N

N
N

HAL

open science

Ensuring specification correctness by construction

Dieu Donné Okalas Ossami, Jeanine Souquieres, Jean-Pierre Jacquot

» To cite this version:

Dieu Donné Okalas Ossami, Jeanine Souquiéres, Jean-Pierre Jacquot. Ensuring specification correct-

ness by construction. 2006. hal-00104722

HAL Id: hal-00104722
https://hal.science/hal-00104722

Preprint submitted on 9 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00104722
https://hal.archives-ouvertes.fr

Ensuring specification correctness by
construction

Dieu Donné Okalas Ossami, Jeanine Souquieres,
Jean-Pierre Jacquot

LORIA - Université Nancy 2 - UHP Nancy 1
Campus scientifique, BP 239

54506 Vandceuvre-lés-Nancy Cedex - France

Email: {okalas,souquier,jacquot}@loria.fr

Abstract

We propose a process model for the development of formal emitormal specifications
based on the notions of multi-view states and developmesiatqrs. A specification state
is composed of a UML and a B view. The development of a spetiditas seen as a
sequence of application of operators, which model desigisidgs and make both views
evolve. To produce consistent specifications, we define sistemcy relation between
views, allowing to define and check operators’ correctn&ssts, the development process
guarantees that the specification can be safely verified.

Keywords: consistency, correctness, verification, validation, afmr development

process, multi-view, UML, B.

1 Introduction

Experience has shown that the most critical and least stggbphases of the soft-
ware life cycle are requirements analysis and specificati&rrors and miscon-
ceptions in the requirements will be passed on the systenifgagions and from
them down the process to show up ultimately in the progranssmegl specifica-
tions could greatly help in reducing the amount of errorsaose of the absence
of ambiguity in formal texts and the availability of powelrfanalysis techniques
and prototyping tools. However, formal specifications aaedito write and, more
importantly, hard to read; this raises the problem of thedegion of the specifi-
cation. We believe that the effective availability of tosispporting specification
development could greatly help in promoting the use of fdrspeecifications by
practitioners. Tool support should include guidance dytime specification de-
velopment process; it should enable users to develop spe@ins in an intuitive
fashion by separating the use of design concepts from timiesd details of how
they are captured in specification languages. The speaiicdevelopment pro-

(©2006 Published by Elsevier Science B. V.

e A AA AT ANy Ve MUV RV ALy e e JAAVR Y S L

cess should be problem oriented instead of language odiente

Validation requires users of the system to be able to “read’specification, hence
the importance of graphical notations. Verification reqaia formal notation. The
currentissue is that no single language offers both kind®ttion. Is it possible to
combine graphical notations and formal languages ? Cuyrénére are two mains
streams of specification languages: graphical notatiocls as UML [RJB9§ and
mathematical notations such asA&of96]|, Z [Spi93, etc.. Our goal is to design a
framework where both kinds of notations can be used togethifill the needs
of all the people involved. Our approach aims at capitajgin existing languages
rather than at defining a new one. This allows us to reuse thasthat have been
out in the production of industrial tools such as Rationas&oor ArgoUML 2 for
the edition of UML diagrams, and suchli&telier B [STE9§, B-Toolkit[BCL96],
or b4Free B4F] for the formal verification of specifications. Our framewa@up-
ports multi-view specification activity by providing assiace during the develop-
ment process. Its key is the notion of development operatbes development of a
specification is defined as a sequence of steps, each of whaiph andevelopment
state to the next by the application of an operator.

The formalisation of object-oriented concepts has prochptany research works.
Three general approaches are identified in the literaturpexXtension of formal
notations with object-oriented concepts, (2) extensioalpéct-oriented notations
with formal notations, and (3) method integration betwebkject-oriented and for-
mal notations. Z++[an9] and Object-Z CDD*90] are examples of the first
approach where Z9pi97 is supplemented with object-oriented concepts and no-
tations. In the second approach, parts of the informal $ipations expressed in
natural language are replaced by formal statements exqa@ss well-known for-
mal language, e.g. SyntropZD94. In the third approach, transformation rules
are defined which translate specification written in one farsm into an “equiva-
lent” specification written in another formalism. One insta of this approach is
UML to B transformation: it allows specifiers to use formathaiques and tools
to check the specification. Transformation provides us aittomated support to
generate a B specification from UML diagramdPP1L,MS99LS02SBO0J tak-
ing into account OCL constraints $02ML02]. Another instance is B to UML
transformation: it eases the validation by the generatiodML diagrams (class
diagrams and state diagrams) from a B specificatiti(4,IL04,TVO3].

