
HAL Id: hal-00104722
https://hal.science/hal-00104722

Preprint submitted on 9 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ensuring specification correctness by construction
Dieu Donné Okalas Ossami, Jeanine Souquières, Jean-Pierre Jacquot

To cite this version:
Dieu Donné Okalas Ossami, Jeanine Souquières, Jean-Pierre Jacquot. Ensuring specification correct-
ness by construction. 2006. �hal-00104722�

https://hal.science/hal-00104722
https://hal.archives-ouvertes.fr

Ensuring specification correctness by
construction

Dieu Donné Okalas Ossami, Jeanine Souquières,
Jean-Pierre Jacquot

LORIA - Université Nancy 2 - UHP Nancy 1
Campus scientifique, BP 239

54506 Vandœuvre-lès-Nancy Cedex - France
Email: {okalas,souquier,jacquot}@loria.fr

Abstract

We propose a process model for the development of formal and semi-formal specifications
based on the notions of multi-view states and development operators. A specification state
is composed of a UML and a B view. The development of a specification is seen as a
sequence of application of operators, which model design decisions and make both views
evolve. To produce consistent specifications, we define a consistency relation between
views, allowing to define and check operators’ correctness.Thus, the development process
guarantees that the specification can be safely verified.

Keywords: consistency, correctness, verification, validation, operator, development
process, multi-view, UML, B.

1 Introduction

Experience has shown that the most critical and least supported phases of the soft-
ware life cycle are requirements analysis and specification. Errors and miscon-
ceptions in the requirements will be passed on the system specifications and from
them down the process to show up ultimately in the programs. Formal specifica-
tions could greatly help in reducing the amount of errors because of the absence
of ambiguity in formal texts and the availability of powerful analysis techniques
and prototyping tools. However, formal specifications are hard to write and, more
importantly, hard to read; this raises the problem of the validation of the specifi-
cation. We believe that the effective availability of toolssupporting specification
development could greatly help in promoting the use of formal specifications by
practitioners. Tool support should include guidance during the specification de-
velopment process; it should enable users to develop specifications in an intuitive
fashion by separating the use of design concepts from the technical details of how
they are captured in specification languages. The specification development pro-

c©2006 Published by Elsevier Science B. V.

D. Okalas Ossami, J. Souquires, J.-P. Jacquot

cess should be problem oriented instead of language oriented.

Validation requires users of the system to be able to “read” the specification, hence
the importance of graphical notations. Verification requires a formal notation. The
current issue is that no single language offers both kinds ofnotation. Is it possible to
combine graphical notations and formal languages ? Currently, there are two mains
streams of specification languages: graphical notations such as UML [RJB98] and
mathematical notations such as B [Abr96], Z [Spi92], etc.. Our goal is to design a
framework where both kinds of notations can be used togetherto fulfill the needs
of all the people involved. Our approach aims at capitalising on existing languages
rather than at defining a new one. This allows us to reuse the efforts that have been
out in the production of industrial tools such as Rational Rose1 or ArgoUML 2 for
the edition of UML diagrams, and such asl’Atelier B [STE98], B-Toolkit[BCL96],
or b4Free [B4F] for the formal verification of specifications. Our framework sup-
ports multi-view specification activity by providing assistance during the develop-
ment process. Its key is the notion of development operators: the development of a
specification is defined as a sequence of steps, each of which maps a development
state to the next by the application of an operator.

The formalisation of object-oriented concepts has prompted many research works.
Three general approaches are identified in the literature: (1) extension of formal
notations with object-oriented concepts, (2) extension ofobject-oriented notations
with formal notations, and (3) method integration between object-oriented and for-
mal notations. Z++ [Lan91] and Object-Z [CDD+90] are examples of the first
approach where Z [Spi92] is supplemented with object-oriented concepts and no-
tations. In the second approach, parts of the informal specifications expressed in
natural language are replaced by formal statements expressed in a well-known for-
mal language, e.g. Syntropy [CD94]. In the third approach, transformation rules
are defined which translate specification written in one formalism into an “equiva-
lent” specification written in another formalism. One instance of this approach is
UML to B transformation: it allows specifiers to use formal techniques and tools
to check the specification. Transformation provides us withautomated support to
generate a B specification from UML diagrams [LP01,MS99,LS02,SBO03] tak-
ing into account OCL constraints [LS02,ML02]. Another instance is B to UML
transformation: it eases the validation by the generation of UML diagrams (class
diagrams and state diagrams) from a B specification [HM04,IL04,TV03].

