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1 Introduction

1.1  The excursion durations A, (0 < o < 1) of Bessel processes.

Let ((Rt, t>0), P(a)) denote a Bessel process starting from 0, with dimension d = 2(1 — «),
0<d<2(or: 0<a<1). Let forany t >0 :

gga) :=sup{s <t; Ry, =0} and dga) =inf{s >t; Rs =0} (1.1)

so that : Afﬂ) = dga) — gt(a) is the length of the excursion above 0, straddling ¢, for the process
(Ry, u>0).

We denote by ¢ a standard exponential variable, independent from (R,, u > 0). In a recent
work, T. Fujita and M. Yor [F,Y] studied the laws of :

sup Rs, supRs, sup R (1.2)
s<g® s<e s<d(®

Here, in a similar way, but focussing on durations, rather than on heights, we shall study
exhaustively the law of :

A = AL — gl _ g (13)

In a first step we compute the density fa, of A, :

F3u () = Fp gy = €z (L4)
and we prove that :
Elexp(—AAy)] = (1+0)*=2*  (A>0) (1.5)

Note : We hope to devote another paper to the study of the remarkable properties of the
subordinator (Aj/5(t), t > 0) whose value at time 1is A o.

1.2 A general result by M. Winkel. ([Wink])

In fact, formulae (1.4) and (1.5) are a very particular case of a general result by M. Winkel
[Wink], which we now describe.

Let (77, | > 0) denote a subordinator with associated Bernstein function @, i.e.

Elexp(—An)] = exp (—1®(N)) (A, 1>0).

We define, for any ¢ > 0 :

Lt = inf{l T > t} (1.6)
O = 7(,) —t (theovershoot) ; Uy =t —7(1,)- (theundershoot)
and Ay =7(r,) —T(z,)- = O+ U (1.8)

For ¢, an independent standard exponential variable, M. Winkel computes the Laplace trans-
form of the 7-tuple :

(e, Le, U, Oe, T TL, Ay) (see Corollary 1in [Wink]).
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As a very partial result of this multidimensional formula, he obtains :

B(1+A) — B(N)
®(1)

Elexp(—AA)] = (A>0) (1.9)

Hence, formula (1.5) is formula (1.9) applied to the subordinator (7;, [ > 0) defined as :
Tl:inf{tzo : Lt>l}

where (L) denotes the local time at 0 for the Bessel process (R, t > 0) i.e. : (7,1 > 0) is
a stable subordinator with index («). We note that, from (1.9), we easily deduce the law of
Ae

Cc

P(Ac € dr) = L= a1

Wy(dx) +

0o (dx) (1.10)
where v denotes the Lévy measure of the subordinator (7, ! > 0) which admits ¢ as its
translation coefficient. There again, formula (1.4) is a particular case of (1.10) since the Lévy
measure of the stable subordinator with index « is equal up to a multiplicative constant to :
(de /27 1)1 (30
To summarize : The formulae (1.4) and (1.5) are doubly particular cases of the results of M.
Winkel, since :
- here, the subordinator (7, [ > 0) is a particular one, namely the a-stable subordinator;
- our formula only discusses the law of the r.v. A, and not that of the 7-tuple :

(e7 L, U, 027 T(Le)= 5 T(Le)> Ae)

1.3 The self-decomposability of the variable A, (0 < a < 1).
Recall that a random variable A is said to be self-decomposable if, for any ¢ €]0, 1], there
exists another variable A(©) such that :

(

A" A A© (1.11)
where, on the RHS of (1.11), A and A(® are assumed independent. The class of self-
decomposable laws (or variables) is a subclass of infinitely divisible laws; see, e.g., Sato
[Sat].

In order to state our main result about the variable A, we need the following definition :
let & > 0, and K a positive r.v.. We shall say that (Y;, ¢ > 0) is an («, K') compound Poisson
process (valued in Ry ) if :

Ny
Y= K, (1.12)
=1

where (K1, Ko,---) is a sequence of i.i.d. variables, distributed as K, and with (N, ¢ > 0)
a Poisson process with parameter « independent of the sequence (K;, i = 1,2,---). In
particular, V; is a Poisson variable with parameter (at).



Theorem 1.1
For any a €]0,1[, one has :

. (law) Y(1—a) (law) Y(1—a
1) i) Ay (Bal) o él/a) (1.13)

where, on the RHS of (1.13), y(1—a) and Ba,1 are two independent r.v’s with respective laws
gamma (1 — ) and beta (v, 1), and U denotes a uniform variable on [0,1], independent from

Y1-a)-

ii) The density of A, denoted here by fa,, is given by :

an(x)==TYI?%ZB—x’a‘l(l——e‘“)lxzo (1.14)

i11) The Laplace transform of (the law of) Ay is :
E(e™R) = (14 X)%=X* (A>0) (1.15)

2) i) A is self decomposable, and the Lévy-Khintchine formula writes :
dx

T

Be ) = exp (= (1-a) [ (1-e) BT (1.16)
0

where, in (1.16), G, denotes a r.v. with values in [0, 1], and density :

_ asin(ra) u (1 — )t
fa(u) = (1—a)r (1 —u)?®—2(1 —u)*u®cos(ra) + u Loy (w) (1.17)
it) The r.v. G, is characterized by its Stieltjes transform :
> fga(u) 1
A) = Ldu=F
Sl.) ) o Atu </\+Ga)
a Al (14 )t
= > 1.1
—a (Q+nr—aw  A20 (1.18)
or, equivalently by :
_ 1 a 11— 1+t
E )\eGa — E — > 11
& ] <1+)\Ga) l—a (1+X)2>-1 (A=20) (1.19)
3) Define (the law of) the r.v. :
(law)
K, ="¢/G, (1.20)

where, on the RHS of (1.20) ¢ and G,, are assumed independent. In particular :

P(Ko> x) = P( g > o) = Ple > 2G) = B(e %)

[0}



i) There exists a (1 — «, K,) positive compound Poisson process (Yi, t > 0) such that :

A, ) / et dY; (1.21)
0

ii) Aq satisfies the affine equation :
A, B gii-e(a, + KL (1.22)

where, on the RHS of (1.22), U, A, and K, are assumed independent, and U is uni-
formly distributed on [0, 1].

We note that decompositions such as (1.22), and below (1.69), were also studied in Jurek [J].

1.4 Some properties of the r.v.’s G4 (0 < o < 1). Recall that, for any « €]0, 1], the r.v. G,
is defined either via its density (1.17) or via its Stieltjes transform (1.18) (or (1.19)).

Theorem 1.2

11
1) The law of Gy is beta (5, 5), i.e. Gyjp is arc-sine distributed :

1 1

7 Ve o

2) Let p > 2 denote an integer, and let By, ..., By_1 be a sequence of (p — 1) independent

variables, such that for any i = 1,2,...,p — 1, B; is distributed as beta (E, 1-— E)
p p
Let €, denote a variable which is uniformly distributed on {1,2, o (p— 1)}, and s

independent of the sequence ((Bi),z' =1,---,p— 1).

fe () = (1.23)

Then, for ao=1/p, one has :

(law)

Ga=Cup = By (1.24)
i.e. :

1 — mE\ i ;

; -1 _3
fGl/p(u) = m ; sin (p)up (1—wu) » 1[071](u) (1.25)

1 p1 - . .

B N A

— Y ;sm (p >u (1 —u) Lio,1) (u) (1.26)
(law)

3) Go = 1-G, Lo



4) As a — 1, G converges in law to a r.v. we denote as Gy, which is uniformly dis-
tributed on [0, 1].

5) As a — 0, G, converges in law to a r.v. we denote as Gy, which satisfies :

1
i) faolu) = i( /0 (sinwﬂ)uﬁl(l—u)ﬁdﬂ>1[o’1](u)

1 1
= 2 1[0,1] (U) (128)

T (o)

.. (law) 1
ii) Go = TFoxpnC (1.29)

where C' is a standard Cauchy r.v.

1i1)  The Stieltjes transform of (the law of ) Gy is given by :

- 1f o(u) _ 1 . 1 1
Sa) ) = [ =E(5g) = 5w o iy (=0 0

1.5 The variables G, the unilateral stable laws and the Mittag-Lefler distributions.
Let p €]0,1[. We denote by T}, a unilateral (R —valued ) stable r.v. with parameter y :

E(e= ) = exp(—\*) (A > 0) (1.31)

Let T}, be an independent copy of T),, and define :

I
(law) [ T,

Z, = (T’j> (1.32)
17

On the other hand, we denote by M, a r.v. distributed with the Mittag-Leffler law of index
1, that is (see [CY], p. 114) :

Elexp(AM,)] => F(niil) (A €R) (1.33)
n=0

and, consequently :

I'(n+1)
EM" = ——— -1 1.34
from which we deduce :
(law) 1
M = — (1.35)
! (T, )"

There exists a remarkable link between the variables G, and Z7_,.



Theorem 1.3

1) (Lamperti [Lamp]) The variable Z,, has the density :

sin(mwp) 1
= 1, 1.36
J2, (@) w22+ 2xcos(mp) + 1 =0 (1.36)

2) For any o € (0,1),

o) (Z1—a)V®  (law Ti_o) o
) G el e (o) (137
I+ (a7 T () (D)
(This relation implies obviously that G, (law) 1-G,)
aw My_o)Me
i) Go ' (My-a) (1.38)

(Mi—a)'/o + (M{_,)

where, on the RHS of (1.38) Mi_, and M{_,, are two independent copies of Mittag-
Leffler r.v’s of index 1 — a.

1.6 The "algebra” of the variables ., Gy, and X .
It is a classical result that, if v, and ~, denote two independent gamma variables with respec-
tive parameters a and b, then :

Ya (law)
b) a _I_ ) = a 9 a 1-39
(% oy Ta (Ba,bs Ya+b) (1.39)

where, on the RHS of (1.39), 8,5 and 7,44 are independent and distributed respectively as
beta (a,b) and gamma (a + b). From this relation, we deduce, in particular :

Ya+b * ﬁa,b (la_—W) Yo and, ifb=1-a, e- 5a,l—a (1a:W) Ya (1'40)

It is the kind of properties such as (1.39) and (1.40) which justifies the usual terminology
of ”"beta-gamma algebra” (see also Dufresne [Duf] for further developments). Our r.v.’s
Go (0 < a < 1) also enjoy - together with the r.v.’s X, defined below - some ”algebraic
properties” akin to those of the beta-gamma algebra. We note in fact that, for p > 2, p an

1
integer, and o = — the density of G, is a barycentric combination of some beta densities, as

asserted by Theorem 1.2.

