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Abstract: The safety standards ANSI/ISA S84.01-1996 and 
IEC 61508 address the application of Safety Instrumented Systems 
(SIS) to take a process to a safe state when predetermined 
conditions are violated. A critical aspect of conformance with the 
standards is the establishment of Safety Integrity Level (SIL) for 
SIS. This paper presents a fuzzy/possibilist approach for 
determining the SIL of the SIS in presence of uncertainty.  
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1. Introduction 
The process industry is obligated to provide and maintain a 

safe, working environment for their employees. Safety is provided 
through various safeguards, such as Safety Instrumented Systems 
(SIS), procedures and training. The SIS consists of instrumentation 
that is implemented for the purpose of mitigating a risk or bringing 
the process to a safe state in the event of a process failure.  The 



 

ANSI/ISA S84.01-1996 [1] and IEC 61508 [2] safety standards 
provide guidelines for the design, installation, operation, 
maintenance and test of SIS. However, in the field there is a 
considerable lack of understanding of how to apply these standards 
to both determine and achieve the required SIL of the SIS. Thus, 
determining SIL for a SIS and its validation is very important for 
compliance with the ANSI/ISA S84.01-1996 [1] and IEC 61508 
[2] standards. The SIL of a SIS is defined by its probability to fail 
on demand (PFD). There are several probabilistic techniques that 
can be used to evaluate the SIS PFD (SIS probability to fail on 
demand) from the reliability parameters of its components ([2], 
[3], [4]). These reliability parameters have to be estimated based 
on a large amount of data. However, for SIS it is usually difficult 
to obtain a sufficient quantity of data due to rare events of SIS 
components failures. In this case, probabilistic approaches evaluate 
the failure probabilities of these systems by giving the confidence 
intervals and errors factors using Monte Carlo simulations ([5], 
[6]). But, for large systems, this approach is time consuming. 
Moreover, when we assume probability distributions for both 
components and SIS failure probabilities, we are introducing an 
unpredictable uncertainty. Therefore, the probabilistic approaches 
do not help us very much. Furthermore, the evaluation of the SIL 
of the SIS rarely considers the uncertainty in the reliability 
parameters estimation. For reliability researchers, this remains an 
under-developed research area. Wang et al. [7] discussed the 
impact of data uncertainty in determining the SIL level. However, 
they do not propose a methodology to treat this problem.  

The purpose of this paper is to present a fuzzy/possibilist 
approach to determine the SIL of the SIS, when the components 
failure probabilities are difficult to be precisely estimated. This 
approach is based on the use of possibility distributions for 
representing the uncertainty of the SIS components failure 
probabilities and α-cut method for evaluating the possibility 
distribution of the SIS PFD and the SIL of the SIS.  



 

2. Determining SIL via a fuzzy/possibilist fault 
tree analysis 

The SIS is a system composed of sensors, logic solver and 
final elements for the purpose of taking the process to a safe state 
when predetermined conditions are violated. The safety 
performance of the SIS is defined in terms of SIL, which is defined 
by its average probability to fail on demand (PFDavg) over a 
given time period (cf. Table 1).  
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Table 1. Definition of SIL from IEC 61508 

For determining SIL, the technical report ISA-TR84.00.02-
2002 [3] recommends the use of fault tree analysis in SIL2 and 
SIL3 SIS applications. The conventional fault tree analysis which 
is based on the probabilistic approach has been used extensively in 
the past. Nevertheless, the probabilities of basic events are 
considered as crisp ones. It is apparently not consistent with 
practical situations. Because, only by a large amount of tests can 
these crisp probabilities be concluded. This is not feasible for SIS 
due to rare events of component failures, and even so, these data 
are approximate in some degree. Moreover, the failure 
probabilities are different for different operators and working 
conditions. Therefore, a reliability analysis method based on fuzzy 
sets is interesting. The pioneering work on fuzzy fault tree analysis 
belongs to Tanaka et al. [8]. They treated basic events probabilities 
as trapezoidal fuzzy numbers and compute the distribution of top 
event occurrence probability. Other results on fuzzy FTA are 
reported in [9]. Our goal is to evaluate the reliability of a SIS in 
presence of uncertainty. So, we investigate the use of both fuzzy 
sets and possibility theory.  



 

2.1. Fuzzy sets 
A fuzzy set initiated by Zadeh [10] is defined as follows: 
Definition 1 Let X be a universal set. Then a fuzzy subset Ã 

of X is defined by its membership function ]1,0[:~ →X
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Definition 3 Let x be a continuous variable restricted to a 
distribution function ( ) [0,1]xµ ∈  which satisfy the following 

assumptions: 
• µ(x) is a piecewise continuous; 
• µ(x) is a convex fuzzy set; 
• µ(x) is a normal fuzzy set. 

A fuzzy set which satisfies these requirements is called a 
fuzzy number. 