One major problem in UML and B integration approaches is maintaining the con-
sistency when the specification evolves. Currently, UML andB integration ap-
proaches offer either UML to B [LSC03,SB] or B to UML transformations [TV01]
but not both in the same tool. Several reasons account for this state of affair, but
the net result is the practical impossibility to define a process where both kinds

1 http://www-306.ibm.com/software/rational
2 http://www.argouml.tigris.org

D. Okalas Ossami, J. Souquires, J.-P. Jacquot

of transformation can be symmetrically used. As a consequence, UML to B or
B to UML transformation induces a sequential development process where : (i) a
new specification in the target formalism is generated each time the rules are used.
Thus, any information added in the generated specification is lost and must be re-
designed; (ii) the modifications brought into the generatedspecification cannot be
retrofitted. This raises the issue of consistency between the current B specification
and its corresponding UML specification [LP02].

The paper is organised as follows. Section2 presents the approach with a definition
of the consistency relation between two developments stepsto ensure the correct-
ness of the construction. Section3 presents a selection of development steps on
the generalised railroad crossing case study using operators. Section4 describes
how the correctness of an operator can be verified. This is based on the verification
of the consistency relation on obtained specifications whenapplying that operator.
Section5 concludes the paper.

2 Operators’ framework : a general description

Our approach aims at modelling a process for developing specifications expressed
simultaneously in an object oriented notation graphical (UML) and in a formal no-
tation (B). Both specifications are built by successive approximations. Operators
are the central notion: they capture strategies and design concepts. They enable the
user to develop specifications in an intuitive fashion by separating the use of design
concepts from the technical details of how they are capturedin the chosen specifi-
cation languages. Different development strategies can bemodelled as libraries of
operators, allowing to provide users with flexible development processes.

2.1 Specification state and operator

Our process model is strongly inspired by the transformation approaches. The final
specification results from a sequence of applications of transformers:operators.
An operator is applied to aspecification stateand produces a new specification
state.
A specification state consists of two views. The UML view provides users with a
graphical notation and gives access to validation tools. The B view provides users
with a formal notation and gives access to verification tools. The fundamental point
is that the views aretwo different expressionsof thesame specification. A state is
noted as:

Spec= 〈 SpecUML, SpecB〉

A development operator transforms simultaneously the UML and the B views [OSJ05].
Often, the application of an operator requires some input from the user, the param-
eters. An operator consists of :

• application conditions, which is a predicate on the currentdevelopment state.

D. Okalas Ossami, J. Souquires, J.-P. Jacquot

• a description of the actions performed onSpecUMLandSpecB, denoted byOUML

andOB and

2.2 Consistency relation

Our development model is based on the idea that applying a “correct” operator on
a “correct” state leads to a new “correct” state. The question is now to define what
“correct” means precisely. In previous work [OSJ05] we defined a so-calledcon-
sistency relationbetween UML and B specifications, denoted byRelC. It is defined
as a conjunction of four conditions which are formally expressed in Definition2.1.
Let :

• TU→B be the set of UML to B transformation rules [LS01,MS99] which associate
each UML artifact with one or more B artifacts.

• TU→B(SpecUML) be the application ofTU→B onSpecUML.

• SpecUML|TU→B
be the restriction ofSpecUMLto elements for which there is a

transformation rule to B defined inTU→B.

• ID(SpecB) andID(SpecUML|TU→B
) be sets of identifiers appearing inSpecBand

in SpecUML|TU→B
, respectivelly.

Definition 2.1 (Formal definition of the consistency relation)

SpecUMLRelC SpecB:

(1) WF(SpecUML) ∧ WF(SpecB)

(2) consistent(SpecUML) ∧ consistent(SpecB)

(3) ∀ eU .(eU ∈ ID(SpecUML|TU→B
) ⇒

∃ {eB}, T.({eB} ⊆ ID(SpecB) ∧ T ∈ TU→B ∧ T(eU) = { eB}))

(4) ∀ φ.(TU→B(SpecUML) � φ ⇒ SpecB� φ))

1 Syntactic conformance . It states that bothSpecUMLand SpecBmust be well-
formed. It ensures that the specification conforms to abstract syntax speci-
fied by the meta-model, i.e. UML meta-model or B abstract syntax tree. Let
WF(SpecUML) andWF(SpecB) be two predicates defining if a UML and a B
specification are well-formed.

