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Abstract

Our purpose in this paper is to apply the general methodology for model selec-
tion based on T-estimators developed in Birgé (2006a) to the particular situation
of the estimation of the unknown mean measure of a Poisson process. We intro-
duce a Hellinger type distance between finite positive measures to serve as our loss
function and we build suitable tests between balls (with respect to this distance)
in the set of mean measures. As a consequence of the existence of such tests,
given a suitable family of approximating models, we can build T-estimators for
the mean measure based on this family of models and analyze their performances.
We provide a number of applications to adaptive intensity estimation when the
square root of the intensity belongs to various smoothness classes. We also give a
method for aggregation of preliminary estimators.

1 Introduction

This paper deals with the estimation of the mean measure µ of a Poisson process X on
X . More precisely, we develop a theoretical, but quite general method for estimating µ
by model selection with applications to adaptive estimation and aggregation of prelim-
inary estimators. The main advantage of the method is its generality. We do not make
any assumption on µ apart from the fact that it should be finite and we allow arbitrary
countable families of models provided that each model be of finite metric dimension,
i.e. is not too large in a suitable sense to be explained below. We do not know of any
other estimation method allowing to deal with model selection in such a generality and
with as few assumptions. The main drawback of the method is its theoretical nature,
effective computation of the estimators being typically computationally too costly for
permitting a practical implementation. In order to give a more precise idea of what
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this paper is about, we need to start by recalling a few well-known facts about Poisson
processes that can, for instance, be found in Reiss (1993).

1.1 The basics of Poisson processes

Let us denote by Q+(X ) the cone of finite positive measures on the measurable space
(X , E). Given an element µ ∈ Q+(X ), a Poisson process on X with mean measure µ
is a point process X = {X1, . . . , XN} on X such that N has a Poisson distribution
with parameter µ(X ) and, conditionally on N , the Xi are i.i.d. with distribution µ1 =
µ/µ(X ). Equivalently, the Poisson process can be viewed as a random measure ΛX =
∑N

i=1 δXi
, δx denoting the Dirac measure concentrated at the point x. Then, whatever

the partition A1, . . . , An of X , the n random variables ΛX (Ai) are independent with
Poisson distributions and respective parameters µ(Ai) and this property characterizes
a Poisson process. We shall denote by Qµ the distribution of a Poisson process with
mean measure µ on X . We recall that, for any nonnegative measurable function φ on
(X , E),

E

[

N
∑

i=1

φ(Xi)

]

=

∫

X
φ(x) dµ(x) (1.1)

and

E

[

N
∏

i=1

φ(Xi)

]

= exp

[∫

X
[φ(x) − 1] dµ(x)

]

. (1.2)

If µ, ν ∈ Q+(X ) and µ≪ ν, then Qµ ≪ Qν and

dQµ

dQν
(X1, . . . , XN ) = exp[ν(X ) − µ(X )]

N
∏

i=1

dµ

dν
(Xi), (1.3)

with the convention that
∏0

i=1(dµ/dν)(Xi) = 1.

1.2 Introducing our loss function

From now on, we assume that we observe a Poisson process X on X with unknown
mean measure µ ∈ Q+(X ) so that µ always denotes the parameter to be estimated.
For this, we use estimators µ̂(X) with values in Q+(X ) and measure their performance
via the loss function Hq (µ̂(X), µ) for q ≥ 1, where H is a suitable distance on Q+(X ).
To motivate its introduction, let us recall some known facts. The Hellinger distance
h between two probabilities P and Q defined on the same space and their Hellinger
affinity ρ are given respectively by

h2(P,Q) =
1

2

∫

(√
dP −

√

dQ
)2
, ρ(P,Q) =

∫

√

dPdQ = 1 − h2(P,Q), (1.4)

where dP and dQ denote the densities of P and Q with respect to any dominating
measure, the result being independent of the choice of such a measure. If X1, . . . , Xn

are i.i.d. with distribution P on X and Q is another distribution, it follows from an
exponential inequality that, for all x ∈ R,

P

[

n
∑

i=1

log

(

dQ

dP

)

(Xi) ≥ 2x

]

≤ exp
[

n log
(

ρ(P ,Q)
)

− x
]

≤ exp
[

nh2
(

P ,Q
)

− x
]

,

(1.5)
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which provides an upper bound for the errors of likelihood ratio tests. In particular,
if µ and µ′ are two elements in Q+(X ) dominated by some measure λ, it follows from
(1.3) and (1.2) that the Hellinger affinity ρ(Qµ, Qµ′) between µ and µ′ is given by

ρ(Qµ, Qµ′) =

∫

√

dQµ

dQλ

dQµ′

dQλ
dQλ = exp

[

−H2(µ, µ′)
]

, (1.6)

where

H2(µ, µ′) =
1

2

[

µ(X ) + µ′(X )
]

−
∫

√

(dµ/dλ)(dµ′/dλ) (1.7)

=
1

2

∫

(

√

dµ/dλ−
√

dµ′/dλ
)2
. (1.8)

Comparing (1.8) with (1.4) indicates thatH is merely the generalization of the Hellinger
distance h between probabilities to arbitrary finite positive measures and the intro-
duction of H turns Q+(X ) into a metric space. Moreover, we derive from (1.5) with
n = 1 that, when X is a Poisson process with mean measure µ on X ,

P

[

log

(

dQµ′

dQµ

)

(X) ≥ 2x

]

≤ exp
[

−H2(µ, µ′) − x
]

. (1.9)

If µ(X ) = µ′(X ) = n, then H2(µ, µ′) = nh2(µ1, µ
′
1) and (1.9) becomes a perfect ana-

logue of (1.5). The fact that the errors of likelihood ratio tests between two probabilities
are controlled by their Hellinger affinity justifies the introduction of the Hellinger dis-
tance as the natural loss function for density estimation, as shown by Le Cam (1973).
It also motivates the choice of Hq as a natural loss function for estimating the mean
measure of a Poisson process. For simplicity, we shall first focus on the quadratic risk
E
[

H2 (µ̂(X), µ)
]

.

1.3 Intensity estimation

A case of particular interest occurs when we have at hand a reference positive measure
λ on X and we assume that µ ≪ λ with dµ/dλ = s, in which case s is called the
intensity (with respect to λ) of the process with mean measure µ. Denoting by L

+
i (λ)

the positive part of Li(λ) for i = 1, 2, we observe that s ∈ L
+
1 (λ),

√
s ∈ L

+
2 (λ) and

µ ∈ Qλ = {µt = t · λ, t ∈ L
+
1 (λ)}. The one-to-one correspondence t 7→ µt between

L
+
1 (λ) and Qλ allows us to transfer the distance H to L

+
1 (λ) which gives, by (1.8),

H(t, u) = H(µt, µu) =
(

1/
√

2
)∥

∥

∥

√
t−√

u
∥

∥

∥

2
for t, u ∈ L

+
1 (λ), (1.10)

where ‖·‖2 stands for the norm in L2(λ). When µ = µs ∈ Qλ it is natural to estimate it
by some element µ̂(X) = ŝ(X) ·λ of Qλ, in which case H (µ̂(X), µ) = H (ŝ(X), s) and
our problem can be viewed as a problem of intensity estimation: design an estimator
ŝ(X) ∈ L

+
1 (λ) for the unknown intensity s. From now on, given a Poisson process X

with mean measure µ, we shall denote by Eµ and Pµ (or Es and Ps when µ = µs) the
expectations of functions of X and probabilities of events depending on X, respectively.
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1.4 Model based estimation and model selection

It is common practice to try to estimate the intensity s on X by a piecewise constant
function, i.e. a histogram estimator ŝ(X) belonging to the set

Sm =







D
∑

j=1

aj1lIj
, aj ≥ 0 for 1 ≤ j ≤ D







of nonnegative piecewise constant functions with respect to the partition {I1, . . . , 1D} =
m of X with λ(Ij) > 0 for all j. More generally, given a finite family m = {ϕ1, . . . , ϕD}
of elements of L2(λ), we may consider the D-dimensional linear space Sm generated
by the ϕj and try to estimate

√
s by some element

√

ŝ(X) ∈ Sm. This clearly leads
to difficulties since Sm is not a subset of L

+
2 (λ), but we shall nevertheless show that it

is possible to design an estimator ŝm(X) with the property that

Es

[

H2 (ŝm(X), s)
]

≤ C

[

inf
t∈Sm

∥

∥t−√
s
∥

∥

2

2
+ |m|

]

, (1.11)

where |m| = D stands for the cardinality of m and C is a universal constant. In this
approach, Sm should be viewed as a model for

√
s, which means an approximating set

since we never assume that
√
s ∈ Sm and the risk bound (1.11) has (up to the constant

C) the classical structure of the sum of an approximation term inft∈Sm
‖t−√

s‖2
2 and

an estimation term |m| corresponding to the number of parameters to be estimated.
If we introduce a countable (here countable always means finite or countable) family

of models
{

Sm,m ∈ M
}

of the previous form, we would like to know to what extent
it is possible to build a new estimator ŝ(X) such that

Es

[

H2 (ŝ(X), s)
]

≤ C ′ inf
m∈M

{

inf
t∈Sm

∥

∥t−√
s
∥

∥

2

2
+ |m|

}

, (1.12)

for some other constant C ′, i.e. to know whether one can design an estimator which
realizes, up to some constant, the best compromise between the two components of
the risk bound (1.11). The problem of understanding to what extent (1.12) does
hold has been treated in many papers using various methods, mostly based on the
minimization of some penalized criterion. A special construction based on testing has
been introduced in Birgé (2006a) and then applied to different stochastic frameworks.
We shall show here that this construction also applies to Poisson processes and then
derive the numerous consequences of this property. We shall, in particular, be able to
prove the following result in Section 3.4.1 below.

Theorem 1 Let λ be some positive measure on X and ‖ · ‖2 denote the norm in
L2(λ). Let

{

Sm

}

m∈M
be a finite or countable family of linear subspaces of L2(λ) with

respective finite dimensions Dm and let {∆m}m∈M be a family of nonnegative weights
satisfying

∑

m∈M

exp[−∆m] ≤ Σ < +∞. (1.13)

Let X be a Poisson process on X with unknown mean measure µ = µs + µ⊥ where
s ∈ L

+
1 (λ) and µ⊥ is orthogonal to λ. One can build an estimator µ̂ = µ̂(X) =
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ŝ(X) · λ ∈ Qλ satisfying, for all µ ∈ Q+(X ) and q ≥ 1,

Eµ

[

Hq(µ, µ̂)
]

≤ C(q) [1 + Σ]

[

√

µ⊥(X ) + inf
m∈M

{

inf
t∈Sm

∥

∥

√
s− t

∥

∥

2
+

√

Dm ∨ ∆m

}]q

,

(1.14)
with a constant C(q) depending on q only.

When µ = µs ∈ Qλ, (1.14) becomes

Es

[

Hq(s, ŝ)
]

≤ C(q) [1 + Σ] inf
m∈M

{

inf
t∈Sm

∥

∥

√
s− t

∥

∥

2
+

√

Dm ∨ ∆m

}q

. (1.15)

Typical examples for X and λ are [0, 1]k with the Lebesgue measure or {1; . . . ;n}
with the counting measure. In this last case, the n random variables ΛX ({i}) = Ni

are independent Poisson variables with respective parameters si = s(i) and observing
X is equivalent to observing a set of n independent Poisson variables with varying
parameters, a framework which is usually studied under the name of Poisson regression.