Theorem 1.4

1) Ezistence of the variables X, . For every a,b such that : 0 < a < b < 1, there exists
an Ry -valued variable X, such that :

(A > 0) (1.41)

by (1+A)*—1
) a1 0z

E[exp(—)\Xaﬁb)] = (a



2) These variables X, are infinitely divisible and satisfy :
for any sequence : 0 < a; <ax <...<a, <1:

n—1
(1
Xaran =S Xavarss 3 Xaw =0 (1.42)
i=1
where on the RHS of (1.42), the r.v.’s are assumed independent.

3) Algebra properties. For any a, 0 < a <1 :

(law)

e = ¢1Gy + e9G1_q (1.43)

where, on the RHS of (1.43), ¢1,¢2,Gq and G1_, are independent, and e, eq,es are
standard exponential variables. In other terms, the variables G, and G1_, yield an
affine decomposition of the exponential law.

4) More generally, for any a € [%, 1] :

)

law
eGp 1 Vi-a) + Xi-asa (1.44)

where as usual, the r.v.’s which appear on each side of (1.44) are assumed independent,

1
whereas for a € [0, 5] :

Xa,1_a + eGy (12]) Y1-a) (1.45)

1
We note that (1.44) implies that, for oo > 5 ¢, is infinitely divisible, and that the addition
term by term of (1.44) and (1.45), where « is replaced by (1 — «), implies (1.43).

1.7 Ther.v.’s. G, g and their "algebraic” properties. (0 < o, f < 1).
Recall that the (laws of) G, (0 < a < 1) are characterized by :

a _ a—1
- (1 - a> 1(1 f;;‘j)—  Az0) (1.46)

_
1+ A\Ga

This relation led us to raise the following questions :

e Does there exist variables G, g such that :

1
1+ AGap

a 1—(14 )8!
S 1-8 (1+Ne—1

(1.47)

e If yes, do these variables possess ”algebraic” properties similar to those described in the
above Theorem 1.4 ?

The next Theorem answers these questions in the affirmative.



Theorem 1.5
Let o, 8 such that : 0 < o, 8 < 1.
1) (Existence of the variable Gy g)

i) There ezists a r.v. Go g, taking values in [0, 1], such that :

Ele MCes] = E (A>0) (1.48)

1 o 1—(14A)F!
1+ AGap| 1-8 (1+XN)2—1

i) In close relation with (1.48), the Stieltjes transform of G g, is :

1 N O () i D
E = A>0 1.49
At Gag| 1-5 1+ N2 — Ao (A =20) (149)
ii1) The density of Go,p, denoted by fc, , is :
fGa5(u) = 11y(u) - (1.50)
« (1 —wu*sin(ra) + u?*P(1 — u)’~Lsin(rB) + (1 — w)* P~ 1w P sin (r(a — B))
(1 —7) (1 —u)?> —2(1 — u)*u® cos(ma) + u?®

(note that it is not quite obvious to verify that fg, , >0, for a < 3).

iv) Gaa - Goc (151)

v) Gai-a 15 a beta (a,1—a) r.v. (1.52)

2) Algebraic properties :

i a+B>1, then ¢Gap Y mg+ Xiga (1.53)

i) if a+B<1, then Yu_p) = eGap+ Xa1 g (1.54)

(law)

iii) forall 0<a,B,7y<1: elGaﬁ + QQG@,Y = elGaﬁ + QQG@ (1.55)
and, if « + 3 > 1, from (1.55) and (1.53)

law
Va-p) T Xi-pa + 026,y "= 01 Gy + 2G5 (1.56)
whereas, if o« + B < 1, then, from (1.55) and (1.54) :

law
Ya-p) T eGﬁfY (:) e1Gay + G+ Xo1-8 (1.57)

) if 0<a<f <1, thene(l—Gqop) (law) Vg—a +¢Gap

if 0<fB<a<l,then yo—p+e(l —Gyp) (1) ¢eGap

Of course, in all the above relations, on each side, the featured r.v.’s are independent. The
relations (1.43), (1.44) and (1.45) are particular cases of the above relations (1.53), ..., (1.57).



1.8 On (4, G) self-decomposable variables.
The formula (1.16), where we do not mention the index « :

E(e™2) = exp 5/ _ ey E(e‘xG)) (1.58)

led us to study the r.v.’s A whose laws may be obtained from those of G via the relation
(1.58), thus generalizing the relation between A, and G,.

Remark and a definition : Let G be an Ry —valued r.v. The following properties are equiva-
lent :

: > dﬁ e—acG 00
) /1 % pe) < (1.59)
i) E(log+ (é)) < (1.60)

x

o dx —xG
i11) /0 (A1) —E(e™) < o0,

d
i.e. : themeasure —xE(e_xG) 1z>0 istheLévy measure of asubordinator (1.61)
- >

) E(log (1+ %)) < oo for some (henceall) A > 0 (1.62)

Let G satisty one (hence all) of these conditions, and let § > 0. We say that a r.v. Ais (d,G)
self-decomposable if :

B = exp( -0 / ¢y 42 © Be) 0z0) (1.63)

= exp(—éE(log (1—1—%))) (A>0) (1.64)

(Note that (1.63) may be considered as a definition of the law of A in terms of (4, G), whereas
(1.64) follows from (1.63) via the simple Frullani integral argument (see, e.g., Lebedev [Leb]

p.6).

The (9, G) self-decomposable r.v.’s are closely linked to the standard gamma subordinator; in
fact, their laws are the generalized Gamma convolutions which have been studied extensively
by L. Bondesson ([B1], [B2]).

Theorem 1.6
Let (v, t > 0) denote the gamma standard subordinator, i.e. the subordinator such that :
1
—My —
E(e™) = A exp ( —tlog(1l+ )\)) (t,A>0)

and let h :]0, 00[— R4, a Borel function.
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1) Let
Ay = /0 ~ h(w)do (1.65)
Then Ay, is finite a.s. if and only if :
/OOO log (1 + h(u))du < oo (1.66)
2) Under the hypothesis (1.66), Ay, is self-decomposable and :

B = (= [T0-e) B)T)

with Fy(x) ::/ e R du
0

3) For all positive r.v. G satisfying (1.59) and all 6 > 0, there exists h satisfying (1.66)
so that :

SE(e™™C) = Fy(z) = / e R dy (1.67)
0

aw)

In other terms, all r.v.’s A which are (§,G) self-decomposable can be written as A (law
because, by (1.67):

E(e_)\Ah) = exp ( — 5/000(1 _ e—Aa:) E(e_“"G)di>

Ap

x
Here are some further precisions about this theorem :

e An explicit relation between h and G as in (1.67) is :

h(u) = =———, foru € (0,0), and 0, for u > o

where G! denotes the inverse (in the sense of the composition of functions) of the
distribution function of the r.v. G.

e Moreover, it is known (see [B2]; see also [SVH], Theorem 5.24, p. 362) that a positive r.v.
Ais of the form Ay, = [ h(u)dy(u), i.e : its law is a generalized gamma convolution
if, and only if, its Laplace transform a(\) := E(e *?)is hyperbolically completely
monotone, i.e : it satisfies

Yu > 0, the function : (U + 1> — Ya(uv)pa (E)
v v

is completely monotone, as a function of (v + %)

11



Theorem 1.7
Let G satisfy (1.60), and let A denote a r.v. which is (6,G) self-decomposable.

1) There exists a (8, K) positive compound Poisson process (Y, t > 0) with K (tam) e/G,
such that :
A ::/ e tdy; (1.68)
0
2) A satisfies the affine equation :
A s A 4 K (1.69)

where on the RHS of (1.69), the r.v.’s. U, A and K are independent, and U is uniform
on [0,1].

3) Let (\) := E(e™*?). Then, the Stieltjes transform of G equals :

E<>\+1G> _ Y= _ 9 (g Be ) (A2 0) (1.70)

We note that Theorem 1.7 presents the points 3) and 4) of Theorem 1.1 in a more general
set-up. We shall now establish a converse to Theorem 1.7 which, essentially, hinges upon the
properties of the inverse Stieltjes transform. This leads to the following :

Definition : A function F' :]0, 0o[—]0, oo[, which is C, is said to satisfy condition (ST}, §)
(obviously, ST stands for Stieltjes transform) if :

i) F extends holomorphically to C\ | — 00, 0] ;

ii) For any u > 0, Fy(u) := nl_i)r(l)l+ F(—u+in), resp : F_(u) := nl—i>r(IJl+ F(—u —in) exists, is
continuous, and satisfies :

Im (F_(u) — F4(u)) >0, forany u >0 (1.71)
i) lim AF(\) =0
Sv= o

This definition proves useful in the following :

Theorem 1.8
Let A denote a positive r.v. with Laplace transform 1, i.e. Ele 2] = ¢¥(\) (A > 0).

/

Assume that F := —Zi} satisfies the condition (ST, 0). Then :

flu) = 5= Tm(F_(w) = Fo(w)) (u>0)

defines a density of probability on Ry, and A is a r.v. which is (§, G) self-decomposable, when
G denotes a r.v. with density fa = f.

12
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2 Proof of Theorem 1.1

2.1 We begin with point 1) of Theorem 1.1, which we now recall :
Theorem 1.1, point 1)

(lgV) Y(1-c)

i) Ag
) ﬂ(a,l)

(2.1)

where on the RHS of (2.1) , Y1—a) and B(a,1) are respectively two independent gamma (1 — )
and beta (a, 1) variables.

ii) The density fa,, of A, is given by :

(07

Fal = 1)

e (1 - e ") 1j0,00[(7) (2.2)

ii1t) The Laplace transform of (the law of) Ay is :

E(e™) = (1+M)*=X* (A>0) (2.3)

As indicated in the Introduction, this point is a particular case of the results of M. Winkel
([Wink]). However, below, we give three proofs of this point . The two first proofs are very
specific to the Bessel process context in which we are working whereas the third one, of a
more general kind, uses arguments close to those of M. Winkel.