2 Local consistency. It requires that both specifications must be internally consistent.
That means they do not contain contradictions, but they could be incompletely
defined. We write itconsistent(SpecUML) andconsistent(SpecB).

3 Elements traceability. It states that for any elements ofID(SpecUML), eU, that
can be transformed by a ruleT, there exists inID(SpecB) a set of artifacts{eB}
resulting from the application ofT to eU.

4 Semantic preservation. It states that any statementφ satisfying the semantics of
SpecUMLmust satisfySpecB. The semantics ofSpecUMLis defined asTU→B

(SpecUML). This means that UML artifacts that have no B semantics defined
in TU→B are not concerned by the consistency relationRelC. This has important

D. Okalas Ossami, J. Souquires, J.-P. Jacquot

implications throughout the verification process. For example, it is well known
that checking pairwise integration of a set of software specifications is only pos-
sible if one is able to transform them into a semantic domain supported by tools.
B is our semantic domain and any UML statement that has no B formalisation
cannot be verified in our framework.

We use the B theorem prover to prove that a statementφ holds inSpecB(condition
(2)) and due tocondition(3), we derive the consistency ofSpecUML, and therefore
the consistency of the multi-view specificationSpec.

2.3 Operator correctness

Given a specification state,〈 SpecUML, SpecB〉, a chosen operator,Operatorwith
its parameters,param, the goal is to check that the new specification state,
〈 SpecUML′, SpecB′〉, obtained by the application ofOperator is consistent, see
Fig 1.

SpecUML’ SpecB’

SpecUML SpecB

Operator(param)

RelC

RelC

Fig. 1Correctness of an oper-
ator

The correctness of an operator is defined by
means of a formula of the formH ⇒ G, where
H denotes the hypothesis on the current devel-
opment state andG the goal to be demonstrated
based on the obtained development state accord-
ing to the consistency relation.

(i) Hypothesis

• SpecUML RelC SpecB : the current state of the development, satisfying the
consistency relation,

• ApCond : the application conditions of the applied operator.

(ii) Goal

• SpecUML’ RelC SpecB’

where :
〈SpecUML’, SpecB’〉 = Operator(param), whereby〈SpecUML, SpecB〉 is an
implicit parameter.

The proof obligation associated toOperatorassuming the hypothesis is expressed
as follows :

SpecUML RelC SpecB ∧ ApCond ⇒ SpecUML’ RelC SpecB’

3 A small case study

Let us consider the generalised railroad crossing (GRC) case study [JS00]. The
system to be specified aims at controlling a gate at a railroadcrossing so that trains
can safely go through. The informal text describes the problem as a monitoring of
trains. The GRC lies in a region of interestR, as presented in Fig.2. Trains travel

D. Okalas Ossami, J. Souquires, J.-P. Jacquot

in one direction throughR, which is decomposed into three regions :far, nearand
on. The regions determine the position of trains inR.

onnear

R

far
far

Train

Fig. 2 The generalised
railroad crossing

We will present three development steps to illustrate
our approach, starting from this informal description.
For each step, we give the idea we follow, the operator
chosen in the library with its parameters and the new
state produced by the application of the operator on
the current state of the specification. In the new speci-
fication state, the new UML part is written in bold face
and the new B part is written in a box. For space rea-

sons, we do not give the formal definition of all operators used in this paper. Only
the formal definition of theModel-StateMachineoperator is given in the appendix
(cf. section6). The generic template for describing operators has been discussed in
[OSJ05].

3.1 First development step : modelling the state dependent behaviour of the train

From the informal requirement, we identify three states (far, near, on) and three
events (enter, cross, leave) which change the state of the train when it arrives,
crosses or leaves the regionR. This leads us to use the specification technique of
introducing a state machine to model the description. This technique is captured
by the development operator,Model-StateMachine. The required parameters are
extracted from the text description and the application of the operator leads to the
development state presented Fig.3. The resulting UML view is composed of a class
diagram with one class (Train) and an enumerated type,TRAIN STATES, and of a
state-transition diagram. Three machines and a refinement have been introduced in
the B view.

• TheTrain machine corresponds to the classTrain. It introduces a variable,train
that specifies current objects ofTrain. The state of an object is recorded by
the variableTrain stateof type TRAIN STATESwhich gathers all the states as
specified in the corresponding state diagram.Train stateis defined as a func-
tion from train to TRAIN STATES. Thus, the state of an objectoo is defined
as Train state(oo). Transitions between states are formalised by B operations
which model the change of the state :Train TransFarNearmodels the transition
from the statefar to the statenear.