One major problem in UML and B integration approaches is taanmng the con-
sistency when the specification evolves. Currently, UML &dhtegration ap-
proaches offer either UML to BUSC03SB] or B to UML transformationsTV01]
but not both in the same tool. Several reasons account feisthie of affair, but
the net result is the practical impossibility to define a s where both kinds

L http://www-306.ibm.com/software/rational
2 http:/lwww.argouml.tigris.org

e A AA AT ANy Ve MUV RV ALy e e JAAVR Y S L

of transformation can be symmetrically used. As a consetpjedML to B or
B to UML transformation induces a sequential developmeatgss where : (i) a
new specification in the target formalism is generated each the rules are used.
Thus, any information added in the generated specificatidost and must be re-
designed; (ii) the modifications brought into the generaieekcification cannot be
retrofitted. This raises the issue of consistency betweeruirent B specification
and its corresponding UML specificationF02.

The paper is organised as follows. Sect&presents the approach with a definition
of the consistency relation between two developments stepssure the correct-
ness of the construction. Secti@rpresents a selection of development steps on
the generalised railroad crossing case study using opsragectiord describes
how the correctness of an operator can be verified. This iscbas the verification

of the consistency relation on obtained specifications vapgtying that operator.
Section5 concludes the paper.

2 Operators’ framework : a general description

Our approach aims at modelling a process for developingifsgesons expressed
simultaneously in an object oriented notation graphica{lyy and in a formal no-
tation (B). Both specifications are built by successive apipnations. Operators
are the central notion: they capture strategies and desigrepts. They enable the
user to develop specifications in an intuitive fashion byesepng the use of design
concepts from the technical details of how they are capturdde chosen specifi-
cation languages. Different development strategies candmelled as libraries of
operators, allowing to provide users with flexible devel@mtprocesses.

2.1 Specification state and operator

Our process model is strongly inspired by the transfornmegijpproaches. The final
specification results from a sequence of applications efst@amers:operators
An operator is applied to apecification stateand produces a new specification
state.
A specification state consists of two views. The UML view pdas users with a
graphical notation and gives access to validation tool® Blview provides users
with a formal notation and gives access to verification todle fundamental point
is that the views aréwvo different expressions the same specificationA state is
noted as:

Spec= (SpecUML. SpecB

A development operator transforms simultaneously the Ui the B views DSJ0%.
Often, the application of an operator requires some inmuhfthe user, the param-
eters. An operator consists of :

« application conditions, which is a predicate on the curdavelopment state.

e A AA AT ANy Ve MUV RV ALy e e JAAVR Y S L

 adescription of the actions performed 8pecUMLandSpecBdenoted by) u.
andOg and

2.2 Consistency relation

Our development model is based on the idea that applying raé@d operator on
a “correct” state leads to a new “correct” state. The quaessaow to define what
“correct” means precisely. In previous wor®$J0% we defined a so-calledon-
sistency relatiorbetween UML and B specifications, denoted’y.. It is defined
as a conjunction of four conditions which are formally exgs®ed in Definitior2. 1
Let:

e Ty_.gbethe set of UML to B transformation rulds$01,MS99 which associate
each UML artifact with one or more B artifacts.

o Ty _g(SpecUML be the application df'y_.g on SpecUML

e SpecUML, _ be the restriction oSpecUMLto elements for which there is a
transformation rule to B defined iy _,g.

e ID(SpecB andID(SpecUML,) be sets of identifiers appearing$pecBand
in SpecUML, . respectivelly.

Definition 2.1 (Formal definition of the consistency relation)

SpecUMLRelc SpecB
(1) WF(SpecUMD A WF(SpecB
(2) consistentSpecUML A consistentSpecB

(3) Y ey.(eu € ID(SpecUML,) =
3 {es}, T.({es} C ID(SpecB A T € Tu—g A T(eu) = {es}))

@)V ¢.(Tu—s(SpecUMD E ¢ = SpecBE ¢))

1 syntactic conformance . It states that botlspecUMLand SpecBmust be well-
formed. It ensures that the specification conforms to abissgntax speci-
fied by the meta-model, i.e. UML meta-model or B abstract ayrniee. Let
WUF (SpecUML andW.F(SpecB be two predicates defining if a UML and a B
specification are well-formed.