1.5 Model selection for Poisson processes, a brief review

Although there have been numerous papers devoted to estimation of the mean measure
of a Poisson process, only a few, recently, considered the problem of model selection,
the key reference being Reynaud-Bouret (2003) with extensions to more general pro-
cesses in Reynaud-Bouret (2006). A major difference with our approach is her use
of the L2(λ)-loss, instead of the Hellinger type loss that we introduce here. It first
requires that the unknown mean measure µ be dominated by λ with intensity s and
that s ∈ L2(λ). Moreover, as we shall show in Section 2.3 the use of the L2-loss typ-
ically requires that s ∈ L∞(λ). This results in rather complicated assumptions but
the advantage of this approach is that it is based on penalized projection estimators
which can be computed practically while the construction of our estimators is too com-
putationally intensive to be implemented on a computer, as we shall explain below.
The same conclusions essentially apply to all other papers dealing with the subject.
The approach of Grégoire and Nembé (2000), which extends previous results of Barron
and Cover (1991) about density estimation to that of intensities, has some similarities
with ours. The paper by Kolaczyk and Nowak (2004) based on penalized maximum
likelihood focuses on Poisson regression. Methods which can also be viewed as cases
of model selection are those based on the thresholding of the empirical coefficients
with respect to some orthonormal basis. It is known that such a procedure is akin
to model selection with models spanned by finite subsets of a basis. They have been
considered in Kolaczyk (1999), Antoniadis, Besbeas and Sapatinas (2001), Antoniadis
and Sapatinas (2001) and Patil and Wood (2004).

1.6 An overview of the paper

We already justified the introduction of our Hellinger type loss-functions by the prop-
erties of likelihood ratio tests and we shall explain, in the next section, why the more
popular L2-risk is not suitable for our purposes, at least if we want to deal with pos-
sibly unbounded intensities. To show this, we shall design a general tool for getting
lower bounds for intensity estimation, which is merely a version of Assouad’s Lemma
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(Assouad, 1983) for Poisson processes. We shall also show that recent results by Rigol-
let and Tsybakov (2006) on aggregation of estimators for density estimation extend
straightforwardly to the Poisson case. In Section 3, we briefly recall the general con-
struction of T-estimators introduced in Birgé (2006a) and apply it to the specific case
of Poisson processes. We also provide an illustration based on nonlinear approximating
models. Section 4 is devoted to various applications of our method based on families of
linear models. This section essentially relies on results of approximation theory about
the approximation of different classes of functions (typically smoothness classes) by
finite dimensional linear spaces in L2. We also indicate how to mix different families
of models and introduce an asymptotic point of view which allows to consider conver-
gence rates and to make a parallel with density estimation. In Section 5, we deal with
aggregation of estimators with some applications to partition selection for histograms.
The final Section 6 is devoted to the proof of the most important technical result in this
paper, namely the existence and properties of tests between balls of mean measures.
This is the key argument which is required to apply the construction of T-estimators
to the problem of estimating the mean measure of a Poisson process. It also has other
applications, in particular to the study of Bayesian procedures as done, for instance,
in Ghosal, Ghosh and van der Vaart (2000) and subsequent work of van der Vaart and
coauthors.

2 Estimation with L2-loss

2.1 From density to intensity estimation

A classical approach to density estimation is based on L2-loss. We assume that the
observations X1, . . . , Xn have a density s1 with respect to some dominating measure
λ and that s1 belongs to the Hilbert space L2(λ) with scalar product 〈·, ·〉 and norm
‖ · ‖2. Given an estimator ŝ(X1, . . . , Xn) we define its risk by E

[

‖ŝ− s1‖2
2

]

. In this
theory, a central role is played by projection estimators as defined by Cencov (1962).
Model selection based on projection estimators has been considered by Birgé and Mas-
sart (1997). A more modern treatment can be found in Massart (2006). Thresholding
estimators based on wavelet expansions as described in Cohen, DeVore, Kerkyacharian
and Picard (2001) (see also the many further references therein) can also be viewed as
special cases of those. Recently Rigollet and Tsybakov (2006) introduced an aggrega-
tion method based on projection estimators. Projection estimators have the advantage
of simplicity and the drawback or requiring somewhat restrictive assumptions on the
density s1 to be estimated, not only that it belongs to L2 but most of the time to L∞.
As shown in Birgé (2006b, Section 5.4.1), the fact that s1 belongs to L∞ is essentially
a necessary condition to have a control on the L2-risk of estimators of s1.

As indicated in Baraud and Birgé (2006, Section 4.2), there is a parallel between the
estimation of a density s1 from n i.i.d. observations and the estimation of the intensity
s = ns1 from a Poisson process. This suggests to adapt the known results from density
estimation to intensity estimation for Poisson processes. We shall briefly explain how
it works, when the Poisson process X has an intensity s ∈ L∞(λ) with L∞-norm ‖s‖∞.

The starting point is to observe that, given an element ϕ ∈ L2(λ), a natural estimator
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of 〈ϕ, s〉 is ϕ(X) =
∫

ϕdΛX =
∑N

i=1 ϕ(Xi). It follows from (1.1) that

Es [ϕ(X)] = 〈ϕ, s〉 and Vars (ϕ(X)) =

∫

ϕ2s dλ− 〈ϕ, s〉2 ≤ ‖s‖∞‖ϕ‖2
2. (2.1)

Given aD-dimensional linear subspace S′ of L2(λ) with an orthonormal basis ϕ1, . . . , ϕD,
we can estimate s by the projection estimator with respect to S′:

ŝ(X) =
D
∑

j=1

[

N
∑

i=1

ϕj(Xi)

]

ϕj .

It follows from (2.1) that its risk is bounded by

Es

[

‖ŝ(X) − s‖2
2

]

≤ inf
t∈S′

‖t− s‖2
2 + ‖s‖∞D. (2.2)

Note that ŝ(X) is not necessarily an intensity since it may take negative values. This
can be fixed: replacing ŝ(X) by its positive part can only reduce the risk since s is
nonnegative.

2.2 Aggregation of preliminary estimators

The purpose of this section is to extend some recent results for aggregation of density
estimators due to Rigollet and Tsybakov (2006) to intensity estimation. The basic tool
for aggregation in the context of Poisson processes is the procedure of “thinning” which
is the equivalent of sample splitting for i.i.d. observations, see for instance Reiss (1993,
p. 68). Assume that we have at our disposal a Poisson process with mean measure
µ: ΛX =

∑N
i=1 δXi

and an independent sequence (Yi)i≥1 of i.i.d. Bernoulli variables

with parameter p ∈ (0, 1). Then the two random measures ΛX1
=
∑N

i=1 YiδXi
and

ΛX2
=
∑N

i=1(1 − Yi)δXi
are two independent Poisson processes with respective mean

measures pµ and (1 − p)µ.
Now assume that X is a Poisson process with intensity s with respect to λ, that

X1 and X2 have been derived from X by thinning and that we have at our disposal
a finite family {ŝm(X1),m ∈ M} of estimators of ps based on the first process and
belonging to L2(λ). They may be projection estimators or others. These estimators
span a D-dimensional linear subspace of L2(λ) with an orthonormal basis ϕ1, . . . , ϕD,
D ≤ |M|. Working conditionally with respect to X1, we use X2 to build a projection
estimator s̃(X2) of (1−p)s belonging to the linear span of the estimators ŝm(X1). This
is exactly the method used by Rigollet and Tsybakov (2006) for density estimation and
the proof of their Theorem 2.1 extends straightforwardly to Poisson processes to give

Theorem 2 The aggregated estimator s̃ based on the processes X1 and X2 by thinning
of X satisfies

Es

[

‖s̃(X) − (1 − p)s‖2
2

]

≤ Es



 inf
θ∈RM

∥

∥

∥

∥

∥

ps−
∑

m∈M

θmŝm(X1)

∥

∥

∥

∥

∥

2

2



+ (1 − p)‖s‖∞|M|.

(2.3)
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Setting ŝ(X) = s̃(X)/(1 − p) leads to

Es

[

‖ŝ(X) − s‖2
2

]

≤ 1

(1 − p)2
inf

m∈M
Es

[

‖ps− ŝm(X1)‖2
2

]

+
‖s‖∞|M|

1 − p
.

If we start with a finite family
{

Sm,m ∈ M
}

of finite-dimensional linear subspaces
of L2(λ) with respective dimensions Dm, we may choose for ŝm(X1) the projection
estimator based on Sm with risk bounded by (2.2)

Es

[

‖ŝm(X1) − ps‖2
2

]

≤ inf
t∈Sm

‖t− ps‖2
2 + p‖s‖∞Dm = p2 inf

t∈Sm

‖t− s‖2
2 + p‖s‖∞Dm.

Choosing p = 1/2, we conclude that

Es

[

‖ŝ(X) − s‖2
2

]

≤ inf
m∈M

{

inf
t∈Sm

‖t− s‖2
2 + 2‖s‖∞Dm

}

+ 2‖s‖∞|M|.

2.3 Lower bounds for intensity estimation

It is rather inconvenient to get risk bounds involving the unknown and possibly very
large L∞-norm of s and this problem becomes even more serious if s does not belong
to L∞(λ). It is, unfortunately, impossible to avoid this problem when dealing with the
L2-loss. To show this, let us start with a version of Assouad’s Lemma (Assouad, 1983)
for Poisson processes.

Lemma 1 Let SD = {sδ, δ ∈ D} ⊂ L
+
1 (λ) be a family of intensities indexed by D =

{0; 1}D and ∆ be the Hamming distance on D given by ∆(δ, δ′) =
∑D

j=1 |δj − δ′j |. Let
C be the subset of D ×D defined by

C = {(δ, δ′) | ∃k, 1 ≤ k ≤ D with δk = 0, δ′k = 1 and δj = δ′j for j 6= k}.

Then for any estimator δ̂(X) with values in D,

sup
δ∈D

Esδ

[

∆
(

δ̂(X), δ
)]

≥ D

4





1

|C|
∑

(δ,δ′)∈C

exp
[

−2H2(sδ, sδ′)
]



 . (2.4)

If, moreover, SD ⊂ L ⊂ L
+
1 (λ) and L is endowed with a metric d satisfying d2(sδ, sδ′) ≥

θ∆(δ, δ′) for all δ, δ′ ∈ D and some θ > 0, then for any estimator ŝ(X) with values in
L,

sup
s∈SD

Es

[

d2 (ŝ(X), s)
]

≥ Dθ

16





1

|C|
∑

(δ,δ′)∈C

exp
[

−2H2(sδ, sδ′)
]



 . (2.5)

Proof: To get (2.4) it suffices to find a lower bound for

RB = 2−D
∑

δ∈D

Esδ

[

∆
(

δ̂, δ
)]

= 2−D
∑

δ∈D

∫ D
∑

k=1

∣

∣

∣
δ̂k − δk

∣

∣

∣
dQsδ

,

since the left-hand side of (2.4) is at least as large as the average risk RB. It follows
from the proof of Lemma 2 in Birgé (2006b) with n = 1 that

RB ≥ 2−D
∑

(δ,δ′)∈C

[

1 −
√

1 − ρ2
(

Qsδ
, Qsδ′

)

]

≥ 2−D−1
∑

(δ,δ′)∈C

ρ2
(

Qsδ
, Qsδ′

)

.
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Then (2.4) follows from (1.6) since |C| = D2D−1. Let now ŝ(X) be an estimator with
values in L and set δ̂(X) ∈ D to satisfy d

(

ŝ, sδ̂

)

= infδ∈D d (ŝ, sδ) so that, whatever
δ ∈ D, d

(

sδ̂, sδ

)

≤ 2d (ŝ, sδ). It then follows from our assumptions that

sup
δ∈D

Esδ

[

d2 (ŝ, sδ)
]

≥ 1

4
sup
δ∈D

Esδ

[

d2
(

sδ̂, sδ

)]

≥ θ

4
sup
δ∈D

Esδ

[

∆
(

δ̂(X), δ
)]

and (2.5) follows from (2.4).