• Since events can affect data of several classes, B operations for events are mod-
elled in theSystemmachine which includes theTrain machine. TheSystemma-
chine simulates the execution of the state diagram. However, since B does not
allows sequencing in abstract machines, operations in theSystemmachine are
refined in the refinementSystemref in order to allow sequencing if necessary.
At the refinement level, we are able to model sequencing. thatis, if several op-
erations are to be called call sequencing. So, we are able to call state change
operations (i.e.,Train TransFarNear) in sequence with operations for actions
from the included machineTrain if there are some modelled.

D. Okalas Ossami, J. Souquires, J.-P. Jacquot

• The Typesmachine models shared types and data. This separation of concerns
provides a clear way of identifying the publicly visible information and allows
all components of the system to use the same definitions.

Note that the actual translation from UML diagrams into B is not of interest for
the study undertaken in this paper. Of interest are the formal concepts coming
with the B language and whether and how it is applicable in a joint development
process. Interested readers can find proposals on UML to B transformation in
[MS99,LP01,LS02,SBO03,ML02].

Model−StateMachine(Train, {far, near, on},
{(far, enter, near), (near, cross, on), (on, leave, far)})

far
near
on

«enumeration»
TRAIN_STATES

far near

on

Train

+state : TRAIN_STATES

+enter()

Train
enter()/

leave()/ cross()/+cross()
+leave()

MACHINE Types
SETS
OBJECTS;
TRAIN STATES=

{far, near, on}
CONSTANTS
TRAIN
PROPERTIES
TRAIN ⊆ OBJECTS
END

MACHINE Train
SEES Types
VARIABLES
train, Train state
INVARIANT
train ⊆ TRAIN ∧
Train state ∈

train → TRAIN STATES

INITIALISATION
train := ∅ ||
Train state := ∅

OPERATIONS
Train TransFarNear(oo) =
PRE oo ∈ train ∧

Train state(oo) = far
THEN

Train state(oo) := near
END;
...
END

MACHINE System
SEES Types
INCLUDES aT.Train
OPERATIONS
enter(oo) =
PRE oo ∈ OBJECTS
THEN

IF oo ∈ aT.train
THEN

IF aT.Trainstate(oo) = far
THEN

aT.Train TransFarNear(oo)
END
ELSE skip END

END;
...
END

REFINEMENT Systemref
REFINES System
SEES Types
INCLUDES aT.Train
OPERATIONS
enter(oo) =
PRE oo ∈ OBJECTS
THEN

IF oo ∈ aT.train
THEN

IF aT.Trainstate(oo) = far
THEN

aT.Train TransFarNear(oo)
END
ELSE skip END

END;
...
END

Fig. 3 Application of theModel-StateMachine operator to initialise the development

D. Okalas Ossami, J. Souquires, J.-P. Jacquot

3.2 Second development step : introduction of different kinds of train

Model−StateMachine(TrainM, {far, near, on, stopped}, {(far, enter, near), (far, wait, stopped),
(stopped, restart, near), (near, cross, on), (on, leave, far)});

Model−StateMachine(TrainV, {far, near, on}, {(far, enter, near), (near, cross, on), (on, leave, far)})

TRAIN_STATES

«enumeration»

far

near

on

far near

on

Train

far near

on

TrainV

far

on

near

stopped

TrainM

+state : TRAIN_STATES = far

+Ht : Int

Train

near
on
stopped

far

«enumeration»
TRAINM_STATES

+state: TRAIN_STATES

TrainV

+enter()

context inv :
(self.oclInState(near) implies

Train

self.Ht > 2 and self.Ht < 5) and
(self.oclInState(on) implies self.Ht < 2)

TrainM

+enter()

+state: TRAINM_STATES

enter()/

leave()/ cross()/

enter()/

leave()/ cross()/ cross()/

enter()/

leave()/

restart()/

wait()/

+enter()

+cross()

+leave()

+cross()
+leave()

+cross()
+leave()
+wait()
+restart()

MACHINE Types
SETS
...
TRAINM STATES

{far, near, on, stopped}

CONSTANTS
...

TRAINV, TRAINM

PROPERTIES
...