2.1.1 First proof of point 1) of Theorem 1.1 :

2.1.1.a) By scaling, we have :

1 1
Ao 2 e(dr — ) " e((1 = g1) + (d1 — 1) (2.4)
Furthermore, (1 —g1,d; — 1) (lgv) (1—g1, R%Tél)) where the pair (1 — g1, R1) is independent
from Tél) =inf{t >0: Rgl) = 0}, with (ngl), u > 0) a Bessel process starting from 1. This is
obtained by applying the Markov property to R at time 1, together with the scaling property.
It is well-known (see, e.g. [D-M,R,V,Y], [Y] p. 14, [Get]) that :

TV 2 9y (2.5)

13



where 7(,) is gamma («) distributed. Thus, from (2.4), we get :

(law) _ o 1
Ao e((W =)+ B 5o ) (2.6)

where, on the RHS, the pair : ((1 — gl),Rl) is independent from 7(,). Morever, classical
properties of the Bessel meander (see, e.g., [D-M,R,V,Y], where these properties are recalled)
imply :

(R}, 1—g1) e (1= g1)2e1,(1—g1)) (2.7)

where ¢; is a standard exponential variable, independent from g¢;, and ¢; is beta (a,1 — «)
distributed. Bringing (2.7) in (2.6), we obtain :

A, (law) (1-— gl)e(l + P:(l))

where, on the RHS, the 4 r.v.’s g1,¢,¢1,7(,) are assumed independent. Furthermore, the
classical properties of the ”beta-gamma algebra” imply :

W aw 1
e () Yi1-a) and 1+ o1 ()

(1—g1)
V(@) Ba,1)

hence, finally :

(law) 7(1—01)
A, ') za)
/B(a,l)

2.1.1.b) The expression of the density (given by (2.2)) of A, follows from (2.1). Furthermore :

ey = () () ()

1 u l-a a—1 ! a—1 «a «
_ a/o (A—I—u> u du—a/o()\+u) du=(1+X\)* — X

2.1.2 Second proof of point 1) of Theorem 1.1 :
It hinges upon the same arguments as in the preceding proof, but it has a more analytic
flavor. We shall show that :

E(e™2) = (14+ M) =" (A>0) (2.8)

We denote by P@ the distribution of the Bessel process, starting from 0, with dimension
d=2(1-a)(0<a<1l)andlet (A; :=1t— g, t > 0) denote the age process of excursions of
R away from 0. Then, for fixed ¢ > 0, one has :

E@[eMde=g0)] = ple) (e~ A(Ai4Too0)y (2.9)
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(where T denotes the first hitting time of 0 by (R, ¢ > 0) and (6, t > 0) is the usual family
of translation operators.)

= E@) (M Bl (¢ ) (2.10)

The Laplace transform of Ty featured in (2.10) may be computed explicitly (see e.g. [Get]),
in agreement with (2.5) :

E@ e A=) = @) (MK (RV2N) (RV2M)%) (2.11)
(where K, denotes the Bessel-Mac Donald function with index «)

E@ {e*“‘t (B(1,1 — o, AAy) — T(1 — a)(AAy)% Mt)} (2.12)

where ®(1,1 — «, -) denotes the confluent hypergeometric function with parameter (1,1 — «)

(see [Leb], p. 260). We now replace in (2.12) the fixed time ¢ by a variable e, exponentially
distributed, and independent from (R,, u > 0). Note that, by scaling :

( (law) (law)

law)
="eA = e6(1—04,0() = Y1-«) (213)
hence, we get :

E(e™ )
— E(O‘) (ef/\(dz*ge)>
1

fr M/O 67)\27'227&@(17 1 — CE, AZ)dZ _ /(; e*Z()\z)azfadz

B 1 > : —a = KT —a) (A2)F o
- [F(l—a)/o e Oz <k:0F(1—a+k) k! )dZ]_A

(from the definition of the hypergeometric function ®(1,1 — «,))

_ S ATy
= {Z/ dz a"H F(l—a+k;)} A

Ae

k=0
> 00 e—uuk—a
= dup — \*
(Craernl, o)
NP U | 1
= > — A= (1 4+ 1! — A= (140 = A
- A
prd 1+)\) (1+A) 1— 2

2.1.3 A third proof of point 1) of Theorem 1 :
It hinges only - as in the proof of M. Winkel [Wink| - upon the fact that the process :

=inf{t>0; L;>1},1>0

is a stable subordinator, without drift term, where (L;, ¢ > 0) denotes the local time process
at 0 of (R, t >0). Thus :

E(e™) = exp{ _ lm 2,a)\a} — (V) (A>0) (2.14)
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where ®()) is the characteristic exponent of (7, I > 0) (cf, [D-M,R,V,Y]) for a discussion of
the values of normalization constants related to (L, t > 0) and (7, { > 0)).
Now, let in general, (77, [ > 0) denote a subordinator without drift. In other terms :

E(e_’\”) = exp ( — l<I>()\))

with  ®(\) := exp — /000(1 — e )y (dx) (2.15)

where v denotes the Lévy measure of (77, { > 0). Let us define :
=inf{l; >t},t>0

and let ¢ denote an exponential variable, with mean 1, independent from (7, [ > 0).
Lemma 2.1. Let

AD =1y = T(- (2.16)
Then

D(1+A) — BN

_AA(
E(e™27) = (1)

(2.17)

Clearly, point iii) of our Theorem 1 is an immediate consequence of (2. 17) when Lemma 2.1.

I'(1-—
279X\ (A >0).

is applied to the subordinator defined by (2.14), i.e. when ®(\) = Fgl )

Proof of Lemma 2.1. : By definition of A", we have :

E(ef/\A(")) _ E(/OO e—t—A(TLt—T(Lt)fdt>
0

= E Z/ e te Mldt (where &, := 77 — 1)

>0

= B )

l>0

= E(/ dle - /Ooo(l—e“)e)‘vy(dv))
- E(/ ‘”dl> B(1+ ) — B(N))

= (2(1+X) - d(N)) /OOO 1oy — 20 +£()1)_ (Y ]

2.2 Proof of point 2) of Theorem 1.1 :
We first recall this point 2) :

i) Aq is self-decomposable and the Lévy-Khintchine formula writes :

e M) =exp (- (1 -« h —e_’\xd—x
B(e ™) = exp (— (1 >/0<1 )

. E(e"C0)) (2.18)

where G, denotes a r.v. taking values in [0,1], with density :

asin(ma) w1 — )t

Jao(u) = (I—a)r (1 —wu)?® —2(1 — u)u®cos(ma) + u*

[0,1] (u) (2.19)

16



ii) The law of G4 is characterized by its Stieltjes transform. :

1 u
SUe)N: = | ff‘;(u)d“:E(HlGa)

e Al (14Nt
B i e T (A>0) (2.20)

or, equivalently :

1 ); a 1—(1+xt

E —AeGo - E
(e7) <1+AGQ l-a (1+N—1

(A >0) (2.21)

2.2.1 We prove that fg_, as defined by (2.19), is a probability density, which is characterized
by (2.10), or (2.21).

2.2.1.a) Let :

a—1 _ a—1
Fa()) - a A (1+X)

S T (ES VO (2.22)

Since the function f¢, is continuous and integrable on [0, 1], in order to prove (2.19), we may
use the inversion formula for the Stieltjes transform. Recall (cf. [Wid], p. 340) that if f is
integrable and continuous, and if S(f) denotes its Stieltjes transform :

SN = OOO W (2.23)
we have :

Thus, to prove (2.19) amounts, thanks to the injectivity of the Stieltjes transform, to showing
that

Fo(—u—in) — Fo(—u+in) { 0if u>1 (2.25)

li = .
nl0} 2in faa(w) if u € [0,1]

Formula (2.25) follows from an elementary computation ; in fact, we shall prove this result
later in a more general framework (Cf 5.1.1 below).

2.2.1.b) We prove that fg,_ is a probability density.

1
Since fg, > 0, it suffices to show that : / fa,(u)du = 1. Now, from (2.20), we obtain :
0

1
/ fau(u)du = Jim AS(fg,)()
0 -0

)\afl o (1 + )\)afl
A—oo 1 — « (1+)\)a_>\a

1 a—1
N 1—<1+x>

A—oo 1 — (1_’_%)&_1

=1.

17



We also note that the equivalence between (2.20) and (2.21) follows from :

B(eMCey = E<1+1)\Ga> - i\E[ijG} = %S(fca)(%)

a <X)a71_<T a 1=+t
%)“ S l-a (I+N*-1

(2.26)

>l =
—
|
)
—~
-
+
>
SN—
Q
|
/N

2.2.2 We prove (2.18).
With the help of (2.21), and taking logarithmic derivatives on both sides of (2.18), the question
oo

amounts to showing : 9 log (1+X)*=XY) =—(1- a)/ e M E(e %) dz by (2.3), or :
0

(o))
(1+)\)a—1 _ )\a—l /oo o /1 o

g — 1 —

Sy (1—a) ; e dx ; e ., (u)du

1
— _(l-a) /0 Aiu fo(w)du  (Fubini)
1
However (2.27) is nothing else but (2.20). [

The careful reader may have been surprised by the above proof, in particular by the proof
given in 2.2.1.a), which may seem quite unnatural. Clearly, it is not in this manner that
we discovered formula (2.18). Here is our original proof, which is more intuitive, but which,
unfortunately, contains some non-rigorous features.