2 Local consistency. It requires that both specifications must be internally csiest.
That means they do not contain contradictions, but theydcbalincompletely
defined. We write itonsistentSpecUML andconsistentSpecB.

3 Elements traceability. It States that for any elements b (SpecUML), e,, that
can be transformed by a rulg there exists inD (SpecB a set of artifact{eg}
resulting from the application oF to e .

4 semantic preservation. It states that any statemegpitsatisfying the semantics of
SpecUMLmust satisfySpecB The semantics adbpecUMLIs defined adly_.g
(SpecUML. This means that UML artifacts that have no B semantics define
in Ty_.g are not concerned by the consistency relafit®lc. This has important

e A AA AT ANy Ve MUV RV ALy e e JAAVR Y S L

implications throughout the verification process. For eghanit is well known
that checking pairwise integration of a set of software gmations is only pos-
sible if one is able to transform them into a semantic domappsrted by tools.
B is our semantic domain and any UML statement that has no ladbsation
cannot be verified in our framework.

We use the B theorem prover to prove that a statemdratids inSpecB(condition
(2)) and due t@ondition3), we derive the consistency 8pecUML,.and therefore
the consistency of the multi-view specificatiSpec

2.3 Operator correctness

Given a specification staté SpecUML. SpecB, a chosen operatoperatorwith

its parametergyaram the goal is to check that the new specification state,

(SpecUML, SpecB), obtained by the application @peratoris consistent, see

Fig 1.

The correctness of an operator is defined by
Relc means of a formula of the forH = G, where

‘ ’ H denotes the hypothesis on the current devel-

 Operator(param) opment state an@ the goal to be demonstrated

based on the obtained development state accord-
‘ j _7_€_el_c’ ing to the consistency relation.
Fig. 1Correctness of an oper-
ator
() Hypothesis
e SpecUML Relc specB : the current state of the development, satisfying the
consistency relation,
e ApCond : the application conditions of the applied operator.
(il) Goal
e SpecUML Relc SpecB’
where :

(SpecuUML, SpecB’) = Operatorparam), whereby (SpecUML, SpecB) IS an
implicit parameter.

The proof obligation associated @peratorassuming the hypothesis is expressed
as follows :

SpecUML Relc SpecB A ApCond = SpecUML Relc SpecB’

3 A small case study

Let us consider the generalised railroad crossing (GRCy sasdy pS0Q. The
system to be specified aims at controlling a gate at a railcoasking so that trains
can safely go through. The informal text describes the @olds a monitoring of
trains. The GRC lies in a region of interd’tas presented in Fi@. Trains travel

e A AA AT ANy Ve MUV RV ALy e e JAAVR Y S L

in one direction througlk, which is decomposed into three regiorfar, nearand
on. The regions determine the position of traindgIn
We will present three development steps to illustrate

I our approach, starting from this informal description.
; 1 For each step, we give the idea we follow, the operator
o Wf chosen in the library with its parameters and the new
—_— state produced by the application of the operator on

R

the current state of the specification. In the new speci-
fication state, the new UML part is written in bold face
and the new B part is written in a box. For space rea-
sons, we do not give the formal definition of all operatorsdusethis paper. Only
the formal definition of théMlodel-StateMachineperator is given in the appendix
(cf. sectiom6). The generic template for describing operators has besusgsed in
[OSJ05.

Fig. 2 The generalised
railroad crossing

3.1 Firstdevelopment step : modelling the state dependsr\bour of the train

From the informal requirement, we identify three staties,(near, on) and three
events énter, cross leavg which change the state of the train when it arrives,
crosses or leaves the regi®n This leads us to use the specification technique of
introducing a state machine to model the description. Téghnique is captured
by the development operatdvlodel-StateMachineThe required parameters are
extracted from the text description and the applicatiorhefaperator leads to the
development state presented RBgThe resulting UML view is composed of a class
diagram with one classl(ain) and an enumerated typERAIN_.STATESand of a
state-transition diagram. Three machines and a refinenametlbeen introduced in
the B view.