The simplest application of this lemma corresponds to the case D = 1 which, in its
simplest form, dates back to Le Cam (1973). We consider only two intensities s0 and
s1 so that θ = d2(s0, s1) and (2.5) gives, whatever the estimator ŝ(X),

max
i=0,1

Esi

[

d2 (ŝ(X), si)
]

≥ d2(s0, s1)

16
exp

[

−2H2(s0, s1)
]

. (2.6)

Another typical application of the previous lemma to intensities on [0, 1] uses the
following construction of a suitable set SD.

Lemma 2 Let D be a positive integer and g be a function on R with support on
[

0, D−1
)

satisfying

0 ≤ g(x) ≤ 1 for all x and

∫ D−1

0
g2(x) dx = a > 0.

Set, for 1 ≤ j ≤ D and 0 ≤ x ≤ 1, gj(x) = g
(

x−D−1(j − 1)
)

and, for δ ∈ D, sδ(x) =

a−1
[

1 +
∑D

j=1(δj − 1/2)gj(x)
]

. Then ‖sδ − sδ′‖2
2 = a−1∆(δ, δ′) and H2(sδ, sδ′) ≥

∆(δ, δ′)/8 for all δ, δ′ ∈ D. Moreover,

|C|−1
∑

(δ,δ′)∈C

exp
[

−2H2(sδ, sδ′)
]

≥ exp[−2/7]. (2.7)

Proof: The first equality is clear. Let us then observe that our assumptions on g imply
that 1 − g2(x)/7 ≤

√

1 − g2(x)/4 ≤ 1 − g2(x)/8, hence, since the functions gj have
disjoint supports and are translates of g,

H2(sδ, sδ′) = (2a)−1
D
∑

j=1

|δj − δ′j |
∫ D−1

0

[

√

1 + g(x)/2 −
√

1 − g(x)/2
]2
dx

= a−1
D
∑

j=1

|δj − δ′j |
∫ D−1

0

[

1 −
√

1 − g2(x)/4
]

dx = c∆(δ, δ′),

with 1/8 ≤ c ≤ 1/7. The conclusions follow.

Corollary 1 For each positive integer D and L ≥ 3D/2, one can find a finite set SD

of intensities with the following properties:
i) it is a subset of some D-dimensional affine subspace of L2([0, 1], dx);
ii) sups∈SD

‖s‖∞ ≤ L;
iii) for any estimator ŝ(X) with values in L2([0, 1], dx) based on a Poisson process

X with intensity s,

sup
s∈SD

Es

[

‖ŝ− s‖2
2

]

≥ (DL/24) exp[−2/7]. (2.8)
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Proof: Let us set θ = 2L/3 ≥ D and apply the construction of Lemma 2 with
g(x) =

√

D/θ 1l[0,1/D), hence a = θ−1. This results in the set SD with ‖sδ‖∞ ≤
θ
[

1 + (1/2)
√

D/θ
]

≤ 3θ/2 = L for all δ ∈ D as required. Moreover ‖sδ − sδ′‖2
2 =

θ∆(δ, δ′). Then we use Lemma 1 with d being the distance corresponding to the norm
in L2([0, 1], dx) and (2.5) together with (2.7) result in (2.8).

This result implies that, if we want to use the squared L2-norm as a loss function,
whatever the choice of our estimator there is no hope to find risk bounds that are
independent of the L∞-norm of the underlying intensity, even if this intensity belongs
to a finite-dimensional affine space. This provides an additional motivation for the
introduction of loss functions based on the distance H.

3 T-estimators for Poisson processes

3.1 Some notations

Throughout this paper, we observe a Poisson process X on X with unknown mean
measure µ belonging to the metric space (Q+(X ),H) and have at hand some reference
measure λ on X so that µ = µs + µ⊥ with µs ∈ Qλ, s ∈ L

+
1 (λ) and µ⊥ orthogonal

to λ. We denote by ‖ · ‖i the norm in Li(λ) for 1 ≤ i ≤ ∞ and by d2 the distance
corresponding to the norm ‖ · ‖2. We always denote by s the intensity of the part
of µ which is dominated by λ and set s1 = s/µs(X ). We also systematically identify
Qλ with L

+
1 (λ) via the mapping t 7→ µt, writing t as a shorthand for µt ∈ Qλ. We

write H(s, S′) for inft∈S′ H(s, t), a ∨ b and a ∧ b for the maximum and the minimum
respectively of a and b, |A| for the cardinality of a finite set A and N

⋆ = N \ {0} for
the set of positive integers. In the sequel C (or C ′, C1, . . .) denote constants that may
vary from line to line, the form C(a, b) meaning that C is not a universal constant but
depends on some parameters a and b.

3.2 Definition and properties of T-estimators

In order to explain our method of estimation and model selection, we need to recall
some general results from Birgé (2006a) about T-estimators that we shall specialize
to the specific framework of this paper. Let (M,d) be some metric space and B(t, r)
denote the open ball of center t and radius r in M .

Definition 1 A subset S′ of the metric space (M,d) is called a D-model with param-
eters η,D and B′ (η,B′, D > 0) if

|S′ ∩ B(t, xη)| ≤ B′ exp
[

Dx2
]

for all x ≥ 2 and t ∈M. (3.1)

Note that this implies that S′ is at most countable.
To estimate the unknown mean measure µ of the Poisson process X, we introduce

a finite or countable family {Sm,m ∈ M} of D-models in (Qλ,H) with respective
parameters ηm, Dm and B′ and assume that

for all m ∈ M, Dm ≥ 1/2 and η2
m ≥ (84Dm)/5, (3.2)

and
∑

m∈M

exp
[

−η2
m/84

]

= Σ < +∞. (3.3)
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Then we set S =
⋃

m∈M Sm and, for each t ∈ S,

η(t) = inf{ηm |m ∈ M and Sm ∋ t}. (3.4)

Remark: Note that if we choose for {Sm,m ∈ M} a family of D-models in (Q+(X ),H),
S is countable and therefore dominated by some measure λ that we can always take
as our reference measure. This gives an a posteriori justification for the choice of a
family of models Sm ⊂ Qλ.

Given two distinct points t, u ∈ Qλ we define a test function ψ(X) between t and u as
a measurable function from X to {t, u}, ψ(X) = t meaning deciding t and ψ(X) = u
meaning deciding u. In order to define a T-estimator, we need a family of test functions
ψt,u(X) between distinct points t, u ∈ S with some special properties. The following
proposition, to be proved in Section 6 warrants their existence.

Proposition 1 Given two distinct points t, u ∈ S there exists a test ψt,u between t
and u which satisfies

sup
{µ∈Q+(X ) |H(µ,µt)≤H(t,u)/4}

Pµ[ψt,u(X) = u] ≤ exp
[

−
(

H2(t, u) − η2(t) + η2(u)
)

/4
]

,

sup
{µ∈Q+(X ) |H(µ,µu)≤H(t,u)/4}

Pµ[ψt,u(X) = t] ≤ exp
[

−
(

H2(t, u) − η2(u) + η2(t)
)

/4
]

,

and for all µ ∈ Q+(X ),

Pµ[ψt,u(X) = u] ≤ exp
[(

16H2(µ, µt) + η2(t) − η2(u)
)

/4
]

. (3.5)

To build a T-estimator, we proceed as follows. We consider a family of tests ψt,u

indexed by the two-points subsets {t, u} of S with t 6= u that satisfy the conclusions
of Proposition 1 and we set Rt = {u ∈ S, u 6= t |ψt,u(X) = u} for each t ∈ S. Then
we define the random function DX on S by

DX (t) =







sup
u∈Rt

{

H(t, u)
}

if Rt 6= ∅;

0 if Rt = ∅.

We call T-estimator derived from S and the family of tests ψt,u(X) any measur-
able minimizer of the function t 7→ DX (t) from S to [0,+∞] so that DX (ŝ(X)) =
inft∈S DX (t). Such a minimizer need not exist in general but it actually exists under
our assumptions.

Theorem 3 Let S =
⋃

m∈M Sm ⊂ Qλ be a finite or countable family of D-models
in (Qλ,H) with respective parameters ηm, Dm and B′ satisfying (3.2) and (3.3). Let
{ψt,u} be a family of tests indexed by the two-points subsets {t, u} of S with t 6= u and
satisfying the conclusions of Proposition 1. Whatever µ ∈ Q+(X ), Pµ-a.s. there exists
at least one T-estimator ŝ = ŝ(X) ∈ S derived fom this family of tests and any of
them satisfies, for all s′ ∈ S,

Pµ

[

H(s′, ŝ) > y
]

< (B′Σ/7) exp
[

−y2/6
]

for y ≥ 4[H(µ, µs′) ∨ η(s′)]. (3.6)
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Setting µ̂(X) = ŝ(X) · λ and µ = µs + µ⊥ with µs ∈ Qλ and µ⊥ orthogonal to λ, we
also get

Eµ

[

Hq (µ, µ̂(X))
]

≤ C(q)[1 +B′Σ] inf
m∈M

{

H(s, Sm) + ηm +
√

µ⊥(X )

}q

(3.7)

and, for intensity estimation when µ = µs,

Es

[

Hq (s, ŝ(X))
]

≤ C(q)[1 +B′Σ] inf
m∈M

{H(s, Sm) + ηm}q . (3.8)

Proof: It follows from Theorem 5 in Birgé (2006a) with a = 1/4, B = 1, κ = 4 and
κ′ = 16 that T-estimators do exist, satisfy (3.6) and have a risk which is bounded, for
q ≥ 1, by

Eµ

[

Hq (µ, µ̂(X))
]

≤ C(q)[1 +B′Σ] inf
m∈M

{(

inf
t∈Sm

H(µ, µt)

)

∨ ηm

}q

. (3.9)

In Birgé (2006a), the proof of the existence of T-estimators when M is infinite was
given only for the case that the tests ψt,u(X) have a special form, namely ψt,u(X) = u
when γ(u,X) < γ(t,X) and ψt,u(X) = t when γ(u,X) > γ(t,X) for some suitable
function γ. A minor modification of the proof extends the result to the general situation
based on the assumption that (3.5) holds. It is indeed enough to use (3.5) to modify
the proof of (7.18) of Birgé (2006a) in order to get instead

Pµ

[

∃ t ∈ S with ψs′,t(X) = 1 and η(t) ≥ y
]

−→
y→+∞

0.

The existence of ŝ(X) then follows straightforwardly. Since H2(µ, µt) = H2(s, t) +
µ⊥(X )/2, (3.7) follows from (3.9).