2.2.3 Another proof of formula (2.18)
2.2.3.a) Our aim is to find, from 2.2.1, a r.v. G,, taking values in [0, 1], such that :

{ 1 } a 1—(1+x)ot

= > .
T2l “T=a agap-1 120 (2:28)

11
When a = 1/2, choosing for G/, a r.v. with distribution beta(§, 5), then the relation (2.28)

is satisfied since, from the beta-gamma algebra :

(law)

¢ Blai-a) = Vo) (2.29)

we deduce :
1 1
E e_)‘eﬂ(a,lfa) — E - — E(e_)‘w(a)) = — (230)
[ ] (1 + )‘ﬁ(a,l—a)> (1 + )\)O‘
hence, for a = 1/2, with : G/, (1) 5(; 1) :
272
E[¥}: L 12 1-(1+ NP (2.31)
1+ AGip)  VIFA 1-1/2 1+ N)/2-1 '
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This particular result for & = 1/2 invites to look whether for the density f, of the r.v. G,
may be written in the form :

j@(u)::][hw(u)ua(dy), we o, 1] (2.32)

where h, denotes here the density of a beta(y,1 — ) variable, and pn(dy) a certain > 0
measure. Since, from (2.30), one has :

/q]h()d-—E[ )= (2.33)
o T+ T EITINEL )] T Ay '
the problem amounts to finding a measure p,(d7y) such that :
1 a—1
fa(u)du / 1 a 1—(1+X)
— o(dy) = A>0 2.34
o 1+ A =1= e 20 (2:34)

2.2.3.b) Searching for p(d7y) such that (2.34) is satisfied.
We replace in (2.34) (14 ) by €' (t > 0), and we obtain :

@ 1_6t(a_1) @ - —t(m « - —t(na —o
e = (Y et Ly e +1)>:/e oldy)  (235)
m=0 n=0

Consequently, since both sides of (2.35) are Laplace transforms, we obtain :

pa(dy) = 1_Q{Zém+l>a a) - Zémaﬂ (@)} (2.36)

We shall now discuss two cases :

1
i) a = —, p an integer, p > 2.
p

In this case, the following computation is entirely rigorous. In formula (2.36), one finds

1
only (p— 1) terms, since : (p—1+1)a=p-—=1=0-a+ 1. Hence :
p

3
L

p—1
o 1
“1_a E Oka(dy) = E 5% (dv) (2.37)
k=

1 1 P 1 — )
falu) = —=> hi(u) = >
R SO
p—1
_ 1 sm(7r )u5_ (1w
p—1 s
k=1
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from the formula of complements for the gamma function : I'(z) I'(1 — z) =

sin(7z)
(cf [Leb], p. 3). Hence :
~1
]_ b itk u k
o = (5 ()
Ja(u) (p— Dru m( "1y )
k=1
. 1

i ()"
= ( 0 Im -
— u i -
p 0 1 _ 615 <1gu> p

: a—1 _ a—1
_ asin(ma) u 1—u) with o = 1
(I—a)r (1 —wu)?® —2(1 — u)u® cos(mra) + u>
. . L. .
ii) « is not of the form 5, with p an integer, p > 2.
Plugging (2.36) in (2.32), we get :
> (m+1)a— 1(1 )—(m+1)a 0 na(l _ )—na—l
u u u u
faw) = 1 X T((m+ 1)a)T “2§ (-
= T(m+1)a)L (1= (m+1)a) i T(na+ 1) (—na)
(2.38)

_(1—1u)71' 2} sin(7rom)(1 ﬁ u)na} (2.39)

again from the formula of complements. Hence :

o [1 () ! !
falu) = 1_a{mlm (1_61-”&(13“)&)+<1—u>wlm<1_em(lg)“>}

a 1 1
l—a | (1—u)?—2(1—u)*ucos(ra) + u*

(sin(ra))u* M1 —uw)* (1 —u+ u)}

. a  sin(ra) w11 — w)ol o
- l-a & (1 —u)2> — 2(1 — u)®u® cos(rar) + u?® U » 4

In fact, this computation may be made quite rigorous with the help of the two following
arguments :

e Although the function h,(u) is a density only for v € [0,1], we may replace everywhere
in this computation h., by its holomorphic prolongation (with respect to the y variable).
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e The two series which appear in this computation may be ”"reduced” to :

oo
Zeiwna< u >na
1—u

n=0

1
which only converges for <1,ie. : foru< 3 But, it is not difficult to see that

—u
the density f,, which we are trying to obtain, is such that f,(u) = fa(1—u) (u € [0,1])

(e.g. see (1.19) and point 3 of Theorem 2). Thus, it suffices to consider v € [0,1/2],
and it is precisely for these values of u that the previous series converges.

2.2.4 We prove that A, is self-decomposable.
From Lukacs ([Luk}, p- 164), this is equivalent to the property that x — zv,(z) is a decreasing
function of x, where v, denotes the density of the Lévy measure of A,. This is satisfied, since :

Vo(T) = (1 ; @) E[exp(—2Ga)].

In fact, all generalized gamma convolutions are self-decomposable.

2.2.5 Remark 2.2 :
It is well-known that a self-decomposable distribution ¢ is the invariant measure of a gener-
alized Ornstein-Uhlenbeck process (Y;, ¢ > 0), i.e. : a process which solves :

dY; = —Y, dt + dZ, (2.40)

where (Z, t > 0) is a Lévy process (cf [Sat] ; [Sch], p. 49). Furthermore, if ®; (resp. ®,)
denotes the characteristic exponent of Z (resp. o), one has :

(A>0) (2.41)

We deduce from this formula that : if w (resp. u) denotes the density of the Lévy measure
of Z (resp. o) then :

w(r) = —u(z) — zu/(z) (2.42)

We apply this in the case where o, is the law of A, that is, from (1.14) :

a

)

771 —e™®) Li0,00((z)dx
Then, there exists a Lévy process (Zt(a), t > 0) with Lévy exponent ®, and Lévy density w,
such that the process (Y;(a), t > 0), which solves :

av,® = —yat + a 7 (2.43)
admits o, as its invariant probability measure. Formulae (2.41) and (2.42) now become :

)\a—l _ (1 + )\)a—l

(pa)\ - )\ ’
W == e e

wo(z) = (1 — a)E[Gq(exp(—2Ga))] (2.44)
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2.3 Proof of part 3) of Theorem 1.1
Let K, "

aw) ¢/Go with e and Gy independent. Then :

i) There ezists a ((1— ), Kq) positive compound Poisson process (Yy,t > 0) such that :

A, 1) / ey, (2.45)
0

it) A satisfies the following affine equation :

Aa (la:W) Ul/l—a(Aa + Ka) (246)

where, on the RHS of (2.46), U, A, and K, are independent, and U is uniformly dis-
tributed on [0, 1].

2.3.1 Proof of (2.45) and (2.46) :

It hinges upon the following proposition.

Proposition 2.3. Let (Y;,t > 0) denote a subordinator, without drift, and with Lévy measure
w. Let :

X::/ e”'dy, (2.47)
0

We assume that X < oo a.s. which, from Jurek-Vervaat ([J,V]), see also Erikson-Maller
([E,M]), is equivalent to :

/[1 [(log x)p(dr) < oo (2.48)

Then :

i) E(e™)=exp < - /000(1 — e_)‘”),u([v, oo])d—v (2.49)

v

In particular, X is self-decomposable.
it) If, morever, (Y;,t > 0) is a (v, K) compound Poisson process,
(i.e. :v:=pu(Ry)<oo), then :

x " g x4 k) (2.50)

where, on the RHS of (2.50), U, X and K are independent, and U is uniform on [0, 1].
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2.3.2 We prove that Proposition 2.3. implies (2.45) and (2.46)
We know, from (1.16), that :

o0 d
Be ) = exp{ —(1- a)/ (1— e ) E(e~Cn) & } (2.51)
0 X
On the other hand, from the definition of K,, we have :
P(Ko> 1) = P(Gi > x) — P(e > 2Ga) = E(e2Ge) (2.52)

We denote by p, the law of K,. Then, replacing E(exp(—zGy)) in (2.51) by its value as
obtained in (2.52), we get :

e M) =expd — (1 -« b — e x, 00 d—x .
B =exp{ = (1=a) [ (1= (o)) (25)

It then suffices to compare (2.51) and (2.49), then we apply Proposition 2.3 to obtain (2.45)
and (2.46), with y =1 — o

2.3.3 Proof of Proposition 2.3. (but, see also [J,V] for the original proof)
2.3.3.a) Approximating X = / ~tdY; by the Riemann sums Z el (Y,

Be ) = exp / dt / (1 — e u(dr)}

= exp{ /0 (dm)(/o (1- _M)%)} (2.54)

t

—Y;,) we obtain :

i+1

(after making the change of variables e "z = v).

= exp{ - /0 (1-— e_)‘”)u([v, oo]) a%u } by Fubini’s Theorem.

2.3.3.b) We prove point ii) of Proposition 2.3.
Recall that (Y;,¢ > 0) may be represented as :

Ny
=) K
i=1

where (N, t > 0) denotes a Poisson process with parameter 7, independent from the sequence
of i.i.d. variables (K;). Let T} be the first jump time of (/V¢,t > 0). Then, one has :

o) T o)
X = / e tdy, = / e tdY; + / e tdy;
0 0 T

= e_TlKl + e i X

where X is independent from (T}, K1), and is distributed as X. This proves (2.46), since, as
Ty is exponentially distributed, with parameter 7, one has :

e_Tl (law) Ul/,y
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2.3.3.c) Another proof of (2.50).
If we denote by 6, resp. ¢, the Laplace transform of X, resp. K, then, the relation (2.50) is
equivalent to :

o)) = E(/l efx\ul/’Y(XJrK)du) _ 7E(/l e—Av(X+K)U771dU)
0

0
_ / N b du, e,
M,
NN = /0 Ae(u)go(u)m—ldu (2.55)
which, taking derivatives, is equivalent to :
_(:((j)) V(1 - (\) (A>0), hence :
00 = B =ep{~ [ 1- M pmaoo) 2 ) (2.56)

where pux denotes the law of K. It now remains to observe that the Lévy measure of subor-
dinator (Y;,t > 0) is equal to v - ux and then to compare (2.54) and (2.56).

2.4 Remark 2.4
We come back to the result of M. Winkel (cf paragraph 1.2). Let (77,1 > 0) be a subordinator,
without drift and with Lévy exponent ®. Let :

AT = A,
with the notations of paragraph 1.2. Hence, by (1.9) :

B(e A7) — o(1 +<I;\()1)_ (N (2.57)

A natural question is the following : which are the positive r.v.’s A such that :
A (law) A
for some subordinator (77,1 > 0) 7 The answer to this question is elementary ; for any positive

r.v. A there exists a unique subordinator (7,1 > 0) without drift and with Lévy exponent @,
with ®(1) = 1, such that :

A1) AG) (2.58)

2.4.1 Proof of Remark 2.4
Let 1) the Laplace transform of A and denote by pua the law of A. Then :

60 = B = [ st = [T e en 2
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Let va be defined by :

1

7_” pa (dx) (2.59)

ZA(d$) = (1 e

There is no difficulty in showing that va is a Lévy measure, i.e :
o0
/ (x AN1)pa(dz) < 00
0
Let @ denote the associated Bernstein function and (7,1 > 0) the corresponding subordinator
e}
(N = / (1 — e ) A (dz)
0

We have () = /000 e (1 — e %) va(d)

= /Oo(l — e~ MDD (da) — /00(1 — e YDA (dx)
0 0
= Y1+ -T() (2.60)
It is clear that ¥(0) =1 = ®(1) — ®(0) = ®(1). Then, from (2.57) and (2.60), we obtain :
B 7)Y = (1 +\) — d(\) = T(\) = E(e2)
that is

A (law) A

The uniqueness of (77,] > 0) may be proven using similar arguments.