TRAINM ⊆ OBJECTS∧
TRAINV ⊆ OBJECTS

END

MACHINE Train
...
END

MACHINE System
SEES Types
INCLUDES aT.Train,

aTM.TrainM, aTV.TrainV

OPERATIONS
enter(oo) = ...

...

wait(oo) = ...

...

END

MACHINE TrainV
SEES Types
VARIABLES
trainv, TrainV state

INVARIANT
trainv ⊆ TRAINV ∧
TrainV state ∈

trainv → TRAIN STATES
INITIALISATION
...
OPERATIONS
TrainV TransFarNear(oo) = ...

...
END

MACHINE TrainM
SEES Types
VARIABLES
trainm, TrainM state

INVARIANT
trainm ⊆ TRAINM ∧
TrainM state ∈

trainm → TRAINM STATES

INITIALISATION
...
OPERATIONS
TrainM TransFarNear(oo) = ...

TrainM TransFarStopped(oo) =
...

...
END

REFINEMENT Systemref
REFINES System
SEES Types
INCLUDES aT.Train,

aTM.TrainM, aTV.TrainV

OPERATIONS

enter(oo) =
PRE oo ∈ OBJECTS
THEN
IF oo ∈ aT.train
THEN

IF aT.Trainstate(oo) = far
THEN
aT.Train TransFarNear(oo)
END
ELSE IF oo ∈ aTV.trainv
THEN
aTV.TranV TransFarNear(oo)

ELSE IF oo ∈ aTM.trainm

THEN
aTM.TranM TransFarNear(oo)

ELSE skip END
END
END
END;

wait(oo) = ...

restart(oo) = ...

...
END

Fig. 4 Introduction of two kinds of trains

D. Okalas Ossami, J. Souquires, J.-P. Jacquot

A further analysis of the problem indicates that different kinds of trains are au-
thorised to travel on the GRC: freight trains and passenger trains. The following
characteristics are identified:

• freight trains can stop when they reach the statefar after the eventwait occurs.
They go from the statestoppedto the statenearwhen the eventrestartoccurs.

To introduce the different trains, we can choose between at least two development
approaches: passenger and freight trains can be modelled independently from the
Train entity, or they can be modelled as specialisation of theTrain entity. Let us
apply the first approach which corresponds to a bottom-up strategy.
We use again theModel-StateMachineoperator, once for the freight trains (TrainM)
and once for the passenger train (TrainV).
The new specification state is presented in Fig.4. Two classes, one enumerated
type and two state diagrams have been introduced in the UML view. Two machines
have been introduced and three other entities (Types, System, andSystemref) have
been updated in the B view.

3.3 Third development step : Generalisation

The previous development steps have produced three unconnected entities. A close
look on the diagrams and machines reveals strong similarities. In fact, we have
modelled twice the same general behaviour. Moreover, we have now enough knowl-
edge of the problem to realize thatenter, crossandleaveare three instances of the
same behaviour:move. This situation is quite common while developing specifica-
tion and can be solved by generalising. A generalisation operator,
Generalize-Behaviour, models this approach. We select the parameters to
indicate thatTrainV and TrainM are sub-kinds ofTrain and that one operation,
move, replaces the other three.

The new specification state is presented Fig.5. We can note that the UML view has
been augmented with inheritance relations and the definition of operationsenter,
crossand leavehave been removed from the subclasses. They are also now mod-
elled by the generic operation,move, in the superclass. It is implicitly inherited by
the subclasses. The B view shows modifications in the corresponding machines.

Generalize−Behaviour({enter, cross, leave}, {TrainV, TrainM}, Train, move)

D. Okalas Ossami, J. Souquires, J.-P. Jacquot

TRAINM_STATES

«enumeration»

far

near

on

stopped

far near

on

context

self −> forAll(e | e : classifier and self.isSuperClass(e)

implies self −> includesAll(e))

Train inv :

«enumeration»

TRAIN_STATES

far

near

on

far near

on

far

on

near

stoppedTrainMTrainV

Train

+state: TRAINM_STATES
+state: TRAIN_STATES

Train

TrainV TrainM

+state : TRAIN_STATES

+wait()

+restart()

+move()

move()/

move()/

move()/

restart()/

wait()/
move()/

move()/
move()/

move()/
move()/

move()/

MACHINE Types
SETS
...
PROPERTIES

TRAINV ⊆ TRAIN ∧
TRAINM ⊆ TRAIN

END

MACHINE Train
...
OPERATIONS
Train TransFarNear(oo) = ...

