposed in a rotation around thefakidlowed by
the rotationRy .

Figure 2:Decomposition of a camera rotatidr in two rotationsRs R; .

3.2.2 Decomposition of a complete motion

A complete camera motioP = (R, t) induces a projective deformatignof the imagef.
The matrix associated tois RH, according to formulzﬂS), which can now be written as

RH = Ry oRiH.

If we denotery , the “purely” projective deformation associated to the tiotaRy ., ands
the similarity associated tREH then we have

9(z,y) = f(p(2,y)) = f(ro.a o s(z,y)) = forsaos(z,y).



We obtain therefore six parameters defining the camera matieo for the rotation
Ry, and four for the translationand rotationR};. We express now camera motion with
the following parameterd, «, 3, A, B, C') where(— A, — B, —(C') are the coordinates of
in the basiq R(i), R(j), R(k)). These new notations allow to obtain an easier writting of
the projective applicatiog (the inverse ofp in the registration group), which we will use
later

arx + asy +asz + A b1$+b2y+b3+B) ©)

cix+cy+es+Clexr+eyt+cz+C

vl = (

Remark that the six parametel® o, 3, A, B, C) allow to access explicitly the camera
displacemenD = (R, t). Indeed,

t = —AR(i) — BR(j) — CR(k)

R = Ry o R,

3.3 Parameter values

As we consider two successive images of a video sequencewitjh frame rate (classi-
cally 24 images per second), the camera motion between tagdamis very small and the
parameter values are restricted, except for the atgiaich belongs td — =, 7]. Let us
remark that the dimensions & and K’ verify a practical constraint: the view angle of a
camera is usually not larger thaf0°. This means thakt, the maximal dimension ok,
must verify L < 8 f., as the relation between the view anglef. and L, illustrated on

figure[3, is

¢ a L
n— = .
My T a2y

As f. =1, we havel < 8.

|t~

o

Nl

Figure 3: Relation between the view angleof the camera, the focal length and the
maximal dimensioi. of images.

Tableﬂ gives orders of magnitude of parameter values thatave obtained by ex-
periment, when we take a unit focal length. These experisnemsist in taking images
and applying the six parameters projective applicationthsimages have not to be too
deformed, we deduce the orders of magnitude of parameters.

Parameter Values
6 (radian) | —m, 7
« (radian) [0,0.03]
g (radian) | [—0.05,0.05
A,B —0.09,0.09
C —0.03,0.03

Table 1:Parameter values4, B andC are expressed in units of focal length).




3.4 Optical flow approximation

Theorem 2 — Let us consider a scene orthogonal to the a@xiset D = (R, t) belong to
SE(3), also denoted = (6, «, 3, A, B,C). Let K and K’ be the domains wherg¢ and
g are defined, with maximal dimensidnand(z, y) and(a’, y") two matching points ok
and K’. We assume that hypothefis 1 is verified,< 1 and|3| < 1. Then, the optical
flow at(x, y) verifies

¥ —rx= —Cr+ A+ Py+ax(ycostd —xsinf) —asinb + o(C) + o(c) + o(5)
+o(y/[eA]) + o(/]aCl) + o(\/|AC]) + o(\/|CB]) + o(/|ef])
Yy —y= —Cy+B—Px+ay(ycostd —xsinb) + acosb + o(C) + o(a) + o(3)

+o(vlaB|) + o(y/]aCl) + o(\/|BCI) + o(\/|CH]) + o(/]ef])

and
’x’fxf(sz+A+6y+az(ycost97xsin@)fozsinﬁ)‘ <T(L,a,0,A,CQC)
’y’—y—(—Cy+B—ﬁaz—i—ay(ycos@—xsin@)—|—ac059)’ <T(L,a,3,B,C)
with

2 o « al®
T(L,a,3,A,C) = {L3%+L2 (@+2\§ |y 4ol )

2 2 3
+L (02 (24 18] + 1G4 4 el 4 260l 82 4 262 4 IoL)