3 Properties of the variables G, (0 < a < 1). Proofs of Theo-
rems 1.2 and 1.3.

We begin with point 1) of Theorem 1.2.

11
3.1 G2 1s arc sine distributed; i.e. il is distributed as beta <2, 2> :
1 1

fey,,(u) = p \/ﬁ Lio,1y(u)

(3.1)

Proof of (3.1) :
It suffices to take a = 1/2 in (1.17), or to note that :

- —1/2
E(0D) 2 gty - L 1= ENTY
T+x  (1+AN72-1

1 1
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3.2 Proof of point 2) of Theorem 1.2
If « = 1/p, with p an integer, p > 2, then :

p—1 L ,
fa.(w) = fa,,, () = 7T(p1_1) > sin (%)Url(l —u) 7l q(u)
i=1

In fact, this is the formula following (2.37), which was proven above, in 2.2.3.b).
We obtain (1.26) from (1.25) after the change of index j =p —i.

3.3 Proof of point 3) of Theorem 1.2

. "1 q, (3.2)

Thanks to (1.17), or (1.18), this relation is obvious

3.4 Proof of point 4) of Theorem 1.2 :
Gqo converges in law as o — 1, to a uniformly distributed r.v. [0,1].

It is sufficient, to prove this assertion, to observe that :

. 1 . a 1—(14+XN*1t  log(l+A)
lm F|——| =1 = f 1.19
ol [1+/\GJ all—a (T+a°—1 X\ rom (1.19)
and, if U is a uniform r.v. on [0, 1] :
1 | 1 log(1+ A)
E - du = - [log(1+ \) — log(1)] = 2T
[1+AU] /0 7 20 =5 [loa(l+2) — log(1)] )
3.5 Proof of point 5) of Theorem 1.2
G converges in law, as o — 0, to a r.v. Gy which satisfies :
' = L[ A=11 —u)Pdp) « 1
i) fa,(u) = =y (sm(ﬂﬂ))u (1 —u)"PdB) « 119.17(w) (3.3)
1 1
_ (3.4)
u(l —u) 72 4 (log 1_Tu)2
aw 1
i7) Go (ta) TroxpnC’ where C is a standard Cauchy variable (3.5)

3.5.1 Proof of (3.3) and (3.4).
3.5.1.a) We first note that formula (3.3) indicates, with the notations in formula (2.32) that
the measure vy (d) is Lebesgue measure on the interval [0, 1]. On the other hand, from (1.25) :

1
P

fa, () = (mzsm(j)ui*a—uﬁ)-1[0,1}<u>
1

. 1(/ (sin(r) (1 = u)7dB) « 10 (u)

p—0o0 Tr 0
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which proves (3.3). In fact, we have only studied the limit, as p — oo, of fg,. But, the
p

explicit formula (1.17) which gives fg,, easily shows that as o | 0, fg, converges (to fg,).

3.5.1.b) The relation (3.4) follows from :

1 1
1/ (sin(rB))u” (1 —u)"PdB = L [ Plmos ) g
0

™ um 0
1 1

u(l—u) 72 4 (log ﬁf

3.5.1.c) We now prove (3.5) :
We already observe that, from (3.4) :

E<W) - / 14+ A 1— 0 du
+ AGo o 1+ Au u( w) W2+(logﬂ)
B / = 5—dv  (after the change of variable v _ v)
0 1+U+)\U 7T2+10gv 1_u
1 S 1 Tw d
- = / +e w (after the change of variable logv = mw)
T Joe L+ A+ 1)em™ 14 w?
whereas :
1 1+ e”c 1 S 14 e dx
" 1+ 2 N E(W>ZE 1+ N+e ™ 1+ g2
1+e™C oo
_ 1 / © 14e™ dw
T on ) T+ (T + e 1+ w?

which yields (3.4). Below (cf Remark 3.2.), we shall give another proof of the convergence in

law of G, as a — 0, towards : 1+ exp(nC)

This ends the proof of Theorem 1.2. |

3.6 Remark 3.1. (A relation between G and the gamma subordinator).

3.6.1 For any )\ and pu positive reals, we write, using (1.15) and (1.16) :

E(exp(—(A+m)Aa))  (1+A+p)* = (A+p)°

E(exp(—pAa)) (14 p)o — pe
= exp { —(1—a) /00(1 e Ome gy e*w)E(e*ﬂfGa)di} (3.6)
0

X

Letting o — 0 on both sides of (3.6), and using the already proven fact that G, lguo Go, we
a—

obtain :

log(1 4+ A+ p) — log(A 4 p)
log(1 + ) — log

= exp{ — /000 eTH(1 — e AT (e 00) dr } (3.7)

X
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1
3.6.2 We denote by ®,, the Lévy exponent of the subordinator (—%, t> 0), where (y¢,t > 0)
i

denotes the standard gamma subordinator. Thus :

E(e‘%%) — (1_’_1,\)t :exp{ —t(log(A—f—/L)—]ogu)}
m
ie. @, (A) = log(A + 1) — log p (3.8)

Hence, formula (3.7) writes :
u(l+A) = 2u(N)
®u(1)
3.6.3 Let (Xt(” ),t > 0) denote a diffusion process whose inverse local time at 0, (Tl(“ ),l >0)
1
is distributed as (— v,1 > 0). Such a diffusion (Xt(“ ),t > 0) has been described explicitly
o

_ exp{ _ /0 R i } (3.9)

x

by C. Donati-Martin and M. Yor (cf [D.M, Y]), as an illustration of Krein’s representation
of subordinators. Furthermore, we define, for ¢ > 0 :
gt(“) = sup{s < t, X" =0}, dg“) = inf{s > t, X¥ =0}
and Ay = dﬁ“) - gﬁ“) (3.10)
(

where ¢ denotes a standard exponential variable, independent from (Xt“ ),t > 0). Then, as
we apply Lemma 2.1., formula (3.9) becomes :

E(e_)‘A(u)) = exp{ — /000(1 — 6_)‘x) E(e_x(u+GO)) 61733 } (3.11)

It follows from (3.11) that A, is self-decomposable.
We note that this formula (3.11) is quite similar to (1.16), when we replace :

1
e the stable («) process (Tl(a),l > 0) by the gamma process (— Y, 1 > O) :
i

e the r.v. G, by the r.v. p+ Go (and also replace the coefficient (1 — a) by 1 in (1.16)).

It is tempting to let p tend to 0 in (3.11). However, this is not possible, for two reasons :

1
i) the process (— v, 1 > 0) does not converge as  — 0 ;
1

1 1
ii) the measure — F(e %) dz is not integrable near oo (as E(log G—) = oo) hence it
x 0

does not define a Lévy measure.

3.7 Proof of Theorem 1.3 (Links between the r.v.’s G, the unilateral stable variables, and
the Mittag-LefHler distribution).

We refer the reader to the Introduction, paragraph 5, for the definitions of T}, T, l’“ Z, and
M, (p€)0,1]).
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3.7.1 Proof of point 1) of Theorem 1.3 :
Z,, admits the density :

_ sin(mp) 1
fz.(x) = w22+ 2xcos(mp) + 1) Lo,00((#) (3.12)

In fact, formula (3.12) is due to Lamperti ([Lamp]). A proof of (3.12) is also found in
Chaumont-Yor (cf [CY], ex. 4.21, p. 116). We refer the interested reader to this proof.

3.7.2 Proof of point 2.7) of Theorem 1.3 :

1 l1-a
G, ) (Z1-a)™  (aw) (Th-a) = (3.13)

11—«

1 l—«
1+ (Zl—a)a (T{—Q)T + (Tlfa)T

We now prove (3.13).

For this purpose, we shall show that (1 ¢ )a is distributed as Z;_,, which implies (3.13).

«

Indeed, for any h: Ry — Ry, Borel, one has :

(%))
= B () ) e e

sin(7roz)) /Ooo h(z) dx

m(1l—« x? — 2z cos(rar) + 1

E

(after making the change of variables : (1 g u)a = :L')

_ sin (r(1—a)) [ dx
N (1l — «) /0 hz) 2?4+ 2z cos (7(1 — ) + 1
= E[h(Zi1_s)] from (3.12)

3.7.3 Proof of point 2. i) of Theorem 1.3 :

o () (My_o)a
« - 1 1
(Mi—a)o + (M]_,)=

(3.14)

where, on the RHS of (3.14), Mi_o and M/ _,, denote two independent r.v.’s, with the Mittag-
Leffler distribution with parameter (1 — ).
To prove (3.14), we use (cf, Introduction, paragraph 5)

I'(n+1)

PO = Tn+1)

(n>—1) (3.15)
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On the other hand, using the elementary formula :

1 1 > n— —uT),
_ 1 oounflefu“ n
= T f, e
(1 +mn) "
= oy > (3.16)

Now, comparing (3.16) et (3.15), we deduce that :

(law) 1
M, 2
T

and (3.14) now follows from (3.13).

3.8 Remark 3.2.

We present here another proof of the convergence of G, as a — 0, to where C'is a

1+em@
standard Cauchy r.v. It suffices to prove that :

log(1 — Gy) — log(Gy) By o

a—0

or, by (3.13), that :
1 aw
—(log(T}_,) —10g(T1_a)) 2% xC (3.17)
« a—0

where T1_, and Tj__, are two independent copies of a one-sided stable (1 — «) r.v. But :
T o — 1 in probability. Hence (3.17) is equivalent to :
a—

]. aw
(T4~ Ti-a) ﬁnc (3.18)

We prove (3.18) :

[NIE

E(e’%Tl—Q) = E(exp <§eigT1_a>> = exp ( - |2|11__:ei (1_0‘))

= o - U (en (50 )+ 5n (50 )

E(elg(Tl—Ot*Tll—a)) = ‘E(@léT(lfa))|2
1 us
- — oA~ (71_ ))
exp( A" % -, cos 2( «)
in (T
— eXp(—2|)\|1_a()4aSln(2a)>
!