The operation implied in the extension principle requires 
extensive computation. From the previous studies made by 
Kaufman and Gupta [11], it is shown that the computational effort 
with operation on fuzzy numbers can be reduced by composing the 
membership functions into α-levels and by conducting 
mathematical operations on these intervals. For any fuzzy number 



 

Ã which has the membership function )(~ x
A

µ , an interval bounded 

by two points at each α-level (0≤α≤1) can be obtained using the α-

cut method. The symbols ( )

L
A α and ( )

R
A α  have been used in this 

paper to represent the )(~ x
A

µ  left-end-point and the right end-point 

of this interval. As it is shown in Fig. 1, we can express a fuzzy 
number Ã, using the following form: 
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 2.2. Fuzzy probabilities 
In conventional fault tree analysis, the failure probabilities 

of system components are treated as crisp values. However, it is 
often difficult to evaluate the components failure probabilities 
from past occurrence. Instead of the probability of failure, we 
propose the fuzzy probability of failure. By resorting to this 
concept, we can allocate a degree of uncertainty to each value of 
the failure probability. 
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    Fig.2. Fault tree example 



 

Definition 4 A fuzzy probability, i.e. a fuzzy set defined in 
probability space, represents a fuzzy number between 0 and 1 
assigned to the probability of an event. 
One can choose depending upon the suitability different types of 
membership function for fuzzy probability; the more confident 
portion is given the value 1 and other portions are given values 
between [0,1].  

2.3. Possibility theory 
Possibility theory is an information theory which is related 

to both fuzzy sets and probability theory. Technically, a possibility 
distribution is a fuzzy set. In particular, all fuzzy numbers and 
fuzzy probabilities are possibility distributions [12].  

Definition 5 A possibility distribution π(.) on Ω is a 
mapping from the reference set Ω into the unit-interval, 

: [0,1]π Ω → . 

The possibility distribution is described in terms of a 
possibility measure by: { }( ) ( ),x xπ = Π  

where the possibility of some event A is defined by: 

{ }( ) sup ( ).
x A

A xπ∈Π =  The possibility measure is a coefficient 

ranging between 0 and 1 which evaluates how possible the event 
is. The value 1 means that the event is completely possible; the 
value 0 means that the event is impossible. 

2.4. Fuzzy/possibilist fault tree analysis 
In this paper, the fault tree analysis is based on possibility 

theory. So, we can allocate a degree of uncertainty to each value of 
the failure probability. The possibility of system failure probability 
is determined from the possibility of components failure 
probabilities. For example, in fault tree shown in Fig. 2, if we 
assume that the events Xi are independent, and have low failure 
probabilities (rare-event approximation), the possibility 
distribution of top event occurrence probability can be expressed 
by: 

1 2T A AP P P
π π π= +  
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3. Application example 
In order to illustrate the approach proposed in this paper, let 

us consider a process composed of a pressurized vessel containing 
volatile flammable liquid. The safety target level for the vessel is: 
no release to the atmosphere with a frequency of occurrence 
greater than 10-4 in one year. A SIS is used to perform the safety 
target level for the vessel. The example process and the SIS are 
defined in ISA-TR84.00.02-2002 [3] (see Fig. 3).
 

 
 
Fig.3. Schematic SIS configuration 
 

 
Fig. 4. Fault tree for SIS example 

 



 

A fuzzy/possibilist fault tree analysis is used to evaluate the SIL of 
the SIS by determining its PFD. The fault tree of SIS PFD (SIS 
probability to fail on demand) is shown in Fig. 4. Furthermore, we 
assume that: 

• The basic events of the fault tree are independent; 
• The SIS components can not be repaired; 
• The failure probabilities represent the average failure 

probabilities on demand over a period test interval. 
Here, the uncertainty of components failure probabilities is 

treated by taking fuzzy probabilities. The parameter ai is the lower 
bound, the parameter mi is the modal value, and the parameter bi is 
the upper bound for each possibility distribution of the components 
failure probabilities. These parameters are given in Table 2. The 
possibility distribution of the SIS PFD can be expressed using the 
fault tree minimal cut sets {T1, T2, T3, T4, T5, T6} (cf. Fig. 4). 
Since basic events have low failure probabilities, we can use the 
rare-event approximation. Then the possibility of the top event 
occurrence probability is given by: 

1 2 3 4 5 6SIS T T T T T TPFD P P P P P P
π π π π π π π= + + + + +  

Ti
P

π is the possibility distribution of a minimal cut set occurrence 

probability, and 
SISPFD

π  is the possibility distribution of the SIS 

PFD. The possibility distributions of the minimal cut sets 
occurrence probabilities are given by: 
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iXP
π is the possibility distribution of a component failure 

probability. Using α-cut method and arithmetic operations defined 
in the previous section, we determine the possibility distribution of 



 

top event occurrence probability (SIS PFD) from the possibility 
distributions of components failure probabilities. Fig. 5 gives the 
possibility distribution of the top event occurrence probability. 
One can see that the total range of the top event occurrence 
probability (SIS PFD) is from 7.4× 10-3 to 2.22× 10-2, which falls 
into SIL1(PFD ∈[10-2, 10-1]) or SIL2(PFD ∈[10-3, 10-2]).
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Table 2. Parameters of possibility distributions Fig. 5. Possibility distribution 

of SIS PFD
Conclusion 
In this paper, we have proposed a fuzzy/possibilist 

approach for evaluating the SIL of the SIS, when there is an 
uncertainty about the components failures probabilities. To 
demonstrate the efficacy of our approach, we have applied it to a 
process example from the literature [3]. The results justify not only 
the effectiveness of the proposed methodology in evaluating the 
SIL of the SIS, but furthermore its computational efficiency as 
well. In a second paper [13], we propose a methodology to reduce 
the SIL uncertainty of the SIS. 
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