2
ol (2 + 4+ 490 ¢ 280 7 340

The proof of this theorem is given in Appendik B. Thanks to ffezameter values
given in table[ll, the optical flow can be approximated by a cateiformula in(z, y).
Indeed, these parameter values allow to make the bdusdall in comparison to the
value of each component of optical flow. For example, in trsead a pure translation with
A= B =0.09andC = 0.03, the boundI is equal to4.2 10~2 for L = 1 and8.4 10~3
for L = 8, whereas the components of optical flow have an order of madgmbf10—2 or
10~1. For a purely projective rotation with = 0.01, the optical flow has an order o6 —?2
and the bound is equal ®©10~* for L = 1 and5.2 1073 for L = 4. For L = 8, the optical
flow has an order of0~! and the bound i8.6 102,

If L,a, 3, A, B,C are sufficiently small, the optical flow can be approximatgdhe
sum of three independent terms; the comporerf'z + A, —Cy + B) is due to the
translation of the camerdgy, —z) to the rotationR}; and (o z:(—xzsin ) + y cos ) —
asind, ay (—rsind + ycosf) + acos ) to the rotationRy . These three terms are ap-
proximations of optical flows, respectively produced by ttanslation, the rotationB’g
andRyg 4.

Remarks

e Letusremark that at the image center, wheandy havel0~! order (for a unit focal
length), the quadratic term is negligible in comparisorht dther terms. Thus, the
deformation of the center of the image is mainly affine.

e At the beginning of this paper, we did assume that the tréinslaand the depth of
the scene have to verify

1 1 2(L +1)
(7= -7=) 25 <
inf sup

9




Figure 4: Decomposition of deformation. On left, a checkerboard eéal by a cam-
era motion. On right, the deformation can be decomposedrst, & “purely” projective
deformation, generated by the rotatidty ., (at top) followed by a similarity (bottom).

for substituting depths by a constant in formu@s (1). Astheroximation of optical
flow has an order of0—2, we must choose an approximation erat least inferior
to 1072,

3.5 Modelisation assets

In this section, we have first proposed to work in the rediistnegroup, well-adapted to the
projective applications ands) that link two consecutive imaggsandg. The advantage
of this group is the isomorphism with the Lie gro¥{#(3), which allows to compose
projective deformations through the composition of canmeodions.

Second, we have described a new camera motion decompotitiemphasize two
components of image deformation: a similarity and a “purphpjective deformation, due
to the change of optical axis direction. This decompositsonteresting because it corre-
sponds to a physical perception of camera motion effect®ngsarutive images. As shown
on figure[h, we easily perceive the two deformations: the éptiprojective deformation,
which deforms parallels on the checkerboard, and the siityilavhich preserves angles.
With this decomposition, we have obtained a quadratic appration of optical flow for
two consecutive images, where the quadratic term is onlytalttee change of optical axis
direction. Remark that we only need conditiﬁh (3) for apjmating equationl]l) by.

4 Camera motion estimation
Let f andg be two adjacent images in a video sequence. In this sectierprapose a

method for estimating camera motion betwegfeandg, based on camera motion decom-
position and optical flow quadratic approximation.

10



4.1 Algorithm

Odobez and Bouthémy propose |E|[20] a method for deterinig2D parametric motions
between two images. They use constant, affine or quadratielsol heir method is robust,
multiresolution and only uses spatial and temporal gradiefintensity. The software, de-
velopped by the authors, is available at the addnéss: / / www. i risa. fr/ Vi sta/
Mot i on2D.

Let us now describe briefly their algorithm. The optical flava@oint(x, y) is assumed
to be parametric, denoteg (x, y), whereO is the set of parameters. Several models are
proposed, the most general has 12 parameters

2
T
€1 ap az\ (x @1 G2 g3
ue (T, = + + X
o(z,y) (cz) (a3 a4) (y) (q4 qs (JG) yg

The displacement frame difference (DFD) associated to anpairic motion model at the
point(x, y) is defined with

DFDe¢)(z,y) = 9((x,y) + u(z,y)) — f(z,y) +§

where¢ is a global intensity shift to account for global illuminati change. The set of
parameters is thus estimated by minimizing the followingchion

> p(DFDe ¢ (,y),T)
(zy)ef

where the functiorp is called an M-estimator since its minimization correspotmlthe
maximume-likelihood estimation ip is considered as the opposite log-likelihood of the
model. The authors choose a function bounded for high vatuesder to eliminate the
contribution of outliers. They use the Tuckey’s biweightdtion defined as
ST —T22 4+ 5 if [t < T,
p(t,T) = ,
% otherwise.