— exp (= mA|) = E(e?).

Hence :
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4 Proof of Theorem 1.4 (On the algebra of variables G, X, 7).

4.1 We first recall points 1), 2) and 3) of Theorem 1.4.

i) For every a,b, such that : 0 < a < b <1 there exists a r.v. Xqyp such that :

1 ¢ —1
E(e_AX”’b) — 9 ( + )\)
a

-1 =0

ii) For every 0 < a; <---<ap <1:

n—1
(law)
Xajan = ZXai:aiJrl
i=1
where, on the RHS, the variables are assumed to be independent.

iii) The r.v.’s Xop are infinitely divisible.

4.1.1 We prove (4.1).

(4.1)

(4.2)

4.1.1.a) For this purpose, we shall work in a slightly more general framework than what we

strictly need.

We first recall that we use the term Bernstein function for a function ® : Ry — Ry of the

form :

O(N) = /000(1 — e M)y(dx) for v(dr) >0 such that : /000(1 ANz)v(de) < oo  (4.3)

In other terms, ® is the Lévy exponent of a subordinator (7, y > 0) with Lévy measure

v(dx), and without drift term, i.e. :
E(ev) = exp (—y®(N)
Lemma 4.1 : Let &1, ®o, P35 denote three Bernstein functions which satisfy :

Z) <I>1 == <I>3 o (I)Q
oo
ii) / zv3(dr) < oo, where vs denotes the Lévy measure associated with Ps.
0

Then, there exists a positive r.v. X such that :

_ 1 &N . o
E(e™) = — — 12 with :/ 5(d
(e™™) Cs BN’ ith C3 ; zvg(dx)
Moreover :
_ 1 ®1(N) 1 @
E(e ™) =— Y _ " p / AT, >
(e ) Cs (132(/\) Cs ( 0 € ’ V3(y)dy> ()\ B 0)

where, in (4.5),

(Ty(g), y > 0) denotes the subordinator associated with ®o

31

(4.4)



v3(y) = v3([y,00)) s the tail of v (4.7)

Proof of Lemma 4.1 :

We have :
Q) By(2a(N) :/°° (W)yg(dx)
By(N) B2 (N) 0 ®2(A)
_ / vs(dz) / e~ 2Ny gy
0 0
_ / e~ 22MVg,(y)dy  (Fubini)
0
Hence :

1 ®1(N) 1 /°° AT@_ .
— = — E< e MY U d ) which proves Lemma 4.1
Cs Bo(N) Cs ; 3(y)dy p

once we have observed that :

/Oooug(y)dy:/ooody/yooy3(d$):/Ooox%(dx):cg'

4.1.1.b) We now prove (4.1) :
We denote for any § €]0,1] :

Ds(N) = (1+N)°—1 (4.8)

®; is a Bernstein function since :

BN = i [ 0 S (4.9

(in fact, @5 is the Lévy exponent of the Esscher transform (cf [Sato]) of the stable (§) subor-
dinator) with associated Lévy measure :

0 e "
In particular :
/ w(dz) = 6 (4.11)
0
In the sequel, § denotes either a,b, or ¢ := % < 1, where : 0 < a < b < 1. Note that :
O (Dp(N) = (BN +1) —1=(1+ANP—1+1)"—1
= 1+ —1=1+N"—1=2d,()\) (4.12)
and that :
ee a
/ xv(dx) =c = 5 < 00. (4.13)
0
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We may then use Lemma 4.1. with : &1 = &,, Py = &}, and 3 = P,; given (4.12) and (4.13),
we deduce the existence of an R -valued r.v. such that :

1 ®(\) b (1+A)—

Ble ) =& ;(\)  a 1+ AP—

(A>0).

4.1.1.c) We now prove (4.2) :
(4.2) follows immediately from the definition of X, and from the obvious formula :

an (1 ai+1 (L+ )% —1
on A > 4.14
an—1 H a; 1+Aaz+1—1 (A20) (4.14)

4.1.1.d) We now prove the infinite divisibility of X, :
We may write, from (4.2) :

n—1
(law)

Xap = ZX(CL—H“’ ) +(i+1)@) (4.15)

=0

We know (cf [Log], p.314-321) that X, is infinitely divisible as soon as the following condition
(called ”uan”) is satisfied :

Ve > 0, i:(),l,S21,1P et P(X ;0—a) a) a+(l+1)(b;a) > E) njC;oO (4.16)

But, by differentiation of (4.1), we obtain :
b—a

E(Xa,b) = 9 (4.17)
Thus,

™= P(X : >5)<b_a

i . a+ z(b;a)7a+ (1+1)7Eb—a) >~ 27’16
hence :
b—
sup 51-(n) < N}
=0,1,2,- ,n—1 2ne n—oo

4.2 Remark 4.2.

4.2.1 (Self-decomposability of X ;1 ; 0 < ¢ < 1).
Let X1 denote a r.v. whose law is characterized by :

_ 1 (14+X)°—-1
BleMet)y == = 12— 4.18
(M) = 2 BEZ (418)
Then, X1 is infinitely divisible, and its Lévy measure pi.1 is given by :
_= dx
pe(d) = (1= ) B(e~ ) = (4.19)
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Proof of (4.19) : In order to prove that :

we take logarithmic derivatives of both sides ; thus :

1 (14 Nt el
1 AT 2 p1e1 (d
P G Y /0 ¢ pea(dr)

Denoting by (L) the LHS of (4.21), we get :

1-c 1 1+t
L = = +C(X_(HA)C—1>

l1—c c(1+)\)c_1—1_(1_c)[1_1 c 1— 1+t
XN (T+Ne—1 XN Al-c (1+N°-1

= (1-¢) [/OOO e Mdr — </OOO e”\xda:)E(e’)‘ch)}

from(1.19). We then deduce from (4.21) that :

pea(dr) = (1= ) [(6o — pue) 1+ ]

(4.20)

(4.21)

(4.22)

where, in this expression, {4 denotes Lebesgue measure on Ry, and p.q, the law of eG.. The
explicit computation of the convolution in (4.22) easily leads to (4.19). We note that the

obtained formula :
“AXe1y 1 o &\ 9T
E(e ) exp{ (1 C)/o (1—e")E(e Gc) . }

may be compared with the ”dual” formula (1.16) :

E(e—AAC) = exp{ —(1—-¢) /000(1 _ 6_’\””)E(e_ch) d?ac }

On the other hand, formula (4.23) implies that X, ; is self-decomposable.

4.2.2 (Self-decomposability of X,; (0 < a < b < 1)).

1
Writing X, + Xp1 (2/) Xq,1 we deduce that the Lévy measure v, of X, equals :

vap(d) = %{(1 CQ)B(eE) — (1 - b)E(e % ) du

We prove now that X, ; is self-decomposable.
From (4.24), this assertion is equivalent to :

Pan(@) == (1 —a)E(e %) — (1 - b)E(e &)
is a decreasing function (of x), or, by derivation :

(1- @E(éa e—c%) —(1- b)E(éb e%b) >0
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or, taking the Laplace transform in x of this expression :

Y(A) = (1— a)E(Hl)\Ga) -(1- b)E<1+1)\Gb>

is the Laplace transform of a positive function. But this assertion is an easy consequence of :

Lemma 4.3 For any 0 < a <b <1 and any u € [0,1] :
(1= a)fa.(u) = (1 =b)fg,(u) (4.25)

Indeed, we have, with ~ h(x) := (1 —a)fg,(x) — (1 = b) fq,(z) :

1 dl’ 1 0 1 %
P(N) /0 e h(z) /0 h(m)dm/o e du
> "1
= / e)‘"du/ — e =h(x)dz
0 (U

We now prove (4.25)
By (1.17), we need to see that :

(1 _ u)afluafl
(1 —u)?2e — 2(1 — u)%u® cos(m a) + ue
(50

(1_—“)% — Q(F—“)acos(ﬂ a)+1

u u

a sin(ma)

= a sin(7a)

is greater than the same expression where we replace a by b (with a < b).

U
Then, putting (7> =z, we have to prove :
u

asin(ma) S 2t — 220 cos(ma) + 2P0
bsin(wb) — 220 — 2zbcos(wb) + 1

=6(x)

But it is easy to verify that 0(z) - 0, 0(x) —60 and that 6(x) reaches its maximum for
T—1T00 xr—

1 — cos(ma)

———~. Hence, Lemma 4.2 will be proven if
1 — cos(mb)

x = 1. The value of this maximum equals
we show that :

asin(ma) S 1 —cosm(a)
bsin(mb) — 1 — cosm(b)

0<a<b<l).

But, this relation is equivalent to :

1 Ta 1 b i ) 1 . . U
- tg(—) < - tg(—) , ie: the function z — — tg(z) is increasing on [O, — [
a 2 b 2 x 2
We have :
1 ; (wa) 1 1
— g\ 5 = - 2
a 2 WHZI(n_1/2)2_%
1 1 1 b
< = - = t9( %) m
T (n—1/22 -5 b 2



We note that we also have, for 0 < b < 1 (we define X as the limit in law of X, for a | 0) :

_ log(1+ A)
E AXo S X
() =b Gy =1
log(1+ A
and E(e”\XOJ) = 7og( )\+ )

From the latter relation, we easily deduce :

with ¢ and U independent, e standard exponential variable and U uniform on [0, 1]. The
density of Xq 1 equals :

—t

Fxon (z) = ( /m ” 67 dt) 1o>0

and its Lévy measure, from (1.29), is equal to :
1
vo,1(dx) = = E(exp (—z(1+ e”c)))d:p
x

with C' a standard Cauchy r.v., i.e. :

4.3 Remark 4.4. :
Let us come back to Lemma 4.1. Under the hypotheses of this Lemma, there exists an
R —valued r.v. X such that :

axy L @i(A)
B =& 00

(4.26)

It is natural to look for some criterion which ensures that X is infinitely divisible. Some
further hypothesis on the Bernstein functions ®1, ®5, and ®3 is needed. Here is a framework
which yields a positive answer to our question. For the sequel of the discussion in this remark,
we refer the reader to Bertoin-Le Gall [B,LG|. Let us assume that the functions ®; and P9
are related to a continuous branching process. More precisely, let (Z (t,z); t,z > 0) denote
a continuous branching process, where ¢ indicates the time parameter, and x = Z(0, z) is the
initial size of the population. Then :

E[exp (= AZ(t,x))] = exp (— zu(t, ) (4.27)

where u(t, ) solves the differential equation :

9
ot

with ¢ denoting the branching mechanism of Z.

u(t, ) = = (u(t, \)) (4.28)
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For each t > 0, A — u(t, \) is a Bernstein function and

u(t + s, A) = u(t, u(s,\) (4.29)
The relation (4.29) plays here the role of the relation ®; = ®3 0 &5, with :

O1(N) =u(t+s,A), Pa(N) = u(s,\) and ®3(A) = u(t, A).