It follows from (3.7) that the problem of estimating µ with T-estimators always reduces
to intensity estimation once a reference measure λ has been chosen. A comparison of
the risk bounds (3.7) and (3.8) shows that the performance of the estimator ŝ(X) is
connected to the choice of the models in L

+
1 (λ), the component µ⊥(X ) of the risk

depending only on λ. We might as well assume that µ⊥(X ) is known since this would
not change anything concerning the performance of the T-estimators for a given λ.
This is why we shall essentially focus, in the sequel, on intensity estimation.

3.3 An application to multivariate intensities

Let us first illustrate Theorem 3 by an application to the estimation of the unknown
intensity s (with respect to the Lebesgue measure λ) of a Poisson process on X =
[−1, 1]k. For this, we introduce a family of non-linear models related to neural nets
which were popularized in the 90’s by Barron (1993 and 1994) and other authors in view
of their nice approximation properties with respect to functions of several variables.
These models have already been studied in detail in Sections 3.2.2 and 4.2.2 of Barron,
Birgé and Massart (1999) and we shall therefore refer to this paper for their properties.
We start with a family of functions φw(x) ∈ L∞

(

[−1, 1]k
)

indexed by a parameter w

belonging to R
k′

and satisfying

|φw(x) − φw′(x)| ≤ |w − w′|1 for all x ∈ [−1, 1]k, (3.10)
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where | · |1 denotes the l1-norm on R
k′

. Various examples of such families are given in
Barron, Birgé and Massart (1999) and one can, for instance, set φw(x) = ψ(a′x − b)
with ψ a univariate Lipschitz function, a ∈ R

k, b ∈ R and w = (a, b) ∈ R
k+1.

We set M = (N \ {0, 1})3 and for m = (J,R,B) ∈ M we consider the subset of
L∞

(

[−1, 1]k
)

defined by

S′
m =







J
∑

j=1

βjφwj
(x)

∣

∣

∣

∣

∣

∣

J
∑

j=1

|βj | ≤ R and |wj |1 ≤ B for 1 ≤ j ≤ J







.

As shown in Lemma 5 of Barron, Birgé and Massart (1999), such a model can be
approximated by a finite subset Tm. More precisely, one can find a subset Tm of S′

m

with cardinality bounded by [2e(2RB+1)]J(k′+1) and such that if u ∈ S′
m, there exists

some t ∈ Tm such that ‖t−u‖∞ ≤ 1. Defining Sm as {t2, t ∈ Tm}, we get the following
property:

Lemma 3 For m = (J,R,B) ∈ (N \ {0, 1})3, we set η2
m = 42J(k′ + 1) log(RB).

Then Sm is a D-model with parameters ηm, Dm = [J(k′ + 1)/4] log[2e(2RB + 1)] and
1 in the metric space

(

L
+
1 (λ),H

)

and (3.2) and (3.3) are satisfied. Moreover, for any
s ∈ L

+
1 (λ), √

2H(s, Sm) ≤ inf
t∈S′

m

∥

∥

√
s− t

∥

∥

2
+ 2k/2. (3.11)

Proof: Since |Sm| ≤ |Tm|, to show that Sm is a D-model with the given parameters
it is enough to prove, in view of (3.1), that |Tm| ≤ exp[4Dm], which is clear. That
η2

m/84 ≥ Dm/5 follows from log[2e(2RB + 1)] ≤ 4 log(RB) since RB ≥ 4. Moreover,
since k′ + 1 ≥ 2, η2

m ≥ 84J log(RB), hence

∑

m∈M

exp

[

−η
2
m

84

]

≤
∑

J≥2





∑

n≥2

n−J





2

≤
∑

J≥2

(

∫ +∞

3/2
x−J dx

)2

,

so that (3.3) holds. Let now u ∈ S′
m. There exists t ∈ Tm such that ‖t−u‖∞ ≤ 1, hence

‖√s− t‖2 ≤ ‖√s− u‖2 + 2k/2. Then t2 ∈ Sm and since
∥

∥

∥

√
s−

√
t2
∥

∥

∥

2
≤ ‖√s− t‖2,

(3.11) follows.

Let now ŝ(X) be a T-estimator derived from the family of D-models {Sm,m ∈ M}.
By Theorem 3 and Lemma 3, it satisfies

Es

[

H2 (s, ŝ(X))
]

≤ C inf
m∈M

{

inf
t∈S′

m

∥

∥

√
s− t

∥

∥

2

2
+ 2k + η2

m

}

≤ C(k, k′) inf
m∈M

{

inf
t∈S′

m

∥

∥

√
s− t

∥

∥

2

2
+ J log(RB)

}

. (3.12)

The approximation properties of the models S′
m with respect to different classes of

functions have been described in Barron, Birgé and Massart (1999). They allow to
bound inft∈S′

m
‖√s− t‖2 when

√
s belongs to such classes so that corresponding risk

bounds can be derived from (3.12).
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3.4 Model selection based on linear models

3.4.1 Deriving D-models from linear spaces

In order to apply Theorem 3 we need to introduce suitable families of D-models Sm

in (Qλ,H) with good approximation properties with respect to the unknown s. More
precisely, it follows from (3.7) and (1.10) that they should provide approximations of√
s in L

+
2 (λ). Good approximating sets for elements of L

+
2 (λ) are provided by approx-

imation theory and some recipes to derive D-models from such sets have been given
in Section 6 of Birgé (2006a). Most results about approximation of functions in L2(λ)
deal with finite dimensional linear spaces or unions of such spaces and their approx-
imation properties with respect to different classes (typically smoothness classes) of
functions. We therefore focus here on such linear subspaces of L2(λ). To translate
their properties in terms of D-models, we shall invoke the following proposition.

Proposition 2 Let S be a k-dimensional linear subspace of L2(λ) and δ > 0. One can
find a subset S′ of Qλ which is a D-model in the metric space (Qλ,H) with parameters
δ, 9k and 1 and such that, for any intensity s ∈ L

+
1 (λ),

H(s, S′) ≤ 2.2

[

inf
t∈S

∥

∥

√
s− t

∥

∥

2
+ δ

]

.

Proof: Let us denote by BH and B2 the open balls in the metric spaces
(

L
+
1 (λ),H

)

and (L2(λ), d2) respectively. It follows from Proposition 8 of Birgé (2006a) that one
can find a subset T of S which is a D-model of (L2(λ), d2) with parameters δ, k/2 and
1 and such that, whatever u ∈ L2(λ), d2(u, T ) ≤ d2

(

u, S
)

+ δ. It follows that
∣

∣

∣
T ∩ B2

(

t, 3r′
√

2
)∣

∣

∣
≤ exp

[

9k(r′/δ)2
]

for r′ ≥ 2δ and t ∈ L2(λ). (3.13)

Moreover, if t ∈ T , π(t) = max{t, 0} belongs to L
+
2 (λ) and satisfies d2 (u, π(t)) ≤

d2(u, t) for any u ∈ L
+
2 (λ). We may therefore apply Proposition 12 of Birgé (2006a)

with (M ′, d) = (L2(λ), d2), M0 = L
+
2 (λ), λ = 1, ε = 1/10, η = 4

√
2δ and r = r′

√
2 to

get a subset S of π(T ) ⊂ L
+
2 (λ) such that

|S ∩ B2

(

t, r′
√

2
)

| ≤ |T ∩ B2

(

t, 3r′
√

2
)

| ∨ 1 for all t ∈ L2(λ) and r′ ≥ 2δ (3.14)

and d2(u, S) ≤ 3.1d2(u, T ) for all u ∈ L
+
2 (λ). Setting S′ =

{

t2 · λ, t ∈ S
)

} ⊂ Qλ and
using (1.10), we deduce from (3.13) and (3.14) that

|S′ ∩ BH

(

µt, r
′
)

| ≤ exp
[

9k(r′/δ)2
]

for r′ ≥ 2δ and µt ∈ Qλ,

hence S′ is a D-model in (Qλ,H) with parameters δ, 9k and 1, and

H(s, S′) ≤
(

3.1/
√

2
)

d2

(√
s, T

)

< 2.2
[

d2

(√
s, S

)

+ δ
]

.

We are now in a position to prove Theorem 1. For each m, let us fix η2
m = 84[∆m ∨

(9Dm/5)] and use Proposition 2 to derive from Sm a D-model Sm with parameters
ηm, Dm = 9Dm and 1 which also satisfies

H(s, Sm) ≤ 2.2

[

inf
t∈Sm

∥

∥

√
s− t

∥

∥

2
+ ηm

]

.

It follows from the definition of ηm that (3.2) and (3.3) are satisfied so that Theorem 3
applies. The conclusion immediately follows from (3.7).
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3.4.2 About the computation of T-estimators

We already mentioned that the relevance of T-estimators is mainly of a theoretical
nature because of the difficulty of their implementation. Let us give here a simple
illustrative example based on a single linear approximating space S for

√
s, of dimension

k. To try to get a practical implementation, we shall use a simple discretization
strategy. The first step is to replace S, that we identify to R

k via the choice of a basis,
by θZk. This provides an η-net for R

k with respect to the the Euclidean distance,
with η2 = k(θ/2)2. Let us concentrate here on the case of a large value of Γ2 =

∫

s dλ
in order to have a large number of observations since N has a Poisson distribution
with parameter Γ2. In particular, we shall asume that Γ2 (which plays the role of the
number of observations as we shall see in Section 4.6) is much larger than k. It is
useless, in such a case, to use the whole of θZk to approximate

√
s since the closest

point to
√
s belongs to B(0,Γ+η). Of course, Γ is unknown, but when it is large it can

be safely estimated by
√
N in view of the concentration properties of Poisson variables.

Let us therefore assume that N ≥ Γ2/2 ≥ 2k. A reasonable approximating set for
√
s is

therefore T = B
(

0,
√

2N + η
)

∩ θZk and since our final model S should be a subset of

L
+
2 (λ), we can take S = {t∨0, t ∈ T} so that d2 (

√
s, S) ≤ d2 (

√
s, T ) ≤ d2

(√
s, S + η

)

.
It follows from Lemma 5 of Birgé (2006a) that

|S| ≤ |T | ≤ (πe/2)k/2

√
πk

(

2
√

2N + 2η

θ
√
k

+ 1

)k

< K =
[

c
(√

2Nη−1 + 1
)]k

,

with c =
√

πe/2 ∼ 2.07. This implies that S is a D-model with parameters η, (logK)/4
and 1. In order that (3.2) be satisfied, we need that η2 ≥ 4.2 logK. If we choose

η2 = 4.2k log
(

c
(

√

N/k + 1
))

, this inequality holds since η ≥ 2
√
k, hence K ≤

[

c
(

√

N/k + 1
)]k

. The number of tests required for building the T-estimator is

|S|(|S| − 1) < K2. For N of the order of 100 and k as small as 5, K2 is of the order of
1010. This toy example illustrates the difficulty of implementing the algorithm. More
realistic ones would be much worse.

4 Applications with linear models

We now assume that µ = µs = s · λ and focus on the estimation of the intensity s by
model selection, starting with linear models in L2(λ) that posess good approximating
properties with respect to

√
s.