Train TransNearOn(oo) = ...

Train TransOnFar(oo) = ...

END

MACHINE TrainV
SEES Types

EXTENDS Train
...

INVARIANT
...

trainv ⊆ train

...
OPERATIONS
TrainV TransFarNear(oo) =
...
END

MACHINE TrainM
SEES Types

EXTENDS Train
...

INVARIANT
...
TrainM Ht ∈ trainm → NAT

trainm ⊆ train
...
OPERATIONS
TrainM TransFarNear(oo) =
...
END

MACHINE System
SEES Types
INCLUDES aT.Train, aTM.TrainM

aTV.TrainV
OPERATIONS

move(oo) = ...

...

END

REFINEMENT Systemref
REFINES System
SEES Types
INCLUDES aT.Train, aTM.TrainM

aTV.TrainV

OPERATIONS

move(oo) =
PRE oo ∈ OBJECTS
THEN
IF oo ∈ aT.train
THEN

IF aT.Trainstate(oo) = far
THEN
aT.Train TransFarNear(oo)
END
ELSE IF aT.Trainstate(oo) =
near
THEN
aT.Train TransNearOn(oo)
ELSE IF aT.Trainstate(oo) =
on
THEN
aT.Train TransOnFar(oo)
ELSE skip END

END
END ||
IF oo ∈ aTV.trainv

... ||
IF oo ∈ aTM.trainm
...
END;

...
END

Fig. 5 Application of theGeneralize-Behaviour operator on Fig4

D. Okalas Ossami, J. Souquires, J.-P. Jacquot

4 Operator’s correctness

We derive the correctness of an operator from the correctness of specifications that
it produces. This is done by verifying the four conditions ofthe consistency rela-
tion. To illustrate this, we take the specification of Fig3 obtained by the application
of Model-StateMachineoperator.
Let : 〈SpecUML′, SpecB′〉 the UML and B specification of Fig3

1 Syntactic conformance. Both specifications must be checked for syntax and type
correctness with their corresponding support tool. The B support tool we use for
this case study,b4free[B4F], confirms the well-formedness of the text shown in
Fig. 3. The UML diagrams are well-formed according toArgoUML, the UML
tool we have used.

2 Local consistency. The definition of operator correctness uses the strong hypoth-
esis that each view in the initial state is internally consistent. While this con-
dition is not much more than the well-formedness for the UML,it means full
logical consistency for the B part. The checking ofSpecB’follows the usual ap-
proach of the B method: to check initialisation, to check preand postconditions
of operations with respect to the preservation of machine invariants, and to check
inter-machine relations such as sees, includes or refinements. We have submitted
SpecB’to theb4free tool.

Project status
+-----------+----+-----+-----+-----+-----+-----+
| COMPONENT | TC | POG | Obv | nPO | nUn | %Pr |
+-----------+----+-----+-----+-----+-----+-----+
System	OK	OK	10	0	0	100
System_ref	OK	OK	22	0	0	100
Train	OK	OK	7	8	0	100
Types	OK	OK	1	0	0	100
+-----------+----+-----+-----+-----+-----+-----+						
TOTAL	OK	OK	40	8	0	100
+-----------+----+-----+-----+-----+-----+-----+

All proof obligations
generated by the tool
have been discharged.
Fig. 6 shows the sum-
mary of the verifica-
tion printed by the tool.
This gives us a first
feedback on the internal
consistency ofSpecB’.

Fig. 6 Result of the verification of the B specification

3 Elements traceability is proved by verifying that
ID(TU→B(SpecUML′)) = ID(SpecB′). All new names introduced by the opera-
tor are present.

4 Semantics preservation . Our strategy to verify this condition is to submit the B
specification of Fig.7 to theb4freetool and compare the proof results with those
obtained previously for the B specification of Fig3. So, due to the elements
traceability condition, we conclude thatSpecB’satisfies the same requirement
than it UML counterpart. This has been checked true on our example.

The four conditions of the consistency relation hold for thefirst development state,
we can assume that theModel-StateMachineoperator works correctly.