In this new set-up, we copy again the relation (4.14), which now writes :

n—1

ut+s,0) =[]

1=0

u(t+i2,\)
u(t+(i+1)2,))

(4.30)

and we notice, as in point 4.1.1.d) above, the infinite divisibility of the r.v. whose Laplace
transform (in A) equals :
u(t + s, A)
u(t, \)

We also note that the Bernstein function ®,(A) = (1+A)*—1 (0 < a < 1) coincides with
u(t, ), for a = e7*, and 1 the branching mechanism :

¥(q) = (1+q) log(1 + q)

(see [BLG]). This point 1) of Theorem 3 is a particular case of the situation that we just
described in this Remark 4.4.

4.4 Remark 4.5. :
The relation (4.2) :

n—1
1
Xavan =S Kooy (0<ar <-ov < ap < 1) (4.31)

i=1

where on the RHS the variables are independent invites to raise the following question : does
there exist an homogeneous Markov process without positive jumps (Z;, ¢t > 0) such that
Xop may be distributed as T, under P,, where P, denotes the law of (Z;,t > 0), starting
from a and Ty = inf{t >0 : Z; > b} (a <b)? The purpose of this Remark 4.5. is to show
that such a process (Z;,t > 0) does not exist ; of course, it is also of interest to compare the
present Remark 4.5. with the preceding one 4.4.

4.4.1 Proof of the non-existence of (Z;,t > 0) :
Assume that such a process exists. Since :

b (1+XN)?—-1
E(ef)‘Xavb)zf( + )

LS A S b 4.32
o Arap—1 =es (4.32)

we would have :

Ty £f

B fs(zmyess (- [

(2.))ds| = f(@
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for any regular function f, i.e. :

Torr _ fla)
| @) = 5

where P, denotes the law of Z starting from a, £ is the infinitesimal generator of Z, and f
belongs to the (extended) domain of £. Thus, we should have, for any A > 0, that :

E, ( exp —

14 M2
(MA(t) = LFNT exp —\t, t> 0) (4.33)
Zy
is a martingale. Hence :
(T+NZ =1y (1+N2—1
E, = 4.34
( Zt ) a ¢ ( 3 )
Writing : [ = log(1 + A), i.e. : A = ¢! — 1, then (4.34) becomes :
ezt — 1 ! e —1
= ple-fZ T~
B(7) = () 45
_ % Bl (Nita) _ Ny (4.36)

where (Ny,t > 0) denotes a standard Poisson process. Taking derivatives on both sides of
(4.36) with respect to [, we obtain :

1
E,(e!?t) = o E[(N:+ a)elNeta) _ NtelN‘] :

hence, by Laplace inversion, the law of Z; is identified as :

Py(Z; € da) { Z Snral(dz)(n + a)et— — Z 5 (d)m —} (4.37)
But, the measure featured on the RHS of (4.37) is signed ; hence, (Z;) does not exist.

4.4.2 Looking for signed measures on path space :
exp(la) — 1

Denote, for [ >0 : ¢;(a) = (a > 0) ; then, define, for any ¢ > 0 :

Pigi(a) = ¢ ~Vigy(a) (4.38)

Our search of a process (Z;,t > 0) in 4.4.1., led us to the relation (4.35), which we now write
as :

Eq[01(Z1)] = Prpi(a) (4.39)
On the other hand, the relation (4.38) leads to the semi-group property for (P;):>0, since :
Pi(Pp)(a) = e VPy(en)(a) = Vg (a)
= Puspi(a) (4.40)

Of course, from the relation (4.37), the semi-group (P;) is not positive. Nonetheless, it is
tempting to ask the question : does there exist a Markov ” process” (Q, (Zi,t > 0), (Pa,a > O))
with signed measures (P,) on path space, such that the r.v.’s Ty, under P,, are distributed
as Xgp ?
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4.5 Proofs of the points 3) and 4) of Theorem 1.4 :

i) For any a € [0, 1],

e "2 1 Gu + e2Gra (4.41)
.. 1
i1) For any o € [5, 1} :

aw)

1
eGo "2 X1 00+ Y1-a) (4.42)
1
iii) For any o € [0, 5} :

law
Xa,lfa +eGy, (:) Y(1-a) (443)

As usual, it is understood that in these relations, whenever several r.v.’s are featured on one
side, they are assumed independent. In the sequel of this work, this convention shall always
be in force, without being stated each time. Moreover, ¢, with or without an index, indicates
a standard exponential r.v. ; Gy and G; denote the r.v.’s defined in Theorem1.2.

4.5.1 Proofs of (4.42) and (4.43) :
From (1.19), we get :

o _ _\\a—1
B = B(3 +1AGa> “1-a 1(1 ilA)aA)_ r A=0 (444
_a Q+N -1 1 (4.45)

1-a (1+AN°—1 (1+ri-e

1
1 -—a< 2 ie. : a > —, then (4.45) implies, from the definition (1.41) of the r.v.’s

Xa,b .

N | —

E(e Ca) = B(e M ai-a) B(e™M0-a) | which yields (4.42).

1
Ifa< o (4.45) writes :
1 - l—a (1+X)*-1
I AeGa | h :
(1 + )\)1—04 (6 ) a (1 T )\)ka 1 ence
1
Tryie = B0 - Ble™ o), which yields (4.43).

1
We note that, if o > 3 (4.42) implies that eG,, is infinitely divisible.
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4.5.2 Proof of (4.41) :
It is not difficult to show that (4.42) and (4.43) imply (4.41). However, we may also prove
(4.41) directly, since :
“AeGa “AGiay _ 1 1
Ble) - Ble™ ™ )_E(HAGQ)'E(HAGl_a)
a4t 1-—a 1-(1+N 1
Tl-a (Q+N—1 o (ITH+NeTo1 14A

BE(e).

5 Proof of Theorem 1.5. (The algebra of the r.v.’s X,;, G,z
and gamma.)

We begin with the existence of the r.v.’s G, g.

5.1 Proof of point 1) in Theorem 5 : For any o, 3, 0 < o, 3 < 1, there exists a r.v. Gqop
taking values in [0, 1], such that :

. _ 1 a 1— (14151
AeGo 8 — — A > 1
D B = B(ig ) = 10 e 229 (5:1)
1 a AL (14 N)PINeb
— A > 5.2
(A+Ga,g) -5 (1+ne - (A=20) (5:2)
ii) The density of Go 3 is
(6%

fGo () =1 q(u) . P )

(1 —w)®u* Lsin(ra) + w22 (1 — uw)P~Lsin(rB) + (1 — w)* P~ 1w Fsin (r(a — 3))
(1 —u)2® — 2(1 — u)®u® cos(mar) + u2e

(5.3)

5.1.1 Let us define :

a AT — (14 N)PNeh
F,3(\) = A>0 5.4
We shall show that F, g is the Stieltjes transform of the function fg, ,(u) defined by (5.3).
To prove this, it suffices, with the help of the inverse Stieltjes transform, to show that :

Fop(—u—in) — Fag(—u+i
0,3 (—u —in) : 0,3 (—u +in) — ﬂ(u) (u > 0) (5.5)
2im n—04 """

However, for u € [0,1] :

1 . .
%ir [Fa,ﬂ(—u —in) — Fo g(—u, +”7)]

1« (—u—in)*~ ' — (1 —u —in)P~ Y (—u —in)*=F
RN (= u—in)e = (~u—in)°

C(ut i)t = A —ut i) (cu i) P }

(1 —u+in)®* — (—u+in)
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converges, as n | 0, to :

1 «
2ir 1— 0
_ua—le—imx _ (1 _ u),@—lua—ﬁe—iw(a—ﬁ) _ua—leiwa _ (1 o u)ﬁ—lua—ﬂeiw(a—ﬁ)
( (1 _ u)a — yoeiTa - (1 _ u)a — yoeima )
« N .
= 2 . (1~ 0% —2(1 —w)ous cos(ra) T a2’ where N is given by :
N = (_uaflefiﬂ’a - (1 - u)ﬁfluafﬁefiﬂ'(afﬁ)) ((1 - u)a - uozeiﬂ’a)

_( - ua—leina o (1 o u)ﬁ—lua—ﬁein(a—ﬁ)) ((1 - u)a - uae—zﬁra)'
Hence, for u €]0,1] :
1 o

— [Fyg(—u—in) — Fyp(—u+i S

2Z7T[ oaﬂ( u “7) oa,ﬁ( U+Z77)] 7]"—0>+ 7_‘_(1 — /6)

u* (1 — w)*sin(ra) + w?*F(1 — w)f~tsin(nB) + (1 — w)*F 1w P sin (r(a — B))

(1 —u)?> —2(1 — u)®u® cos(mar) + u?®
= fa, (), if u €]0,1], and it is not difficult to see that :

1
= [Fag(—u—in) — Fag(—u+i 0, ifu>1
5z Fas(—u—in) = Fap(-u+in)] —0, ifu

5.1.2 We now prove that me 5 is a probability density :

It is obvious that, for a« > 3, fg, ;(u) > 0, and it follows from elementary manipulation if
a < .

1
Moreover, / fG, 5 (u) du =1 since from (5.2) :
0
1 a—1 _ B—1ya—0
. a A (T4+X)PEA
= 1
/0 Jeagw) du = lim -5 A = e
. a 1—(1+ %)5_1
= lim IBY
Amoo 1= (1+45)" —1

=1.

5.1.3 We now prove (5.1) :
It follows immediately from (5.2), since :

(ol yolp( Ll )= F G G o I 9 M
T#3Gas) “ A"\ 5 Gap/ T 1B A (BT ()
o 1—(14 )51

S 1-p8 (1+Ne—1

law
5.1.4 We prove that, for any a € [0,1], Gy 0 (law) Ga :

This follows immediately from the explicit value of the density fa
again from (5.1) :

as given by (5.3), or

a,a)?