4.1 Adaptation in Besov spaces

It is now well-known that wavelet bases are very good tools for representing smooth
functions in L2

(

[0, 1]l, dx
)

. In particular, given a suitable wavelet basis {ϕj,k, j ≥
−1,k ∈ Λ(j)} with |Λ(−1)| ≤ Γ and 2jl ≤ |Λ(j)| ≤ Γ2jl for all j ≥ 0 any function
f ∈ L2

(

[0, 1]l, dx
)

can be written as f =
∑∞

j=−1

∑

k∈Λ(j) βj,kϕj,k. Moreover f
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belongs to the Besov space Bα
p,∞([0, 1]l) if and only if

sup
j≥0

2
j
“

α+ l
2
− l

p

”





∑

k∈Λ(j)

|βj,k|p




1

p

= |f |Bα
p,∞

< +∞, (4.1)

and it belongs to Bα
p,q([0, 1]l) with q < +∞ if

∑

j≥0






2

j
“

α+ l
2
− l

p

”





∑

k∈Λ(j)

|βj,k|p




1

p







q

= |f |qBα
p,q
< +∞.

Many properties of those function spaces are to be found in DeVore and Lorentz (1993),
DeVore (1998) and Härdle, Kerkyacharian, Picard and Tsybakov (1998) among other
references.

As a consequence of Theorem 1, we can derive an adaptation result for the estimation
of the intensity of a Poisson process when it belongs to some Besov space on [0, 1]l.

Theorem 4 Let X be a Poisson process with unknown intensity s with respect to
Lebesgue measure on [0, 1]l. Let us assume that

√
s belongs to some Besov space

Bα
p,∞([0, 1]l) for some unknown values of p > 0, α > l(1/p − 1/2)+ and |√s|Bα

p,∞

given by (4.1). One can build a T-estimator ŝ(X) such that

Es

[

H2(s, ŝ)
]

≤ C(α, p, l)
[

|√s|Bα
p,∞

∨ 1
]2l/(2α+l)

. (4.2)

Proof: We just use Proposition 13 of Birgé (2006a) which provides suitable families
Mj(2

i) of linear approximation spaces for functions in Bα
p,∞([0, 1]l) and use the family

of linear spaces
{

Sm

}

m∈M
with M =

⋃

i≥1

⋃

j≥0 Mj

(

2i
)

provided by this proposition.

Then, for m ∈ Mj

(

2i
)

, Dm ≤ c1
(

2i
)

+c2
(

2i
)

2jl and we choose ∆m = c3
(

2i
)

2jl+i+j
which implies that (1.13) holds with Σ < 1. Applying Proposition 13 of Birgé (2006a)
with t =

√
s, r = 2i > α ≥ 2i−1 and q = 2, we derive from Theorem 1 that, if

R = |√s|Bα
p,∞

∨ 1,

Es

[

H2(s, ŝ)
]

≤ C inf
j≥0

{

C(α, p, l)R22−2jα + c4(α)2jl
}

.

Choosing for j the smallest integer such that 2j(l+2α) ≥ R2 leads to the result.

4.2 Anisotropic Hölder spaces

Let us recall that a function f defined on [0, 1) belongs to the Hölder class H(α,R)
with α = β + p, p ∈ N, 0 < β ≤ 1 and R > 0 if f has a derivative of or-
der p satisfying

∣

∣f (p)(x) − f (p)(y)
∣

∣ ≤ R|x − y|β for all x, y ∈ [0, 1). Given two
multi-indices α = (α1, . . . , αk) and R = (R1, . . . , Rk) in (0,+∞)k, we define the
anisotropic Hölder class H (α,R) as the set of functions f on [0, 1)k such that, for
each j and each set of k− 1 coordinates x1, . . . , xj−1, xj+1, . . . , xk the univariate func-
tion y 7→ f(x1, . . . , xj−1, y, xj+1, . . . , xk) belongs to H(αj , Rj).

Let now a multi-integer N = (N1, . . . , Nk) ∈ (N⋆)k be given. To it corresponds the

hyperrectangle
∏k

j=1

[

0, N−1
j

)

and the partition IN of [0, 1)k into
∏k

j=1Nj translates
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of this hyperrectangle. Given an integer r ∈ N and m = (N , r) we can define the
linear space Sm of piecewise polynomials on the partition IN with degree at most

r with respect to each variable. Its dimension is Dm = (r + 1)k
∏k

j=1Nj . Setting

M = (N⋆)k × N and ∆m = Dm, we get (1.13) with Σ depending only on k as shown
in the proof of Proposition 5 p. 346 of Barron, Birgé and Massart (1999). The same
proof also implies (see (4.25) p. 347) the following approximation lemma.

Lemma 4 Let f ∈ H (α,R) with αj = βj +pj, r ≥ max1≤j≤k pj, N = (N1, . . . , Nk) ∈
(N⋆)k and m = (N , r). There exists some g ∈ Sm such that

‖f − g‖∞ ≤ C(k, r)

k
∑

j=1

RjN
−αj

j .

We are now in a position to state the following corollary of Theorem 1.

Corollary 2 Let X be a Poisson process with unknown intensity s with respect to the
Lebesgue measure on [0, 1)k and ŝ be a T-estimator based on the family of linear models
{

Sm,m ∈ M
}

that we have previously defined. Assume that
√
s belongs to the class

H (α,R) and set

α =



k−1
k
∑

j=1

α−1
j





−1

and R =





k
∏

j=1

R
1/αj

j





α/k

.

If Rj ≥ R
k/(2α+k)

for all j, then

Es

[

H2(s, ŝ)
]

≤ C(k,α)R
2k/(2α+k)

.

Proof: If αj = βj + pj for 1 ≤ j ≤ k, let us set r = max1≤j≤k pj , η = R
k/(2α+k)

and define Nj ∈ N
⋆ by (Rj/η)

1/αj ≤ Nj < (Rj/η)
1/αj + 1 so that Nj < 2(Rj/η)

1/αj

for all j. It follows from Lemma 4 that there exists some t ∈ Sm, m = (N , r) with

‖√s− t‖∞ ≤ C1(k,α)
∑k

j=1RjN
−αj

j , hence ‖√s− t‖2 ≤ kC1(k,α)η. It then follows
from Theorem 1 that

Es

[

H2(s, ŝ)
]

≤ C2(k,α)



η2 + (r + 1)k
k
∏

j=1

Nj



 ≤ C3(k,α)
[

η2 +R
k/α

η−k/α
]

.

The conclusion follows.

4.3 Intensities with bounded α-variation

Let us first recall that a function f defined on some interval J ⊂ R has bounded
α-variation on J for some α ∈ (0, 1] if

sup
i≥1

sup
x0<···<xi

xj∈J for 0≤j≤i

i
∑

j=1

|f(xj) − f(xj−1)|1/α = [Vα(f ;J)]1/α < +∞, (4.3)
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the classical case of bounded variation corresponding to α = 1. This formulation using
the power 1/α (instead of α) implies that an α-Hölderian function has bounded α-
variation over any finite interval J . We want to build a family of linear models which
are suitable for estimating intensities s with support on some interval J of finite length
L and such that

√
s has bounded α-variation on J for some unknown value of α. These

models are linear spaces of piecewise constant functions on some finite partitions m of
J , namely

Sm =







t =
D
∑

j=1

aj1lIj







when m = {I1, . . . , ID}.

We consider for M a special family of partitions m of J derived by dyadic splitting
which are in one-to-one correspondence with the family of complete binary trees. They
are built according to the following “adaptive” algorithm described in Section 3.3 of
DeVore (1998). This algorithm simultaneously grows a complete binary tree and a
dyadic partition of J . It starts with a tree reduced to its root which is associated to
the interval J . At each step of the algorithm the set of terminal nodes of the current
tree is associated to the set of intervals in the current partition. Each step of the
algorithm corresponds to choosing one terminal node and adding two sons to it. For
the associated partition this means dividing the interval which corresponds to this
terminal node into two intervals of equal length which then correspond to the two
sons. At some stage the procedure stops and we end with a complete binary tree with
D terminal nodes and the associated partition of J into D intervals. We acually take
for M the set of all finite partitions m that can be build in that way so that each
m corresponds to the complete binary tree with |m| terminal nodes that was used to
build the partition.

It is known that the number of complete binary trees with j + 1 terminal nodes is

given by the so-called Catalan numbers (1+ j)−1

(

2j
j

)

≤ 4j/(1+ j) as explained for

instance in Stanley (1999, page 172). Setting ∆m = 2|m| leads to
∑

m∈M

exp[−∆m] =
∑

j≥0

∑

{m∈M| |m|=1+j}

exp[−2(j + 1)]

≤
∑

j≥0

4j exp[−2(j + 1)]

j + 1
= e−2

∑

j≥0

(2/e)2j

j + 1
< 1. (4.4)

The approximation properties of ∪m∈MSm with respect to functions of bounded α-
variation are given by the following proposition the proof of which was kindly commu-
nicated to the author by Ron DeVore (private communication, 2006).

Proposition 3 Let f be a function of bounded α-variation on the interval J of finite
length L with α-variation Vα(f ;J) given by (4.3). For each j ∈ N, one can find a
partition m ∈ M with

|m| ≤ c1(α)2j and inf
t∈Sm

‖f − t‖2 ≤ c2(α)L1/2Vα(f ;J)2−jα. (4.5)

with 1 < c1(α) =
(

1 − 2−[1/(2α)+1]
) (

1 − 2−1/(2α)
)−1

< 2.21 and

√
2 < c2(α) =

[

21+2α
(

1 − 2−[1/(2α)+1]
)1−2α

1 − 2−1/(2α)

]1/2

< 6.51.
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Proof: For any interval I ⊂ J we denote by |I| its length and set V (I) = Vα(f ; I).
If m = {I1; . . . ; ID} is a partition of J into D intervals, f̄j = |Ij |−1

∫

Ij
f(x) dx and

f̄ =
∑D

j=1 f̄j1lIj
, then

∥

∥

(

f − f̄j

)

1lIj

∥

∥

∞
≤ V (Ij), hence

∥

∥f − f̄
∥

∥

2

2
≤

D
∑

j=1

E(Ij) with E(I) = |I|V 2(I). (4.6)

In particular (4.5) holds with m = {J} and j = 0. To study the general case we choose
some ε > 0 and apply the adaptive algorithm described just before in the following
way: at each step we inspect the intervals of the partition and if we find an interval
I with E(I) > ε we divide it into two intervals of equal length |I|/2. The algorithm
necessarily stops since E(I) ≤ |I|V 2(J) for all I ⊂ J and this results in some partition
m with E(I) ≤ ε for all I ∈ m. It follows from (4.6) that if f̄ is built on this partition,

then
∥

∥f − f̄
∥

∥

2

2
≤ ε|m|. Since the case |m| = 1 has already been considered, we may

assume that |m| ≥ 2. Let us denote by Dk the number of intervals in m with length
L2−k and set ak = 2−kDk so that

∑

k≥1 ak = 1 (since D0 = 0). If I is an interval of

length L2−k, k > 0, it derives from the splitting of an interval I ′ with length L2−k+1

such that E(I ′) > ε, hence, by (4.6), V (I ′) >
[

εL−12k−1
]1/2

and, since the set function

V 1/α is subadditive over disjoint intervals, the number of such interval I ′ is bounded

by [V (J)]1/α
[

εL−12k−1
]−1/(2α)

. It follows that

Dk ≤ γ2−k/(2α) and ak ≤ γ2−k/(2α)−k with γ = 2[V (J)]1/α[ε/(2L)]−1/(2α).