e TheTrain machine corresponds to the clasain. It introduces a variabldrain
that specifies current objects @fain. The state of an object is recorded by
the variableTrain_stateof type TRAIN.STATESwhich gathers all the states as
specified in the corresponding state diagrafnain_stateis defined as a func-
tion from train to TRAIN.STATESThus, the state of an objeob is defined
as Train_state(oo) Transitions between states are formalised by B operations
which model the change of the statérain_TransFarNeamodels the transition
from the statdar to the stateear.

e Since events can affect data of several classes, B opesdtioevents are mod-
elled in theSystenmachine which includes thErain machine. Th&ystemma-
chine simulates the execution of the state diagram. Howsusre B does not
allows sequencing in abstract machines, operations irSjfs¢emmachine are
refined in the refinemerfBystemref in order to allow sequencing if necessary.
At the refinement level, we are able to model sequencing.ish#tseveral op-
erations are to be called call sequencing. So, we are ablalltgtate change
operations (i.e.Train_TransFarNeajJ in sequence with operations for actions
from the included machin@rain if there are some modelled.

e A AA AT ANy Ve MUV RV ALy e e JAAVR Y S L

e The Typesmachine models shared types and data. This separation o
provides a clear way of identifying the publicly visible armation and allows
all components of the system to use the same definitions.

Note that the actual translation from UML diagrams into B & of interest for
the study undertaken in this paper. Of interest are the fbooacepts coming
with the B language and whether and how it is applicable inirat gevelopment
process. Interested readers can find proposals on UML to i&sftvemation in
[MS99LP0OLLS02SBO0O3MLOZ].

|

Model-StateMachine(Train, {far, near, on},
{(far, enter, near), (near, cross, on), (on, leave, far)})

‘ Train ‘
«enumeration» . enter()/
TRAIN_STATES Train
far +state : TRAIN_STATES far
gﬁar +enter()
1%2328 leave()/ n - cross()/
MACHINE System
SEES Types
INCLUDES aT.Train
OPERATIONS
entefoo) =
PRE oo € OBJECTS
THEN
) IF oo € aT.train
MACHINE Train THEN
SEES Types IF aT.Trainstate(0o) = far
VARIABLES THEN
train, Train_state aT.Train_TransFarNea(oo)
INVARIANT END
MACHINE Types train € TRAIN A ELSE skip END
SETS Train_state € END;
OBJECTS train — TRAIN.STATES
TRAINSTATES = END

{far, near, on}
CONSTANTS
TRAIN
PROPERTIES
TRAIN C OBJECTS
END

INITIALISATION
train (= & ||
Train_state := &
OPERATIONS
Train_TransFarNeafoo) =
PRE 0o € train A
Train_stat€oo) = far
THEN
Train_statg00) := near
END;

END

REFINEMENT Systemref
REFINES System
SEES Types
INCLUDES aT.Train
OPERATIONS
enteoo) =
PRE oo € OBJECTS
THEN
IF oo € aT.train
THEN
IF aT.Trainstate(0o) = far
THEN
aT.Train_TransFarNeafoo)
END
ELSE skip END

Fig. 3 Application of theviodel-StateMachine operator to initialise the development

e S AriALLAD

3.2

LAV Ve VARV ALy e

AR YRS L

Second development step : introduction of differerdkof train

Model-StateMachine(TrainM, {far, near, on, stopped}, {(far, enter, near), (far, wait, stopped),
(stopped, restart, near), (near, cross, on), (on, leave, far)});

Model-StateMachine(TrainV, {far, near, on}, {(far, enter, near), (near, cross, on), (on, leave, far)})

context Train inv

(self.

(self.oclinState(near) implies

Train

self.Ht > 2 and self.Ht < 5) and (
implies self.Ht < 2)

enter()/

cenumerat o>
TRAIN_STATES

«enumeration» TrainV

TRAINM_STATES

TrainM ‘ TrainV

TrainM \

+state: TRAIN_STATES
far

+state: TRAINM_STATES enter()/

near +enter()
on +cross()
stopped +leave()

+enter()
+cross()
+leave()
+wait()
+restart()

O

cross()/

restart()/

MACHINE Types
SETS

TRAINMLSTATES
{far, near, on, stopped

CONSTANTS

TRAINV, TRAINM

PROPERTIES

TRAINM C OBJECTS A
TRAINV C OBJECTS

END

MACHINE Train

END

MACHINE System
SEES Types
INCLUDES aT.Train,

aTM.TrainM, aTV.TrainV

OPERATIONS
enterfoo) = ...

wait(oo) = ...