D. Okalas Ossami, J. Souquires, J.-P. Jacquot

Fig. 7Specification of the Train obtained by systematic UML to B transformation of Fig3 with

ArgoUML+B

5 Conclusion

This paper presents a specification development process which integrates the use
of several formalisms. The key notion is the operator which models a development
strategy while ensuring that the multi-view specification evolves consistently. The
idea to mix different formalisms is not new but was hampered by the problem of
maintaining the consistency between the two specifications. Operators solve this
problem. They enable users to develop specifications in an intuitive fashion by
separating the use of design concepts from the technical details of how they are
captured in specification languages. They offer flexibilitysince it is possible to
define libraries of operators capturing alternative definitions of particular concepts
and strategies. They allow us to model the development of a specification as a pro-
cess of successive approximation process. The purpose of operators is to capture
the specifiers’ knowledge.

The benefits of the approach can be summed up as follows:

• separation of concern. Operators enable the specifier on methodological issues
and on problem solving issues rather than to focus on how to express them in the
target languages;

• documentation. The use of two complementary languages, onegraphical and
object-oriented and the other formal, makes the specification easier to understand
and help the developers to verify and refine the system under development;

• support for guidance. At any stage of the construction process, the specifier
knows what remains to be done. Libraries of operators with a liberal use of the
“remain to be done” clause can be constructed to model and enforce particular

D. Okalas Ossami, J. Souquires, J.-P. Jacquot

development strategies. In addition, operators preconditions lower the risk of
mis-using operators;

• correctness by construction. As the correctness of each operator has been de-
fined, the specification obtained by the application of operators is proved to be
correct.

Operators can be compared with specification templates introduced in [Tur96],
where a template formalises a Lotos specification style for OSI as a fragment of
specification text that can be conveniently retrieved and inserted in a specification.
To enhance the value of such templates and to increase their generality, templates
are parameterised.

References

[Abr96] J.R. Abrial. The B Book -Assigning Programs to Meanings.-. Cambridge
University Press, 1996. ISBN 0-521-49619-5.

[B4F] B4Free. avaible at : http://www.b4free.com/.

[BCL96] Oxford(UK) B-Core(UK) Ltd.B-Toolkit User’s Manual. 1996.

[CD94] S. Cook and J. Daniels. Let’s get formal.Journal of Object-Oriented
Programming (JOOP), pages 22–24 and 64–66, 1994.

[CDD+90] D.A. Carrington, D. Duke, R. Duke, P. King, G.A. Rose, andG. Smith. Object-
Z: An object-oriented extension to Z. InFormal Description Techniques II,
FORTES’89, pages 281–296, 1990.

[HM04] F. Houda and S. Merz. Transformation de spécifications B en diagrammes
UML. In Proceedings of AFADL’04, 2004.

[IL04] A. Idani and Y. Ledru. Object Oriented Concepts Identification from Formal B
Specifications. In9th Int.Workshop on Formal Methods for Industrial Critical
Systems, FMICS’04, 2004.

[JS00] L. Jansen and E. Schneider. Traffic control system case study: Problem
description and a note on domain-based software specification. Technical
report, Colorado State University, January, 2000.

[Lan91] K. Lano. Z++, An Object-orientated Extension to Z. In Proceedings of the
Fifth Annual Z User Meeting, pages 151–172. Springer-Verlag, 1991.

[LP01] R. Laleau and F. Polack. A Rigorous Metamodel for UML Static Conceptual
Modelling of Information Systems. InAdvanced Information Systems
Engineering. 13th Int. Conf., CAiSE 2001, volume 2068 ofLNCS, pages 402–
416. Springer, 2001.

[LP02] R. Laleau and F. Polack. Coming and Going from UML to B :A Proposal
to support Traceability in Rigorous IS Development. InZB’2002 – Formal
Specification and Development in Z and B, pages 517–534, 2002.

D. Okalas Ossami, J. Souquires, J.-P. Jacquot

[LS01] H. Ledang and J. Souquières. Modeling class operations in B: application to
UML behavioral diagrams. ASE2001: 16th IEEE Int. Conf. on Automated
Software Engineering, IEEE Computer Society, 2001.

[LS02] H. Ledang and J. Souquières. Integration of UML and B Specification
Techniques: Systematic Transformation from OCL Expressions into B. In
APSEC 2002, IEEE Computer Society, 2002.

[LSC03] H. Ledang, J. Souquières, and S. Charles. ArgoUML+B: Un outil de
transformation systématique de spécifications UML vers B. In Proceedings
of AFADL’03, 2003.