Since |m| =
∑

k≥1 2kak, we can derive a bound on |m| from a maximization of
∑

k≥1 2kak under the restrictions
∑

k≥1 ak = 1 and ak ≤ γ2−k[1/(2α)+1]. One should
then clearly keep the largest possible indices k with the largest possible values for ak.
Let us fix ε so that γ =

(

1 − 2−[1/(2α)+1]
)

2j[1/(2α)+1] for some j ≥ 1. Then, setting

ak to its maximal value, we get
∑

k≥j γ2
−k[1/(2α)+1] = 1, which implies that an upper

bound for |m| is

|m| ≤
∑

k≥j

γ2k2−k[1/(2α)+1] =
γ2−j/(2α)

1 − 2−1/(2α)
=

1 − 2−[1/(2α)+1]

1 − 2−1/(2α)
2j .

The corresponding value of ε is 2L(γ/2)−2αV 2(J) so that

∥

∥f − f̄
∥

∥

2

2
≤ ε|m| ≤ 2LV 2(J)22α γ

1−2α2−j/(2α)

1 − 2−1/(2α)

=
2LV 2(J)22α

(

1 − 2−[1/(2α)+1]
)1−2α

1 − 2−1/(2α)
2−2αj .

These two bounds give (4.5) and we finally use the fact that 0 < α ≤ 1 to bound the
two constants.

We can then derive from this proposition, (1.15) and our choice of the ∆m that

Es

[

Hq(s, ŝ)
]

≤ C(q) inf
j∈N

{

2j/2 + L1/2Vα

(√
s; J
)

2−jα
}q
.

An optimization with respect to j ∈ N then leads to the following risk bound.
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Corollary 3 Let X be a Poisson process with unknown intensity s with respect to the
Lebesgue measure on some interval J of length L. We assume that

√
s has finite α-

variation equal to V on J , both α and V being unknown. One can build a T-estimator
ŝ(X) such that

Es

[

Hq(s, ŝ)
]

≤ C(q)
[(

L1/2V
)

∨ 1
]q/(2α+1)

. (4.7)

It is not difficult to show, using Assouad’s Lemma, that, up to a constant, this bound
is optimal when q = 2.

Proposition 4 Let L,α and V be given and S ⊂ L
+
1 (λ) be the set of intensities with

respect to the Lebesgue measure on [0, L) such that
√
s has α-variation bounded by

V . Let ŝ(X) be any estimator based on a Poisson process X with unknown intensity
s ∈ S. There exists a universal constant c > 0 (independent of ŝ, L, α and V ) such
that

sup
s∈S

Es

[

H2(s, ŝ)
]

≥ c
[(

L1/2V
)

∨ 1
]2/(2α+1)

.

Proof: If L1/2V < 1, we simply apply (2.6) with s0 = 1l[0,L) and s1 =
(

1 + L−1/2
)2

1l[0,L)

so that 2H2(s0, s1) = 1. If L = 1 and V ≥ 1 we fix some positive integer D and define
g with support on

[

0, D−1
)

by

g(x) = x1l[0,(2D)−1)(x) +
(

D−1 − x
)

1l[(2D)−1,D−1)(x).

Then
∫ 1/D
0 g2(x) dx =

(

12D3
)−1

and 0 ≤ g(x) ≤ (2D)−1. If we apply the construction
of Lemma 2, we get a family of Lipschitz intensities sδ with values in the interval
[12D3 −3D2, 12D3 +3D2] ⊂ [9D3, 15D3] and Lipschitz coefficient 6D3. It follows that
if 0 ≤ x < y ≤ 1,

∣

∣

∣

√

sδ(x) −
√

sδ(y)
∣

∣

∣ ≤ |sδ(x) − sδ(y)|
6D3/2

≤
(

6D2
)

∧
(

6D3|x− y|
)

6D3/2
≤

√
D [1 ∧ (D|x− y|)] .

This allows us to bound the α-variation of
√
sδ in the following way. For any increasing

sequence 0 ≤ x0 < · · · < xi ≤ 1,

i
∑

j=1

∣

∣

∣

∣

√

sδ(xj) −
√

sδ(xj−1)

∣

∣

∣

∣

1/α

≤ D1/(2α)
i
∑

j=1

1l{xj−xj−1≥D−1}

+D3/(2α)
i
∑

j=1

1l{xj−xj−1<D−1}(xj − xj−1)
1/α.

If n =
∑i

j=1 1l{xj−xj−1≥D−1} ≤ D, then

D3/(2α)
i
∑

j=1

1l{xj−xj−1<D−1}(xj − xj−1)
1/α ≤ D3/(2α)D−1/α(D − n) = D1/(2α)(D − n),

which shows that the α-variation of
√
sδ is bounded by

[

D1/(2α)D
]α

= D(1+2α)/2. We

finally choose forD the largest integer j such that j(1+2α)/2 ≤ V . Then V 2/(1+2α) < 2D
and an application of Lemmas 1 and 2 show that

sup
s∈SD

Es

[

H2(s, ŝ)
]

≥ 2−8(2D) exp[−2/7] ≥ 2−8 exp[−2/7]V 2/(1+2α),
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which proves our lower bound. The general case L1/2V ≥ 1 follows from a scaling
argument. If X is a Poisson process on [0, L] with intensity s (with respect to the
Lebesgue measure), then Y = L−1X is a Poisson process on [0, 1] with intensity sL

to which the previous results apply. Since sL(y) = Ls(Ly), it follows that H2(s, t) =
H2(sL, tL) and, if

√
s has α-variation bounded by V ,

√
sL has α-variation bounded by

L1/2V . The result for an arbitrary L follows from these remarks.

4.4 Intensities with square roots in weak ℓq-spaces

4.4.1 Approximation based on weak ℓq-spaces

As we already mentioned, if s ∈ L
+
1 (λ) is an intensity with respect to λ on X and we

are given an orthonormal basis {ϕj , j ≥ 1} of L2(λ),
√
s can be written as

∑

j≥1 βjϕj

with β = (βj)j≥1 ∈ ℓ2 = ℓ2(N
⋆) and

∑

j≥1 β
2
j = ‖√s‖2

2 < +∞. Hence, for all x > 0,

|{j ≥ 1 | |βj | ≥ x}| ≤ ‖√s‖2
2 x

−2, which means that the sequence β belongs to the weak
ℓ2-space ℓw2 .

More generally, given a sequence β = (βj)j≥1 converging to zero and aj the re-
arrangement of the numbers |βj | in nonincreasing order (which means that a1 =
supj≥1 |βj |, etc. . . ), we say that β belongs to the weak ℓq-space ℓwq (q > 0) if

sup
x>0

xq |{j ≥ 1 | |βj | ≥ x}| = sup
x>0

xq |{j ≥ 1 | aj ≥ x}| = |β|qq,w < +∞. (4.8)

This implies that aj ≤ |β|q,wj
−1/q for j ≥ 1 and the reciprocal actually holds:

|β|q,w = inf
{

y > 0 | aj ≤ yj−1/q for all j ≥ 1
}

. (4.9)

Note that, although |θβ|q,w = |θ||β|q,w for θ ∈ R, |β|q,w is not a norm. For convenience,
we shall call it the weight of β in ℓwq . By extension, given the basis {ϕj , j ≥ 1}, we
shall say that u ∈ L2(λ) belongs to ℓwq if u =

∑

j≥1 βjϕj and β ∈ ℓwq . As a consequence
of this control on the size of the coefficients aj , we get the following useful lemma.

Lemma 5 Let β ∈ ℓwq with weight |β|q,w for some q > 0 and (aj)j≥1 be the non-
increasing rearrangement of the numbers |βj |. Then β ∈ ℓp for p > q and for all
n ≥ 1,

∑

j>n

ap
j ≤ q

p− q
|β|pq,w(n+ 1/2)−(p−q)/q. (4.10)

Proof: By (4.9) and convexity,

∑

j>n

ap
j ≤ |β|pq,w

∑

j>n

j−p/q ≤ |β|pq,w

∫ +∞

n+1/2
x−p/q dx.

As explained in great detail in Kerkyacharian and Picard (2000) and Cohen, DeVore,
Kerkyacharian and Picard (2001), the fact that u ∈ ℓwq for some q < 2 has important
consequences for the approximation of u by fonctions in suitable D-dimensional spaces.
For m any finite subset of N

⋆, let us define Sm as the linear span of {ϕj , j ∈ m}. If
u =

∑

j≥1 βjϕj belongs to ℓwq and D is a positive integer, one can find some m with

|m| = D and some t ∈ Sm such that

‖u− t‖2
2 ≤ (2/q − 1)−1|β|2q,w(D + 1/2)1−2/q. (4.11)
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Indeed, let us take for m the set of indices of the D largest numbers |βj |. It follows
from (4.10) that

∑

j 6∈m

β2
j =

∑

j>D

a2
j ≤ q

2 − q
|β|2q,w(D + 1/2)1−2/q.

Setting t =
∑

j∈m βjϕj gives (4.11) which provides the rate of approximation of u by

functions of the set ∪{m | |m|=D}Sm as a decreasing function of D (which is not possible

for q = 2). Unfortunately, this involves an infinite family of linear spaces Sm of
dimension D since the largest coefficients of the sequence β may have arbitrarily large
indices. To derive a useful, as well as a practical approximation method for functions
in ℓwq -spaces, one has to restrict to those sets m which are subsets of {1, . . . , n} for
some given value of n. This is what is done in Kerkyacharian and Picard (2000) who
show, in their Corollary 3.1, that a suitable thresholding of empirical versions of the
coefficients βj for j ∈ {1, . . . , n} leads to estimators that have nice properties. Of
course, since this approach ignores the (possibly large) coefficients with indices bigger
than n, an additional condition on β is required to control

∑

j>n β
2
j . In Kerkyacharian

and Picard (2000), it takes the form

∑

j>n

β2
j ≤ A2n−δ for all n ≥ 1, with A and δ > 0, (4.12)

while Cohen, DeVore, Kerkyacharian and Picard (2001, p. 178) use the similar condi-
tion BS. Such a condition is always satisfied for functions in Besov spaces Bα

p,∞([0, 1]l)
with p ≤ 2 and α > l(1/p− 1/2). Indeed, if f =

∑∞
j=−1

∑

k∈Λ(j) βj,kϕj,k belongs to

such a Besov space, it follows from (4.1) that,

∑

j>J

∑

k∈Λ(j)

|βj,k|2 ≤
∑

j>J





∑

k∈Λ(j)

|βj,k|p




2/p

≤ |f |2Bα
p,∞

∑

j>J

2
−2j

“

α+ l
2
− l

p

”

≤ C|f |2Bα
p,∞

2
−2J

“

α+ l
2
− l

p

”

. (4.13)

Since the number of coefficients βj,k with j ≤ J is bounded by C ′2Jl, after a proper
change in the indexing of the coefficients, the corresponding sequence β will satisfy
∑

j>n β
2
j ≤ A2n−δ with δ = (2α/l) + 1 − (2/p).