The minimization ofp is performed using an incremental and multiresolution sehde-
scribed in ]. This method is accurate and has a low contiputa cost.

Several models are proposed in the software but none comdsgo our optical flow
approximation. Thus, we have added the following model éostbftware

2
x

_[(a a1 az) [z g g2 O
e = () + (% ) () (6 0 o) (=

Y

Once the six parametets, , co, a1, as, g1, g2) are estimated, we convert them intps, 6,
A, B, C by identifying the previous expression with the quadraditrfula given in theorem

—arctan(q1/q2) if g >0

o —arctan(qi/q2) + 7 if g2 <0

) w/2 if go =0andgq; >0

—m/2 if go =0andg; <0.

a=\/¢l +¢

5 = a2

A=c; +asinb

B =c¢y — acost

C = —ai.

11


http://www.irisa.fr/Vista/Motion2D

4.2 Results

The performances of our method are illustrated through cammetion estimations on
synthetic and real sequences, and some applications @& &stisnations. The context for
applicating our method is given by conditi(ﬂ| 3)

1 1 2(L+1)
(7= - 7)) 25 <
inf sup

with e < 1072, This means that for a given image size, the product of tagiesi norm and
variations of inverse of depth must be small enough. We doaetl condition|]4) since
we only use the deformatiap.

4.2.1 Synthetic sequences

We first estimate camera motion on sequences, that we haatedrigom an image, con-
sidered as orthogonal to the optical axis and deformed withaf six parameterd («, 3,

A, B, C). These sets are randomly generated with respect to vaivess ig table[ll. The
angle of view is equal t80°. Three sequences of 200 images are synthesized; the first one
is generated with translations, the second one with rataténd the third one with plain
motions. The initial image is shown on figLﬂe 5. We assumetidbpth is constant and
apply formula [fi) on the image with a bilinear interpolation

Figure 5:Initial image for test sequences.

Translation| Axis rotation| Rotation angle
direction direction error
error error absolute| relative
Plain
motions 9.7 17.3 0.03 2.2%
Pure
translations 4.5 - 0.01° -
Pure
rotations - 18.2 0.002 0.1%

Table 2:Results of camera motion estimations on 3 synthetic sega&i@00 images. The
errors are averaged errors computed over each sequence.

Camera motion results are shown on tdfhle 2. Whatever thedfpamera motion,
the estimations of translation direction are correct up fevadegrees and the estimated
rotation direction up to ten or twenty degrees. These last&may seem to be important
but we must notice that the change of optical axis directiohard to estimate, as small
rotation and small translation can produce very similaultsn images. For example, a
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small translation with directiohand a small rotation with axisproduce very close effects

on images. The estimations of rotation angle are more atguhey are correct up to a few

hundredths degrees for rotation angles of 1 or 2 degreeaninabtained results are rather
good, better when motions are reduced to a translation alaiion. Moreover, the scene

was quite complicated and the method is very fast: it takés&conds for a sequence of
200 images witl284 x 188 pixels, with a processor Pentium M 1.8 GHz.

Robustness Figureﬂi shows the robustness of the algorithm to impuls@ossgjan noise.
We add various amounts of impulse or gaussian noise to theeseq produced with com-
plete motions. Graphs plot errors in the estimates as aiimat noise level, averaged over
the 200 images at each noise level. For both types of noisegrifors do not increase a
lot: they remain close to errors computed without noises teanl 5 degrees for translation
direction, at most few tenths degrees for the angle of mgfior impulse noise). Thus the
method is robust, thanks to the use of M-estimator: it presigood results even when the
amount of impulse noise is important.

Depths influence In this paper, we have approximated the deformation (eqne@))
betweeny andf by 1, provided that conditio{}3) was verified, with< 102

1 1 2(L+1)
(7= -7) M 25 <
inf sup

1

The smaller is(Z% — Z—) It @ the more accurate is the approximation. For a
in f sup

given scene, further the camera is from the scene, smalteeiprevious expression and
better is the estimation. This fact is illustrated with noatiestimation on synthetic se-
guences SOFA5 and SOFA6 (Sequences for Optical Flow Arsalgsurtesy of the Com-
puter Vision Group, Heriot-Watt University). Each sequenehich each contains 20 im-
ages, is given with internal and external camera parametedscamera motion. Motions
are basic: a translation of directiénfor SOFA5 and a rotation with axis followed by a
translation with directiork for SOFAG6. Images of the two sequences are shown on figure

fl- Results are given on tablgs 4 dhd 5; the evaluatit(nﬁf; - Z;w) [¢]| 252 s also
computed (in units of focal length) on tajle 3.