END

MACHINE TrainV
SEES Types
VARIABLES
trainv, TrainV_state

INVARIANT
trainv C TRAINV A
TrainV_state €

trainv — TRAIN.STATES
INITIALISATION

OPERATIONS
TrainV_TransFarNeafoo) = ...

END

MACHINE TrainM
SEES Types
VARIABLES

trainm, TrainM_state

INVARIANT
trainm C TRAINM A
TrainM_state €

trainm — TRAINM.STATES

INITIALISATION
OPERATIONS

TrainM_TransFarNeafoo) = ...
TrainM_TransFarStoppeo) =

END

REFINEMENT Systenref
REFINES System

SEES Types

INCLUDES aT.Train,

aTM.TrainM, aTV.TrainV

OPERATIONS

enter(oo) =

PRE oo € OBJECTS

THEN

IF oo € aT.train

THEN
IF aT.Trainstate(oo) = far
THEN
aT.Train_TransFarNea(oo)
END
ELSEIF oo € aTV.trainv
THEN
aTV.TranV_TransFarNea(oo)

ELSE IF oo € aTM.trainm

THEN
aTM.TranM_TransFarNeafoo)

ELSE skip END
END
END
END;

wait(oo) = ...
restaroo) = ...

END

Fig. 4 Introduction of two kinds of trains

e A AA AT ANy Ve MUV RV ALy e e JAAVR Y S L

A further analysis of the problem indicates that differemids of trains are au-
thorised to travel on the GRC: freight trains and passengans. The following
characteristics are identified:

« freight trains can stop when they reach the sfateafter the eventvait occurs.
They go from the statstoppedo the statenearwhen the eventestartoccurs.

To introduce the different trains, we can choose betweeeast two development
approaches: passenger and freight trains can be modetlegendently from the
Train entity, or they can be modelled as specialisation ofifen entity. Let us
apply the first approach which corresponds to a bottom-wtesjy.

We use again th®lodel-StateMachineperator, once for the freight traingr@inM)
and once for the passenger traimginV).

The new specification state is presented in BigTwo classes, one enumerated
type and two state diagrams have been introduced in the UBM.viwo machines
have been introduced and three other entifigpés SystemandSystenref) have
been updated in the B view.

3.3 Third development step : Generalisation

The previous development steps have produced three uncedrentities. A close
look on the diagrams and machines reveals strong siméaritin fact, we have
modelled twice the same general behaviour. Moreover, we haw enough knowl-
edge of the problem to realize thatiter, crossandleaveare three instances of the
same behavioumove This situation is quite common while developing specifica-
tion and can be solved by generalising. A generalisatiomaipe

Gener al i ze- Behavi our , models this approach. We select the parameters to
indicate thatTrainV and TrainM are sub-kinds offrain and that one operation,
move replaces the other three.

The new specification state is presented Big/Ve can note that the UML view has
been augmented with inheritance relations and the defndfcoperationsenter,
crossandleavehave been removed from the subclasses. They are also now mod-
elled by the generic operatiomove in the superclass. It is implicitly inherited by

the subclasses. The B view shows modifications in the carrepg machines.

Generalize—-Behaviour({enter, cross, leave}, {TrainV, TrainM}, Train, move)

v

e S AriALLAD

LAV Ve VARV ALy e

AR YRS L

context Train inv :

self —>forAll(e | e : classifier and self.isSuperClass(e) ‘

Train |

implies self -> includesAll(e))

«enumeration»

«enumeration» Train

TRAINM_STATES TRAIN STATES

‘‘‘‘‘ TRAIN_STATES

+move()

move(/

near

move(!

E——

| TrainM |

‘ Trainy ‘

+siate: TRAIN_STATES

+state: TRAINM_STATES

TrainM

wait()/

(]
move()

ar
=
restart()/
move(y m _ mowy

MACHINE System

SEES Types

INCLUDES aT.Train, aTM.TrainM
aTV.TrainV

OPERATIONS

movéoo) = ...