[ML02] R. Marcano and N. Levy. Using B formal specifications for analysis
and verification of UML/OCL models. In L. Kuzniarz, G. Reggio, J. L.
Sourrouille, and Z. Huzar, editors,Workshop on Consistency Problems in
UML-based Software Development, pages 91–105, 2002.

[MS99] E. Meyer and J. Souquières. A systematic approach to transform OMT
diagrams to a B specification. InProceedings of the Formal Method
Conference, number 1708 in LNCS, pages 875—895. Springer-Verlag, 1999.

[OSJ05] D. Okalas Ossami, J. Souquières, and J-P. Jacquot. Consistency in UML and B
multi-view specifications. In LNCS, editor,Proc. of the Int. Conf. on Integrated
Formal Methods, IFM’05, number 3771, pages 386–405, 2005.

[RJB97] J. Rumbaugh, I. Jacobsen, and G. Booch.Unified Modeling Language
Reference Manual. Addison-Wesley, 1997.

[RJB98] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Modeling Language
Reference Manual.Addison-Wesley, 1998. ISBN 0-201-30998-X.

[SB] C. Snook and M. Buttler. U2B: a tool for combining UML andB. Avaible at
http://www.ecs.soton.ac.uk/ cfs/U2Bdownloads/.

[SBO03] C. Snook, M. Butler, and I. Oliver. Towards a UML profile for UML-
B. Technical report, DSSE-TR-2003-3, Electronics and Computer Science,
University of Southampton, 2003.

[Spi92] J. M. Spivey.The Z Notation: A Reference Manual. Prentice Hall, 1992.

[STE98] STERIA.Manuel de référence du langage B. -ClearSy-, novembre, 1998.

[Tur96] K. J. Turner. Relating architecture and specification. Computer Networks and
ISDN Systems, April 1996.

[TV01] B. Tatibouet and J. C. Voisinet. jBtools and B2UML : a plateform and a tool
to provide a UML class diagram since a B specification. InICSSEA : 14th Int.
Conf. on Software and Systems Engineering and Their Applications, 2001.

[TV03] B. Tatibouet and J.-C. Voisinet. Generating statecharts from B specifications.
In 16th Int. Conf. Software & Systems Engineering and their applications,
ICSSEA’2003, 2003.

D. Okalas Ossami, J. Souquires, J.-P. Jacquot

6 Appendix

Operator Model-StateMachine
Description. This operator models a state dependent behaviour of an entity.
Parameters

• EntityName : Names

• statesset : F(names)

• transitions set : F(TRANS)

Application conditions

General toSpecUML andSpecB
• ∀si .(si ∈ statesset⇒ si 6∈ IDUsedIn(EntityName))

Definition
IF EntityName6∈ MachinesID(SpecB) ∪ RefinementsID(SpecB)
THEN

Introduce-Entity(EntityName);
END ;

IF StateMachineOf(EntityName) 6∈ SpecStateMachines(SpecUML)
THEN

OB OUML

skip AddStateMachine(EntityName)
;

IF {′′System′′, “Systemref ′′} ∩ (MachinesID(SpecB)∪ RefinementsID(SpecB))= ∅

THEN

OB OUML

AddSystemMachines({EntityName}) skip

END
END ;

IF StateMachineOf(EntityName) ∈ SpecStateMachines(SpecUML)
THEN

IF StatesTypeID(EntityName) 6∈ TypesID(Spec)
THEN

Introduce−Enumerated−Data−Type(generateStatesType(EntityName), statesset)
END ;

IF StatesTypeID(EntityName) ∈ TypesID(Spec) ∧ statesset− StatesOf(EntityName) 6= ∅

THEN

OB OUML

AddSetElements(“Types′′

StatesTypeID(EntityName),

statesset− StatesOf(EntityName))

AddTypeElements(

StatesTypeID(EntityName),

statesset− StatesOf(EntityName))

END ;

OB OUML

skip AddStates(StateMachineOf(EntityName), statesset)

END ;

FOR t IN transitions set− TransitionsOf(StateMachineOf(EntityName))
DO

Introduce−Transition(StateMachineOf(EntityName), t)
END

Fig. 8 Formal description ofModel-StateMachine

	Introduction
	Operators' framework : a general description
	Specification state and operator
	Consistency relation
	Operator correctness

	A small case study
	First development step : modelling the state dependent behaviour of the train
	Second development step : introduction of different kinds of train
	Third development step : Generalisation

	Operator's correctness
	Conclusion
	References
	Appendix