11 11 I 2(L+1)
Zinf Zsup Z; f Zsup 3
Imagel 0.0062 0.0076
Imagel0 0.0112 0.0137
Image20 0.0293 0.0357

Table 3: Relative variations of inverse of depths in sequences S@EAS®FA6. Depths
Ziny and Zs,y, ||t and L are expressed in units of focal length in the camera system.

As the camera comes close the scene, differences isrll:EablH@aBe in time. Remark
that we havel < 8; the angle of view is equal t¢5°. Table anﬂ|5 give errors in motion
estimation between consecutive images at three instatrttse &eginning of the sequence,
at the middle and at the end. The estimation method is the sarpeeviously used: we
assume na priori type of motion. For SOFA5, the translation direction estiesare very
good, better than on previous synthetic sequences. Thigisocthe motion simplicity and
to the fixity of optical axis. However, we observe that whea tamera comes close the
scene, the translation estimation error and the rotatigfeagstimation (that should be null)
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Figure 6: Camera motion estimation errors, averaged over 200 imadekeonoisy se-
quence. Impulse noise level of 10 means {4t of pixels values are randomly chosen
with a uniform variable distributed on all gray levels. Gaian noise level of0 means
that we add to the images a gaussian noise with standard tiewi0.

slightly increase. For SOFABG, the translation directiotinestes are always very good; but
the estimation errors on axis and angle of rotation increaggficantly when the camera

comes close the scene.
Although errors increase when we get close to the scene ({beaae then are away

from the defined context), our method allows to conclude ifopge motions (for example
when the optical axis is fixed) even if conditidh (3) is notified withe < 10~2.

4.2.2 Applications on real sequences
As we have no real sequences with given camera motion anthalteamera parameters,
we illustrate the quality of camera motion estimation witlotapplications of estimation

results.
The first use is mosaicing. In our framework, we suppose thatsuccessive images

are linked by a planar transformation, thus the knowledgmafera motion between these
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Figure 7:At the top, images 1 and 2 of SOFA5 and SOFA6. At the middlges®9 and
20 of SOFA5 and at the bottom, images 19 and 20 of SOFAG.

Translation| Rotation
direction angle
error error
Between
imagesl and2 0.1 0.0005
Between
imagesl0 and11 0.17 0.0018
Between
imagesl9 and20 0.55 0.019
Errors
average 042 0.01%4

Table 4:Estimation errors on SOFA5. Camera motion is constant orsdggience: it is a
translation of directiont (the camera comes close the scene).

two images allows to register one image to the other. Wittetnation of camera motion
on a whole sequence, we can compute the motion between tvgegmhstant in time, by
composing displacement estimations in the registrationgrThus, by choosing an image
viewpoint and registering some images distant in time omvé, obtain a bigger image
that we could observe from the image viewpoint, but with gdawision field. FigureE|8
and[9 show two panoramas, computed with the estimated camian on a real video
sequence of an office. Remark that the mosaicing is theafgtjgossible if the viewpoint
does not change (when there is no translation) or when thermafiims a planar scene.
Our movie does not exactly verify the hypothesis of puretiotabecause although the
camera translation is very small between adjacent framh@say be significant between
two images distant in time and obviously, the scene is natgslaBut as the scene is rather
far from the camera location, registrations are correct.

The second use is augmented reality. It consists in addirgpgatt in a sequence in
such a way it appears to be present in the scene. In our frarketih@ application is



Translation| Rotation axis| Rotation angle
direction direction error
error error absolute| relative
Between
imagesl and2 0.23 0.00r 0.05r 2.5%
Between
imagesl0 and11 0.38 0.49r 0.068 3.4%
Between
imagesl9 and20 0.97 1.08 0.094 4.7%
Errors
average 0.39 0.269 0.069 3.4%

Table 5: Estimation errors on SOFA6. Camera motion is constant orstggience: it is
a rotation of axisk followed by a translation of directiok (the camera comes close the
scene).