MACHINE TrainV
SEES Types

EXTENDS Train

MACHINE Types
SETS

PROPERTIES

TRAINV C TRAIN A
TRAINM C TRAIN

END

INVARIANT

trainv C train

OPERATIONS
TrainV_TransFarNeafoo) =

END

MACHINE TrainM

MACHINE Train

OPERATIONS
Train_TransFarNeafoo) = ...
Train_TransNearO(oo) = ...
Train_TransOnFafoo) = ...
END

SEES Types

EXTENDS Train

INVARIANT

TrainM_Ht € trainm — NAT

trainm C ftrain

OPERATIONS
TrainM_TransFarNeafoo) =

END

END

REFINEMENT Systenref

REFINES System

SEES Types

INCLUDES aT.Train, aTM.TrainM
aTV.TrainV

OPERATIONS

movegoo) =

PRE oo € OBJECTS

THEN

IF oo € aT.train

THEN
IF aT.Trainstate{oo) = far
THEN
aT.Train_TransFarNeafoo)
END
ELSE IF aT.Trainstate(00)
near
THEN
aT.Train_TransNearOfoo)
ELSE IF aT.Trainstate(00)
on
THEN
aT.Train_TransOnFaf00)
ELSE skip END

END

END ||

IF oo € aTV.trainv

A

IF oo € aTM.trainm

END;

END

Fig. 5 Application of theseneralize-Behaviour operator on Figt

e A AA AT ANy Ve MUV RV ALy e e JAAVR Y S L

4 Qperator’s correctness

We derive the correctness of an operator from the correstoespecifications that
it produces. This is done by verifying the four conditionsloé consistency rela-
tion. To illustrate this, we take the specification of Bigbtained by the application
of Model-StateMachineperator.

Let: (SpecUML, SpecB) the UML and B specification of Fig

1 syntactic conformance. Both specifications must be checked for syntax and type
correctness with their corresponding support tool. The [iosut tool we use for
this case studyy4free[B4H, confirms the well-formedness of the text shown in
Fig. 3. The UML diagrams are well-formed accordingAogoUML, the UML
tool we have used.

2 Local consistency. The definition of operator correctness uses the strong hypot
esis that each view in the initial state is internally cotesis. While this con-
dition is not much more than the well-formedness for the UMLmeans full
logical consistency for the B part. The checkingSgfecBfollows the usual ap-
proach of the B method: to check initialisation, to check sme postconditions
of operations with respect to the preservation of machinariants, and to check
inter-machine relations such as sees, includes or refinesm@fe have submitted
SpecB'o thebafree tool.

All proof obligations

Project status generated by the tool
| COVPONENT | TC| POG | Gbv | nPO| nun | 9r | have been discharged.
Fommm e aa Fommm e m e - +o- - - - Fomm o Fomm o R + i _
| System | K| oK | 10 | 0| 0| 100 | Fig. 6 shows the .S.um

| systemref| K| & | 22| o] o] 10| mary of the verifica-
| Train | K| &K | 7] 8] 0] 100]| ¢ i

| Types k| & | 1] o] o] 100] tlor_l pnnted by the tqol.
o A P P P P + This gives us a first
| TOTAL | K| OK | 40| 8| 0] 100 | :
LT LT L feedback on the internal

consistency oSpecB!
Fig. 6 Result of the verification of the B specification

3 Elements traceability IS proved by verifying that
ID(Ty_g(SpecUML)) = ID(SpecB). All new names introduced by the opera-
tor are present.

4 semantics preservation . Our strategy to verify this condition is to submit the B
specification of Fig7 to theb4freetool and compare the proof results with those
obtained previously for the B specification of g So, due to the elements
traceability condition, we conclude th&pecB’satisfies the same requirement
than it UML counterpart. This has been checked true on oumgia

The four conditions of the consistency relation hold for fingt development state,
we can assume that thdodel-StateMachineperator works correctly.

e A AA AT ANy Ve MUV RV ALy e e JAAVR Y S L

Génération Critique

Orienté

B} crcise caser
¢ B train

l_l_ [E=[B] l_l_ [Z]
o rew (Journal des erreurs | Types | System | Systemorer | Basie | Train |
MACHINET rain
e

£R1ABLES
train, T

INWARLANT

in ——= TRAIN_STATES

Fig. 7 Specification of the Train obtained by systematic UML to Bisirmation of Fig3 with
ArgoUML+B

5 Conclusion

This paper presents a specification development processhvirtegrates the use
of several formalisms. The key notion is the operator whicdsls a development
strategy while ensuring that the multi-view specificationlges consistently. The
idea to mix different formalisms is not new but was hampenrgdhe problem of
maintaining the consistency between the two specificati@erators solve this
problem. They enable users to develop specifications in wuitire fashion by
separating the use of design concepts from the technicallsietf how they are
captured in specification languages. They offer flexibiityce it is possible to
define libraries of operators capturing alternative dating of particular concepts
and strategies. They allow us to model the development oéeifsgation as a pro-
cess of successive approximation process. The purposeeodtops is to capture
the specifiers’ knowledge.