_ a—1
[1+;Ga7a] - 1fa 1(153;33)—1 :E(1+1>\Ga>
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5.1.5 We prove that, for a €]0,1[, G4,1—q is beta (o, 1 — «) distributed :
This follows immediately from the explicit value of the density fg, ,_,, or again from :

1 ]_1—(14—)\)*0‘ 1 E( 1 )

14+ AGai—al  (T+N=1  (T+2 “\1+ a1 a

5.2 Proof of point 2 in Theorem 1.5. Algebraic properties :

law
i) Ifa+B>1then eGap = vup) + X1_pa (5.6)
If a+ 3 <1,then : v1_g (law) eGap+ Xo1- (5.7)
it) for any 0 <, B,y <1,

)

law
elGaﬁ + QQG/QN (a: elGaﬁ + egGﬁ (5.8)
1
w)Ifa+pB>1: Y1-8) t X1-ga + e2Gg (2}) e1Gay + e2Gj (5.9)
1
Ifa+p<1: Ya-p) T eG4 (2”) e1Gay +02Gg+ Xo1-3 (5.10)

5.2.1 Proofs of (5.6) and (5.7) :
From the relation (5.1) :

( 1 )_ a  1—(1+A)F
1+ AGag/ 1-8 (1+XN*—1"

once both the numerator and denominator have been multiplied by (1 4+ A)'~?, we obtain :

G gy 1 o a (14N 1
Be™ ’ﬁ>_E<1+AGaﬁ) = (15 A+ N1 )'(1+A)1—ﬂ (5.11)

Ifa+B8>1,ie : 1— < q, this relation writes :
E(e Cas) = E(e M1-60) B(e™M0-8), ie. (5.6)
Ifa+p<1,ie : a<1-—0, we write (5.11) in the form :

1 _ 1-8 1+MN)*-1
_—_— = E AQGQ:B .
(1+ )18 (e ) a (1+MN-8-1

1 _ _
D NeG0) - BT 0,

We have obtained (5.7).

i.e.
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5.2.2 Proofs of (5.8), (5.9) and (5.10) :
From (5.1), we write :

E(e_)\eGa’ﬁ) E(e_)\eGﬁﬁ) = E<1 i ;Ga,ﬁ) 'E<1 + ;Gg;y)

o 1-(14N1 g 1A

1-8 (14+XN)*—=1 1—-v (14+X)F-1
a1+ NTE B 11+ A
Cl—y (I+N*—1 1-8 (1+MNF-1
= E(e 2Can) . B(e™05),  ie. (5.8)

Finally, the relations (5.9) and (5.10) follow easily from (5.8), (5.6) and (5.7).
The proof of point 2) iv) of Theorem 1.5 is obtained by similar arguments.

5.3 Remark 5.1. :

5.3.1 If we take v = « in (5.8), we obtain :

(law

1
¢1Ga,p + e2Gpa 2 61 G + e2Gg (5.12)

In particular, taking § =1 — « in (5.12), we obtain :

(law)

e1Go + G = e1Gai—a+eG1—aa

law
( = ) elﬂa,l—a + eQﬁl—oz,oz
(law) (law)

=" YatVi-a) = €

This is our relation (4.41).
It is not difficult to show, after making some manipulations which are quite similar to the
preceding ones, that (4.42) and (4.43) are particular cases of (5.9) and (5.10).

5.3.2 Of course, we did not find directly the explicit value of fg, 4, as given by (5.3), with
the help of the proof described in the above points 5.1.1 and 5.1.2. Prior to that proof,

we developed a heuristic computation which was quite similar to the one made in the above
paragraph 2.2.3.

6 The (§,G) self-decomposable variables. Proofs of Theorems
1.6 and 1.7.

6.1 Let G be a positive r.v. such that :
E{log+ (l)} < 00 (6.1)
G
It is not difficult to show that (6.1) is equivalent to either of the following assertions :

. /100 d?x E[exp(—2G)] < o0 (6.2)
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. /Ooo(x A 1)%%(@—960) < 00, (6.3)

dx
ie. —E(e*"”G)lz>0 is the Lévy measure of a subordinator.
- >

A
. (log (1 + E)) < oo for one (hence any) value of A > 0 (6.4)

We may then formulate, thanks to the Lévy-Khintchine formula, the following :

Definition 6.1. : Let § > 0, and G an Ry-valued r.v. which satisfies (6.1). We shall say that
a Ry-valued r.v. A is (4, G) self-decomposable if, for every A > 0 :

BE(e™) = exp{ - 5/ (1— ) E(e"”G)d—x} (6.5)
0 X
The equality (6.5) may also be written as :
A
—AAY _ _ A
E(e )—exp{ 5E(1og (1+ G))} (6.6)

the latter formula (6.6) being obtained, e.g., as an application of the Frullani integral (see
[L], p. 6). In fact, we thought of Definition 6.1 after considering formula (1.16), which, in our
terminology may be stated as : the r.v. A, is (1 — «, G,,) self-decomposable.

6.2 The notion of (4, G) self-decomposability is related quite naturally with the standard
gamma subordinator.

Statement and Proof of Theorem 1.6 : (A link between the standard gamma subordinator
and the (J, G) self-decomposability).

Let (y¢,t > 0) denote the standard gamma subordinator, whose Lévy-Khintchine representa-
tion writes :

E(e=) = =exp (—tlog(l+2X) (A\t>0) (6.7)

(1+A)
and let h : [0, 0co[— [0, 00| Borel.

1) Define :
Ay = / h(w)dy, (6.8)
0
Then, Ay, is a.s. finite if and only if :

/oo log (1 + h(u))du < oo (6.9)
0
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2) Assuming that the hypothesis (6.9) is satisfied, then Ay, is self-decomposable, with Lévy-
Khintchine representation :

E(e™*21) = exp ( — /000(1 — e ) Fy(2) d?x > (6.10)
with
Fp(x) = /0 exp (— m)du (6.11)

3) For any r.v. G > 0 satisfying (6.1), there exists h satisfying (6.9) such that :

SE(e %) = Fy(x) = / e R0 du
0

In other terms, every (6,G) self-decomposable r.v. may be written in the form (6.8), for
a well-chosen function h.

Recall (cf. the remark following the statement of Theorem 1.6 in part 1.8 of the Introduction)
that :

e the function h, whose existence is asserted in the above point 3) is explicitly given in
terms of 6 and G via the formula :

, foru € (0,0), and 0, for u > §;

e the Laplace transform 15, of the r.v. Ayis hyperbolically completely monotone.

6.2.1 We prove (6.9) and (6.10) :
By a density argument, it suffices to consider h continuous,with compact support. Then, one
has :

E(ei)‘ e h(u)d’yu) = lim E(e_)‘zh(ti)(%i-&-l —’Yti)
= lim exp{ — Z(ti_H - ti) log (1 + )\h(tz))} from (6.7)

= exp ( - /OOO log (1 + /\h(t)dt) (6.12)

=exp| — dt/ e T (1 — e M
(- [ arf e )

since, for every v > 0, the Frullani integral (cf [Leb] p. 6) gives :

log(1+v) = / d—me_x(l — e ")dx
0 €T
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Hence, making the change of variables h(t) z = y, and then applying Fubini’s Theorem :

E(exp (=X /000 h(u)d%)> = exp ( — 000 dt 000 e_xa;—x(l - e_Ah(t)x)>
o0 © _y _
= exp ( - OOO dt ; e h;t)yy(io— e ;\y)>
= exp ( - /0 (1 e_)‘y);y( ; eiﬁdt>>

which proves both (6.9) and (6.10).

6.2.2 We prove point 3) of Theorem 1.6 :

Assume now that G satisfies (6.1), or (6.4), and § > 0. Let us consider the probability space
obtained from the unit interval [0, 1], fitted with Lebesgue’s measure, and realize G in the
form :

Glw) = <}1l> (Gw), wel0,1]. (6.13)

for a well-chosen function h, with support in [0, §]. Then we obtain :

1 - é © 00 -
5E(e_xG):5/ e_W”)du:/ e_h@)dv:/ e " dy (6.14)
0 0 0
Thus :

E(e_)‘f()(x> h(“)dw) = exp{ - /00(1 - e_’\y)(zy</oo efﬁdv)}
0 0

= exp{ — 5/000(1 _ 6_>‘y)dny(e_zG)}

Finally, it is clear, as a consequence of the definition (6.13) that :

E(log+ é) < o0 <:>E(log (1—1—%)) < 00 &= /Ooolog (1+ h(uw))du < co.

6.2.3 Proof of Theorem 1.7 :
Mutatis mutandis, it is exactly the same as the proof of point 3 of Theorem 1 (cf, Proposition
2.3 and paragraph 2.3.3 above).

6.2.4 Proof of Theorem 1.8 :
Definition 6.3 : A function F :]0, co[— R, which belongs to C', satisfies (ST, ) if :

i) F admits an holomorphic extension to C\] — oo, 0] (6.15)

i1) For every u > 0 :

lir(r)1 F(—u+1n) := F4(u) exists and in continuous
n—04

resp. : lin([)l F(—u —1n) := F_(u), exists and in continuous (6.16)
n—04

Im (F_(u) — Fy(u)) >0 for every u > 0.
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iii)  lim AF(\) =6 >0 (6.17)
A real

Let A denote a positive r.v. with Laplace transform ) :

E(e™2) =9¢(\), A>0.

/

We assume that F':= m satisfies (ST, 0).

1
6.2.4.a) We show that : f(u) := 95 (Im (F_(u) — Fy(u)) defines a probability density on
T

Ry and that A is (§, G) self-decomposable, where G is a r.v. with density f :

In fact, we have already made this proof when we showed the existence of the r.v.’s G,
(paragraph 2.2.1) and of the r.v.’s G4 g (paragraph 5.1). We now summarize the important
points of this proof :

e By inversion of the Stieltjes transform, we have :

SIN= ) Sva =5

e fis positive (from (6.16)) and has integral 1 (from (6.17)).

e Let GG denote a r.v. with density f. Then :

5E< ! )— ﬂ()\), hence :

A+ G (&
w/
5/ e ME(e %) de = ()\) ; consequently, by integration :
dz
oA _ _ e M) E(e ¢
)= v\ =exp{ -5 / B ) T}
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