Figure 8: At the top, scenes 20, 35 and 50 of the office sequence; at ttmrhaecon-
structed panoramic view on viewpoint 35.

simplified since we insert in the office sequence a planaropbyehich is a poster. This
poster is first inserted on the main planar region of the saewghly parallel to the retinal
plane. Next, it is deformed with the projective applicatﬁ)rassociated to the estimated
camera motion. Example frames from the augmented sequempessented on figufe]10.
This experience shows that the camera motion is accuraséiypated: the poster moves
with the same motion as the background of the scene. Morésphgdhe poster orientation
follows the orientation of the background (camera rotatiare correctly estimated) and its
position is plausible.

Let us recall that our goal is not mosaicing nor augmentelitye¢hese two applica-
tions are utilizations of estimated camera motions andtilate the quality of our motion
estimation results in our framework.
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Figure 9: At the top, scenes 10, 30, 60, 70 and 80 of the office sequenties bottom,
reconstructed panoramic view on viewpoint 60.

Figure 10:Replacement of the notice board by a cinema poster. At thetiepnsertion of
the poster on the first image. At the middle, imag&<0, 30, 40 et45 of the new sequence
obtained by deforming the poster with the estimations ofezarmotions and pasting it in
the sequence.

5 Conclusion
In this paper, we have proposed a new global method for thielgmoof egomotion esti-

mation, well-adapted to adjacent frames as produced by areatimat films a static scene,
when variations of inverse of scene depths and translat®sficiently small. This con-
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text is theoretically limited, but as the translation iswemall between two acquisitions,
it is not so restrictive. In this context, the method is veagtf: first because we do not
have to compute optical flow or match points as it is a dired¢ho@, second because of the
multiresolution scheme in the software Motion2D, fitted tw quadratic approximation of
optical flow. It is also robust, thanks to the use of an M-eaton Moreover, the modeling
of camera motion in the registration group allows to composege deformations and to
obtain camera motion between two images distant in time egaence. At last, asitis a
global method, it is robust to a moving object in the sceneyideed its size is limited in
comparison to the image size.

A Proof of theorem[j

Let0 < Zing < Zo < Zsup and(z,y) belong toK . We denotef = % - ZLO Thus,
we can write formulf]1
| ub— 8t R(i))
vo — 6(t, R(k))

vo — 6(t, R(k))
where

ug = b1 + bay + b3 — (5, R(j))

{uo—alx—l—agy—i—ag—(ZLO, R(7))
v = 1% + cay + 3 — (4=, R(k)).

By applying Taylor's formula od about0 with integral form of remainder, we obtain

b, /5 (B0~ (RO v o (R0 )~ (4R v
0

T (vo — = (1, R(k))) v vo (vo — 6 (t, R(k)))
,_ug [t R(K)) u — (¢, R(j)) vo LU g (6 R(K)) ug — (t R(j)) v
y_vo+/0 (vo — z (t, R(k)))* = vo(vo—5< R(k)))
that implies
’ (t, R(k)) up — (t, R(3)) vo 1 ‘
vo (vo — 6 (t, R(K))) | vo — 6 (t, R(k))

‘ <ﬁ’R(k)> 5 <t R( ] >’U0} Ht” |u0| + |U0|
vo (vo R(k)) 1~ vl

7))
5 (t,
Since(z,y) € K C [-£, £]2, we have, with the hypothedis 2

vo — 0 (t, R(k))