The benefits of the approach can be summed up as follows:

» separation of concern. Operators enable the specifier onadelogical issues
and on problem solving issues rather than to focus on howgoess them in the
target languages;

» documentation. The use of two complementary languagesgmaphical and
object-oriented and the other formal, makes the specificaasier to understand
and help the developers to verify and refine the system ureleziopment;

» support for guidance. At any stage of the construction mecéhe specifier
knows what remains to be done. Libraries of operators wiiberal use of the
“remain to be done” clause can be constructed to model arat@nparticular

e A AA AT ANy Ve MUV RV ALy e e JAAVR Y S L

development strategies. In addition, operators precmmditiower the risk of
mis-using operators;

» correctness by construction. As the correctness of eactatmgpehas been de-
fined, the specification obtained by the application of ojpesais proved to be
correct.

Operators can be compared with specification templatesdated in Tur9g,
where a template formalises a Lotos specification style f8t & a fragment of
specification text that can be conveniently retrieved asérited in a specification.
To enhance the value of such templates and to increase terality, templates
are parameterised.

References

[Abro6] J.R. Abrial. The B Book -Assigning Programs to MeaningsCambridge
University Press, 1996. ISBN 0-521-49619-5.

[B4F] B4Free. avaible at : http://www.b4free.com/.
[BCL96] Oxford(UK) B-Core(UK) Ltd.B-Toolkit User's Manual 1996.

[CD94] S. Cook and J. Daniels. Let's get formal.Journal of Object-Oriented
Programming (JOOR)pages 22-24 and 6466, 1994.

[CDD"90] D.A. Carrington, D. Duke, R. Duke, P. King, G.A. Rose, &dSmith. Object-
Z: An object-oriented extension to Z. IFormal Description Techniques Il,
FORTES’89pages 281-296, 1990.

[HMO4] F. Houda and S. Merz. Transformation de spécificai@ en diagrammes
UML. In Proceedings of AFADL'Q42004.

[ILO4] A. Idani and Y. Ledru. Object Oriented Concepts Id&oation from Formal B
Specifications. 1®th Int.Workshop on Formal Methods for Industrial Critical
Systems, FMICS’Q£2004.

[JSO0] L. Jansen and E. Schneider. Traffic control systene cisdy: Problem
description and a note on domain-based software speatficatiTechnical
report, Colorado State University, January, 2000.

[Lan91] K. Lano. Z++, An Object-orientated Extension to Zn Rroceedings of the
Fifth Annual Z User Meetingpages 151-172. Springer-Verlag, 1991.

[LPO1] R. Laleau and F. Polack. A Rigorous Metamodel for UMht Conceptual
Modelling of Information Systems. ImAdvanced Information Systems
Engineering. 13th Int. Conf., CAISE 2Q0Mlume 2068 oLNCS pages 402—

416. Springer, 2001.

[LPO2] R. Laleau and F. Polack. Coming and Going from UML to B Proposal
to support Traceability in Rigorous IS Development. 4B'2002 — Formal
Specification and Development in Z angpgages 517-534, 2002.

e A AA AT ANy Ve MUV RV ALy e e JAAVR Y S L

[LSO1] H. Ledang and J. Souquieres. Modeling class opersitio B: application to
UML behavioral diagrams. ASE2001: 16th IEEE Int. Conf. on Automated
Software Engineering, IEEE Computer Soci@§01.

[LS02] H. Ledang and J. Souquiéres. Integration of UML and Beication
Techniques: Systematic Transformation from OCL Expressimto B. In
APSEC 2002, IEEE Computer Socje2902.

[LSCO3] H. Ledang, J. Souquiéres, and S. Charles. ArgoUML+RIn outil de
transformation systématique de spécifications UML vers B.Plloceedings
of AFADL'03 2003.

[MLO2] R. Marcano and N.Levy. Using B formal specificationsr fanalysis
and verification of UML/OCL models. In L. Kuzniarz, G. Reggid. L.
Sourrouille, and Z. Huzar, editord)orkshop on Consistency Problems in
UML-based Software Developmepages 91-105, 2002.