4.4.2 Model selection for weak ℓq-spaces

It is the very method of thresholding that imposes to fix the value of n as a function of
δ or impose the value of δ when n has been chosen in order to get a good performance
for the threshold estimators. Model selection is more flexible since it allows to adapt
the value of n to the unknown values of A and δ. Let us assume that an orthonormal
basis {ϕj , j ≥ 1} for L2(λ) has been chosen and that the Poisson process X has an
intensity s with respect to λ so that

√
s =

∑

j≥1 βjϕj with β ∈ ℓ2. We take for

M the set of all subsets m of N
⋆ such that |m| = 2j for some j ∈ N and choose

for Sm the linear span of {ϕj , j ∈ m} with dimension Dm = |m|. If |m| = 2j and
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k = inf
{

i ∈ N
⋆ | 2i ≥ l for all l ∈ m

}

, we set ∆m = k + log

(

2k

2j

)

. Then

∑

m∈M

exp[−∆m] ≤
∑

k≥1

k
∑

j=0

(

2k

2j

)

exp

[

−k − log

(

2k

2j

)]

≤
∑

k≥1

(k + 1) exp[−k],

which allows to apply Theorem 1.

Proposition 5 Let ŝ be a T-estimator provided by Theorem 1 and based on the pre-
vious family of models Sm and weights ∆m. If

√
s =

∑

j≥1 βjϕj with β ∈ ℓwq for some
q < 2 and (4.12) holds with A ≥ 1 and 0 < δ ≤ 1, the risk of ŝ at s is bounded by

Es

[

H2(s, ŝ)
]

≤ C
[(

γ1−q/2
(

R2 ∨ γ
)q/2

)

∧

A2/(1+δ)
]

,

with

R =

[

q

2 − q

]1/2

|β|q,w and γ = δ−1

[

log
(

δ[A ∨R]2
)

log 2

∨

1

]

.

Proof: Let (aj)j≥1 be the nonincreasing rearrangement of the numbers |βj |, k and j ≤ k
be given andm be the set of indices of the 2j largest coefficients among {|β1|, . . . , |β2k |}.
Then Dm = 2j and ∆m ≤ k + log

(

2k

2j

)

. It follows from (4.10) and (4.12) that

∑

j 6∈m

β2
j ≤





∑

i>2j

a2
i



 1lj<k +
∑

i>2k

β2
i ≤ q

2 − q
|β|2q,w2−j(2/q−1)1lj<k +A22−kδ.

This shows that one can find t ∈ Sm such that ‖√s− t‖2
2 ≤ R22−j(2/q−1)1lj<k +A22−kδ

and it follows from (1.14) that

Es

[

H2(s, ŝ)
]

≤ C inf
k≥1

inf
0≤j≤k

{

R22−j(2/q−1)1lj<k +A22−kδ + 2j + k + log

(

2k

2j

)}

.

We recall that C denotes a constant that may change as often as necessary. If j =
k, Es

[

H2(s, ŝ)
]

≤ C
[

A22−kδ + 2k
]

and an optimization with respect to k leads to

Es

[

H2(s, ŝ)
]

≤ CA2/(1+δ). For j < k, we notice that ∆m ≤ k + 2j
[

1 + log
(

2k−j
)]

<
3k2j , so that

Es

[

H2(s, ŝ)
]

≤ C inf
k≥1

{

(

A22−kδ
)

∨

inf
0≤j<k

{(

R22−j(2/q−1)
)

∨

(

k2j
)

}

}

. (4.14)

If R22−(k−1)(2/q−1) > k2k−1, we may harmlessly increase k until k = K with

K = inf
{

i ≥ 1
∣

∣

∣ i2i−1 ≥ R22−(i−1)(2/q−1)
}

= inf
{

i ≥ 1
∣

∣

∣ 2i−1 ≥ Rqi−q/2
}

and therefore restrict the minimization in (4.14) to k ≥ K. We then choose for j the

smallest integer i such that 2i ≥
(

R2/k
)q/2

, which leads to

Es

[

H2(s, ŝ)
]

≤ C inf
k≥K

{(

A22−kδ
)

∨

(

Rqk1−q/2
)

∨

k
}

.
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It follows from Lemma 6 below (with a = 1) that, if δA2 ≤ 2,
(

A22−kδ
)
∨

k ≥ A2/2

for all k which does not improve on our previous bound CA2/(1+δ) so that we may
assume from now on that δA2 > 2, hence γ > δ−1. Handling this case in full generality
is much more delicate and we shall simplify the minimization problem by replacing A
by A = A ∨ R, which amounts to assuming that A ≥ R and leads to Es

[

H2(s, ŝ)
]

≤
C infk≥K f(k) with

f(x) = f1(x) ∨ f2(x) ∨ x; f1(x) = A
2
2−xδ and f2(x) = Rqx1−q/2.

We want to minimize f(x), up to constants. The minimization of f1(x) ∨ x follows

from Lemma 6 with δA
2
> 2. The minimum then takes the form c2γ > 0.469γ with

f1(γ) = δ−1 < γ hence f(γ) = γ ∨ f2(γ). To show that infx f(x) ≥ cf(γ) when

δA
2
> 2, we distinguish between two cases. If R2 ≤ γ, f(γ) = γ and we conclude from

the fact that infx f(x) > 0.469γ. If R2 > γ, f2(x) > x for x ≤ γ, f(γ) = f2(γ) > γ
and the minimum of f(x) is obtained for some x0 < γ. Hence

inf
x
f(x) = inf

x
{f1(x) ∨ f2(x)} = Rq inf

x

{(

B2−δx
)

∨

x1−q/2
}

with B = A
2
R−q.

It follows from Lemma 6 with a = (2−q)/2 that the result of this minimization depends
on the value of

V =
2δ

2 − q
A

4/(2−q)
R−2q/(2−q) =

2A
2
δ

2 − q

(

A

R

)2q/(2−q)

≥ A
2
δ > 2,

since A ≥ R. Then,

inf
x
f(x) ≥ Rq

[

(2 − q) log V

3δ

]1−q/2

≥ Rqγ1−q/2

[

(2 − q) log 2

3

]1−q/2

> 0.45Rqγ1−q/2,

and we can conclude that, in both cases, infx f(x) ≥ 0.45f(γ). Let us now fix k such

that γ + 1 ≤ k < γ + 2 so that k < 3γ. Then 2k−1 ≥ 2γ =
(

A
2
δ
)1/δ

while Rqk−q/2 ≤
(

R2/γ
)q/2 ≤

(

R2δ
)q/2

. This implies that k ≥ K. Moreover f(k) = k ∨ f2(k) < 3f(γ)
which shows that infk≥K f(k) < 3f(γ) < 6.7 infx f(x) and justifies this choice of k.
Finally Es

[

H2(s, ŝ)
]

≤ C[γ ∨ f2(γ)].

Note that our main assumption, namely that β ∈ ℓwq , implies that
∑

j>n a
p
j ≤ R2n−2/q+1

by (4.10) while (4.12) entails that
∑

j>n a
p
j ≤ ∑

j>n β
p
j ≤ A2n−δ. Since it is only an

additional assumption it should not be strictly stronger than the main one, which is
the case if A ≤ R and δ ≥ 2/q − 1. It is therefore natural to assume that at least one
of these inequalities does not hold.

Lemma 6 For positive parameters a,B and θ, we consider on R+ the function f(x) =
B2−δx ∨ xa. Let V = a−1δB1/a. If V ≤ 2 then infx f(x) = c1B with 2−a ≤ c1 < 1. If
V > 2, then infx f(x) =

[

c2aδ
−1 log V

]a
with 2/3 < c2 < 1.

Proof: Clearly, the minimum is obtained when x = x0 is the solution of B2−δx = xa.
Setting x0 = B1/ay and taking base 2 logarithms leads to y−1 log2(y

−1) = V , hence
y < 1. If V ≤ 2, then 1 < y−1 ≤ 2 and the first result follows. If V ≥ 2, the solution
takes the form y = zV −1 log2 V with 1 > z >

[

1 − (log2 V )−1 log2(log2 V )
]

> 0.469.
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4.4.3 Intensities with bounded variation on [0, 1)2

This section, which is devoted to the estimation of an intensity s such that
√
s belongs

to the space BV
(

[0, 1)2
)

, owes a lot to discussions with Albert Cohen and Ron DeVore.
The approximation results that we use here should be considered as theirs. The defi-
nition and properties of the space BV

(

[0, 1)2
)

of functions with bounded variation on
[0, 1)2 are given in Cohen, DeVore, Petrushev and Xu (1999) where the reader can also
find the missing details. It is known that, with the notations of Section 4.1 for Besov
spaces, B1

1,1([0, 1)2) ⊂ BV
(

[0, 1)2
)

⊂ B1
1,∞([0, 1)2). This corresponds to the situation

α = 1, l = 2 and p = 1, therefore α = l(1/p − 1/2), a borderline case which is not
covered by the results of Theorem 4. On the other hand, it is proved in Cohen, DeVore,
Petrushev and Xu (1999, Section 8) that, if a function of BV

(

[0, 1)2
)

is expanded in
the two-dimensional Haar basis, its coefficients belong to the space ℓw1 . More precisely
if f ∈ BV

(

[0, 1)2
)

with semi-norm |f |BV and f is expanded in the Haar basis with
coefficients βj , then |β|1,w ≤ C|f |BV where |β|1,w is given by (4.8) and C is a universal
constant. We may therefore use the results of the previous section to estimate

√
s

but we need an additional assumption to ensure that (4.12) is satisfied. By definition√
s belongs to L2

(

[0, 1)2, dx
)

but we shall assume here slightly more, namely that it
belongs to Lp

(

[0, 1)2, dx
)

for some p > 2. This is enough to show that (4.12) holds.

Lemma 7 If f ∈ BV
(

[0, 1)2
)

∩ Lp

(

[0, 1)2, dx
)

for some p > 2 and has an expansion
f =

∑∞
j=−1

∑

k∈Λ(j) βj,kϕj,k with respect to the Haar basis on [0, 1)2, then for J ≥
−1,

∑

j>J

∑

k∈Λ(j)

|βj,k|2 ≤ C(p)‖f‖p|f |B1
1,∞

2−2J(1/2−1/p).

Proof: It follows from Hölder inequality that |βj,k| = 〈f, ϕj,k〉 ≤ ‖f‖p‖ϕj,k‖p′ with

p′−1 = 1 − p−1 and by the structure of a wavelet basis, ‖ϕj,k‖
p′

p′ ≤ c12
−j(2−p′), so that

|βj,k| ≤ c2‖f‖p2
−j(2/p′−1) = c2‖f‖p2

−j(1−2/p). Since BV
(

[0, 1)2
)

⊂ B1
1,∞([0, 1)2), it

follows from (4.1) with α = p = 1 and l = 2 that
∑

k∈Λ(j) |βj,k| ≤ |f |B1
1,∞

so that
∑

k∈Λ(j) |βj,k|2 ≤ c2‖f‖p|f |B1
1,∞

2−j(1−2/p) for all j ≥ 0. The conclusion follows.

Since the number of coefficients βj,k with j ≤ J is bounded by C22J , after a proper

reindexing of the coefficients, the corresponding sequence β will satisfy (4.12) with
δ = 1/2− 1/p which shows that it is essential here that p be larger than 2. We finally
get the following corollary of Proposition 5 with q = 1.