Up| + v

%g‘ - ‘+|x|+1<L+1
0

ug| + |v

lug| + o] °||v0|| 0|§‘ —y| 1S DL

Moreover, as the hypothesﬂs 1 implies

thus

max (




Now, if

1 (L+ 1)
(7= -7=)m <e
inf sup

then, forZ, such thatZiU =1 (L + %) we have
sup

Zinf

1 (L+1)
R e S N E L RS
TRl <e

that implies

u u?
V(z,y) € K, max(w'——o, '——O)Ss

Vo Vo

B Proof of theorem[2

LetD = (0, «, 3, A, B, C) be a camera motion. The rotation matfixs equal to

sin 8+ (1 — cosa)cosOsin(@ — 3) cosB — (1 —cosar)cosOcos(d —B) —cosfsina
—sinasin(f — ) sin acos(f — 3) cos

a1 bl C1
R = as b2 Co .
as bg C3

The coefficients ofz verify, by using Taylor expansions mand/

(cos,@ — (1 —cosa)sinfsin(d — ) —sinfB+ (1 —cosa)sinfcos(d —F) sinfsina )

that we also denote

ay =1+ ka,, kay = 0(B) + o(a), |ka | < B%/2 4+ a?/2(1 +|B])
ag = B+ ka,, kay = 0(*) + o(a), lkas| < B°/6 +a?/2(1 +|B])
az = —asind + ko, key = 0(a®) +o(y/|afl), |key| < /6 + |al(|8] + 57/2)
bi = =0+ kp,, K, = 0(8%) + o(a), ko, | < 8°/6 +a?/2(1 + |B])
by =1+ kb, kv, = 0(8) + o(a), ko, | < 52/2 4+ /2(1+16])
b3 :O‘C089+kb37 kbz :0(042)+0( |O‘6|)a |k53| §a3/6+|a|(|ﬂ|+62/2)
1 = asinf + k., ke, = o(a?), ke, | < |af?/6

co = —acosl+ ke, ke, =o0(a?), |key| < |a]?/6

c3 =1+ ke, ke, = o(a), ey | < le]?/2.

According to the definition of the applicatiaf we have

o x+ By —asinf + A+ o(a) + o(B) + o(\/|af|) B
asinfzr —acosfy+ 1+ C+ o)

y — Px + acos + B + o(a) |a])
oasm@xfoacos€y+1+c+o( )

!

y—-y=

- Y

that is

¥ —x= (x—i—ﬁy—asin@—i—A—l—o()—i—o( + o(\/|a |))
(1-C—asinfz+acosly+o(a)+0o(C)) —x

Yy —y= (y—ﬁx—i—acos@—i—B—i—o( 0(\/|aﬁ|)
(1—C—asm€m+acos€y+o( +0(C)) — y.
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That implies

¥ —x= —Cr+pBy—asinfd+ A—asinfaz?+ acosdzy + o(a) + o(3) + o(C)
Fo(v/laf]) + o(\/ICB) + o(y/|Cal) + o(/]aA]) + o(\/|CAl)
Y —y= —Cy—Br+acosld+ B—asinfzy+ acosdy?+ o(a) + o(3) + o(C)

+o(Vl]af]) +o(\/|CB]) + o(\/|Cal) + o(V/|aB]) + o(\/|CB).

Furthermore,

’x' —r— (—Ca;—i—ﬁy—asin@—i—A—asin@mQ —|—acos€$y) ’

| —era2? —cozy+(ai—c3—Claxtasytas+A—(ciz+cay+c3+C)(A—Cax+By+acos fzy—asin Oz?—asin 0)
- crz+cay+ez+C '

By using bounds ofk,, |, |ka,|, . - -, |ke,| and the hypothes[$ 1, we get

|/ =2 — (—Cx + By — asinf + A — asinfa? + acosf zy) |
< % ‘.172(—61 + Cey + asinfes + asin 0C) — y?Bea+
xy(—ca + Cecy — Bey — acosfeg — acosOC) + x2y(—cracos § + caasin )+
23 (asinfcy) — xy?eaacos + x(a; — c3 — C — Acy + crasind + Cez + C?)+
ylag — Acg + coarsin — feg — BC) +az + A(1 — 3 — C) + asinf(cs + C)‘

As (z,y) € [-L/2, L/2)?, we obtain

|/ — 2 — (=Cz + By — asind + A — asinf 2* + acosf xy) |

< [Ls% L2 (4\?4 1 2ol 4\343)

— 2 3
+L (02 (24 ]6] + 1952 4 2l 4 2500 o 52 2¢7 4 1oL

2 4 4|C 2| A a2 4|AC
Hlal (27 4+ 424 4514 25 4 gt 23]

By a similar way, we bounfl) —y—(—Cy — Bz + acosf + B — asinfzy + acosf y?) |
by replacingA with B.
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