[MS99] E. Meyer and J. Souquieres. A systematic approachranstorm OMT
diagrams to a B specification. IRroceedings of the Formal Method
Conferencenumber 1708 in LNCS, pages 875—895. Springer-Verlag, 1999

[OSJO05] D. Okalas Ossami, J. Souquiéres, and J-P. Jacqansisiency in UML and B
multi-view specifications. In LNCS, editd?roc. of the Int. Conf. on Integrated
Formal Methods, IFM’05number 3771, pages 386—405, 2005.

[RIB97] J. Rumbaugh, I. Jacobsen, and G. BoochUnified Modeling Language
Reference ManualAddison-Wesley, 1997.

[RJIB98] J. Rumbaugh, I. Jacobson, and G. Boodrhe Unified Modeling Language
Reference ManualAddison-Wesley, 1998. ISBN 0-201-30998-X.

[SB] C. Snook and M. Buttler. U2B: a tool for combining UML aid Avaible at
http://www.ecs.soton.ac.uk/ cfs/U2Bdownloads!/.

[SBOO3] C. Snook, M. Butler, and I. Oliver. Towards a UML ptefifor UML-
B. Technical report, DSSE-TR-2003-3, Electronics and CaigipScience,
University of Southampton, 2003.

[Spi92] J. M. Spivey.The Z Notation: A Reference Manu&rentice Hall, 1992.
[STE98] STERIA.Manuel de référence du langage ElearSy-, novembre, 1998.

[Tur96] K. J. Turner. Relating architecture and specifmatiComputer Networks and
ISDN SystemdApril 1996.

[TVO1] B. Tatibouet and J. C. Voisinet. jBtools and B2UML : &fgform and a tool
to provide a UML class diagram since a B specificationlBSEA : 14th Int.
Conf. on Software and Systems Engineering and Their Apiolics 2001.

[TVO03] B. Tatibouet and J.-C. Voisinet. Generating statgthfrom B specifications.
In 16th Int. Conf. Software & Systems Engineering and theirliegions,
ICSSEA'20032003.

e A AA AT ANy Ve MUV RV ALy e e JAAVR Y S L

6 Appendix

Operator Model-StateMachine
Description. This operator models a state dependent behaviour of ay.entit
Parameters

e EntityName : Names
e statesset : F(name$
e transitionsset : F(TRANS

Application conditions

General toaSpecUML andSpecB
e Vs.(s € statesset= 5 ¢ IDUsedIn(EntityNampg
Definition
IF EntityName¢ MachinesIdSpecB U Refinements|[BpecB
THEN
Introduce-Entity(EntityName)
END ;

IF StateMachineQfEntityNam¢ ¢ SpecStateMachingSSpecUML)
THEN

‘ Os ‘ OumL ‘
‘ skip ‘ AddStateMachir@&ntityName ‘

IF {"Systerff, “Systemref”’} N (MachinesID(SpecBl RefinementsID(SpecB)} &
THEN

‘ Os ‘ Oum ‘

‘ AddSystemMachingfEntityName) ‘ skip ‘

END
END ;

IF StateMachineQfEntityName € SpecStateMachingSpecUML)
THEN
IF StatesTypel[EntityName ¢ TypeslOSpeg
THEN
Introduce-Enumerated-Data—Typd generateStates TyffentityName, statesse)
END ;

IF StatesTypel[EntityNamg¢ < TypesIidSpe¢ A statesset— StatesOfEntityName # &
THEN

[OumL

AddSetElementsTyped AddTypeElements
StatesTypel[EntityNamg, StatesTypel[EntityNamé¢,
statesset — StatesOfEntityName) statesset — StatesOfEntityName)

END ;

‘ Os ‘ Oum ‘

‘ skip ‘ AddStateStateMachineQfEntityName, statesse) ‘
END ;

FOR t IN transitionsset — TransitionsOf StateMachineQfEntityName)
DO

Introduce-Transition(StateMachineQfEntityName, t)
END

Fig. 8 Formal description aflodel-StateMachine

	Introduction
	Operators' framework : a general description
	Specification state and operator
	Consistency relation
	Operator correctness

	A small case study
	First development step : modelling the state dependent behaviour of the train
	Second development step : introduction of different kinds of train
	Third development step : Generalisation

	Operator's correctness
	Conclusion
	References
	Appendix