Corollary 4 One can build a T-estimator ŝ with the following properties. Let the
intensity s be such that

√
s ∈ BV

(

[0, 1)2
)

∩Lp

(

[0, 1)2, dx
)

for some p > 2, so that the
expansion of

√
s in the Haar basis satisfies (4.12) with δ = 1/2 − 1/p and A ≥ 1. Let

R = |√s|BV , then

E
[

H2(s, ŝ)
]

≤ C
[

√

γ (R2 ∨ γ)
∧

A2/(1+δ)
]

with γ = δ−1

[

log
(

δ[A ∨R]2
)

log 2

∨

1

]

.

4.5 Mixing families of models

We have studied here a few families of approximating models. Many more can be
considered and further examples can be found in Reynaud-Bouret (2003) or previous
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papers of the author on model selection such as Barron, Birgé and Massart (1999),
Birgé and Massart (2001), Birgé (2006a) and Baraud and Birgé (2006). As indicated
in the previous sections, the choice of suitable families of models is driven by results
in approximation theory relative to the type of intensity we expect to encounter or,
more precisely, to the type of assumptions we make about the unknown function

√
s.

Different types of assumptions will lead to different choices of approximating mod-
els, but it is always possible to combine them. If we have built a few families of
linear models

{

Sm,m ∈ Mj

}

for 1 ≤ j ≤ J and chosen suitable weights ∆m such
that

∑

m∈Mj
exp[−∆m] ≤ Σ for all j we may consider the mixed family of models

{

Sm,m ∈ M
}

with M = ∪J
j=1Mj and define new weights ∆′

m = ∆m + log J for all
m ∈ M so that (1.13) still holds with the same value of Σ. It follows from Theorem 1
that the T-estimator based on the mixed family will share the properties of the ones
derived from the initial families apart, possibly, for a moderate increase in the risk of
order (log J)q/2. The situation becomes more complex if J is large or even infinite. A
detailed discussion of how to mix families of models in general has been given in Birgé
and Massart (2001, Section 4.1) which applies with minor modifications to our case.

4.6 Asymptotics and a parallel with density estimation

The previous examples lead to somewhat unusual bounds with no number of obser-
vations n like for density estimation and no variance size σ2 as in the case of the
estimation of a normal mean. Here, there is no rate of convergence because there is no
sequence of experiments, just one with a mean measure µs = s ·λ. To get back to more
familiar results with rates and asymptotics and recover some classical risk bounds, we
may reformulate our problem in a slightly different form which completely parallels
the one we use for density estimation. As indicated in our introduction we may always
rewrite the intensity s as s = ns1 with

∫

s1 dλ = 1 so that s1 becomes a density and
n = µs(X ). We use this notation here, although n need not be an integer, to em-
phasize the similarity between the estimation of s and density estimation. When n is
an integer this also corresponds to observing n i.i.d. Poisson processes Xi, 1 ≤ i ≤ n
with intensity s1 and set ΛX =

∑n
i=1 ΛX i

. In this case (1.15) can be rewritten in the
following way.

Corollary 5 Let λ be some positive measure on X , X be a Poisson process with un-
known intensity s ∈ L

+
1 (λ),

{

Sm,m ∈ M
}

be a finite or countable family of linear
subspaces of L2(λ) with respective finite dimensions Dm and let {∆m}m∈M be a fam-
ily of nonnegative weights satisfying (1.13). One can build a T-estimator ŝ(X) of s
satisfying, for all s ∈ L

+
1 (λ) such that

∫

s dλ = n, s1 = n−1s and all q ≥ 1,

Es

[(

n−1/2H(s, ŝ)
)q ]

≤ C(q) [1 + Σ] inf
m∈M







inf
t∈Sm

‖√s1 − t‖2 +

√

Dm ∨ ∆m

n







q

.

Writtten in this form, our result appears as a complete analogue of Theorem 6 of Birgé
(2006a) about density estimation, the normalized loss function (H/

√
n)

q
playing the

role of the Hellinger loss hq for densities. We also explained in Birgé (2006a, Sec-
tion 8.3.3) that there is a complete parallel between density estimation and estimation
in the white noise model. We can therefore extend this parallel to the estimation of
the intensity of a Poisson process. This parallel has also been explained and applied
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to various examples in Baraud and Birgé (2006, Section 4.2). As an additional con-
sequence, all the families of models that we have introduced in Sections 3.3, 4.2, 4.3
and 4.4 could be used as well for adaptive estimation of densities or in the white noise
model and added to the examples given in Birgé (2006a).

To recover the familiar rates of convergence that we get when estimating densities
which belong to some given function class S, we merely have to assume that s1 (rather
than s) belongs to the class S and use the normalized loss function. Let us, for
instance, apply this approach to intensities belonging to Besov spaces, assuming that√
s1 ∈ Bα

p,∞([0, 1]l) with α > l(1/p − 1/2)+ and that |√s1|Bα
p,∞

≤ L with L > 0. It

follows that
√
s ∈ Bα

p,∞([0, 1]l) with |√s|Bα
p,∞

≤ L
√
n. For n large enough, L

√
n ≥ 1

and Theorem 4 applies, leading to Es

[

H2(s, ŝ)
]

≤ C(α, p, l) (L
√
n)

2l/(2α+l)
. Hence

Es

[

n−1H2(s, ŝ)
]

≤ C(α, p, l)L2l/(2α+l)n−2α/(2α+l),

which is exactly the result we get for density estimation with n i.i.d. observations.
The same argument can be developed for the problem we considered in Section 4.2.

If we assume that
√
s1, rather than

√
s, belongs to H (α,R), then

√
s ∈ H (α,

√
nR)

and the condition Rj ≥ η of Corollary 2 becomes, after this rescaling,
√
nRj ≥

(√
nR
)k/(2α+k)

which always holds for n large enough. The corresponding normal-
ized risk bound can then be written

Es

[

n−1H2(s, ŝ)
]

≤ C(k,α)R
2k/(2α+k)

n−2α/(2α+k),

which corresponds to the rate of convergence for this problem in density estimation.
Another interesting case is the one considered in Section 4.4. Let us assume here

that instead of putting the assumptions of Proposition 5 on
√
s we put them on

√
s1.

This implies that
√
s satisfies the same assumptions with R replaced by R

√
n and A

by A
√
n. Then, for n ≥ n0(A,R, δ), γ ≤ 2δ−1 log n ≤ nR2 and

Es

[

n−1H2(s, ŝ)
]

≤ C(q, δ, A,R)
(

n−1 log n
)1−q/2

.

This result is comparable to the bounds obtained in Corollary 3.1 of Kerkyacharian and
Picard (2000) but here we do not know the relationship between q and δ. For the special

situation of
√
s1 ∈ BV

(

[0, 1)2
)

, we get Es

[

n−1H2(s, ŝ)
]

≤ C(q, δ, s1)
(

n−1 log n
)1/2

.
One could also translate all other risk bounds in the same way.

An alternative asymptotic approach, which has been considered in Reynaud-Bouret
(2003), is to assume that X is a Poisson process on R

k with intensity s with respect
to the Lebesgue measure on R

k, but which is only observed on [0, T ]k. We therefore
estimate s1l[0,T ]k , letting T go to infinity to get an asymptotic result. We only assume
that

∫

[0,T ]k s(x) dx is finite for all T > 0, not necessarily that
∫

Rk s(x) dx < +∞. For

simplicity, let us consider the case of intensities s on R
+ with

√
s belonging to the

Hölder class H(α,R). For t an intensity on R
+, we set for 0 ≤ x ≤ 1, tT (x) = Tt(Tx)

so that tT is an intensity on [0, 1] and H(tT , uT ) = H
(

t1l[0,T ], u1l[0,T ]

)

. Since
√
sT ∈

H
(

α,RTα+1/2
)

it follows from Corollary 2 that there is a T-estimator ŝT (X) of sT

satisfying

Es

[

H2 (sT , ŝT )
]

≤ C(α)
(

RTα+1/2
)2/(2α+1)

= C(α)TR2/(2α+1).
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Finally setting ŝ(y) = T−1ŝT

(

T−1y
)

for y ∈ [0, T ], we get an estimator ŝ(X) of s1l[0,T ]

depending on T with the property that

Es

[

H2
(

s1l[0,T ], ŝ
)]

≤ C(α)TR2/(2α+1) for all T > 0.

4.7 An illustration with Poisson regression

As we mentioned in the introduction, a particular case occurs when X is a finite set
that we shall assume here, for simplicity, to be {1; . . . ; 2n}. In this situation, observing
X amounts to observing N = 2n independent Poisson variables with respective pa-
rameters si = s(i) where s denotes the intensity with respect to the counting measure.
If we introduce a family of linear models Sm in R

N to approximate
√
s ∈ R

N with
respect to the Euclidean distance, we simply apply Theorem 1 to get the resulting risk
bounds. In this situation, the Hellinger distance between two intensities is merely the
Euclidean distance between their square roots, up to a factor 1/

√
2.

As an example, we shall consider linear models spanned by piecewise constant func-

tions on X as described in Section 1.4, i.e. Sm =
{

∑D
j=1 aj1lIj

}

when m = {I1, . . . , ID}
is a partition of X into D = |m| nonvoid intervals. In order to define suitable weights
∆m, we shall distinguish between two types of partitions. First we consider the family
MBT of dyadic partitions derived from binary trees and described in Section 4.3. We
already know that the choice ∆m = 2|m| is suitable for those partitions and (4.4)
applies. Note that these include the regular partitions, i.e. those for which all intervals
Ij have the same size N/|m| and |m| = 2k for 0 ≤ k ≤ n. For all other partitions,

we simply set ∆m = log

(

N
|m|

)

+ 2 log(|m|) so that (1.13) holds with Σ < 3 since

the number of possible partitions of X into |m| intervals is

(

N − 2
|m| − 1

)

. We omit the

details. Denoting by ‖ · ‖2 the Euclidean norm in R
N , we derive from Theorem 1 the

following risk bound for T-estimators:

Es

[

∥

∥

∥

√
s−

√
ŝ
∥

∥

∥

2

2

]

≤ C

[

inf
m∈MBT

{

inf
t∈Sm

∥

∥

√
s− t

∥

∥

2

2
+ |m|

}

∧

inf
m∈M\MBT

{

inf
t∈Sm

∥

∥

√
s− t

∥

∥

2

2
+ log(|m|) + log

(

N
|m|

)}]

.

The performance of the estimator then depends on the approximation properties of
the linear spaces Sm with respect to

√
s. For instance, if

√
s varies regularly, i.e.

∣

∣

√
si −√

si−1

∣

∣ ≤ R for all i, one uses a regular partition which belongs to MBT to
approximate

√
s. If

√
s has bounded α-variation, as defined in Section 4.3, one uses

dyadic partitions as explained in this section. If
√
s is piecewise constant with k jumps,

it belongs to some Sm and we get a risk bound of order log(k + 1) + log

(

N
k + 1

)

.

5 Aggregation of estimators

In this section we assume that we have at our disposal a family {ŝm,m ∈ M′} of
intensity estimators, (T-estimators or others) and that we want to select one of them
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or combine them in some way in order to get an improved estimator. We already
explained in Section 2.3 how to use the procedure of thinning to derive from a Poisson
process X with mean measure µ two independent Poisson processes with mean measure
µ/2. Since estimating µ/2 is equivalent to estimating µ, we shall assume in this section
that we have at our disposal two independent processes X1 and X2 with the same
unknown mean measure µs with intensity s to be estimated. We assume that the
initial estimators ŝm(X1) are all based on the first process and therefore independent
of X2. Proceeding conditionally on the first process, we use the second one to mix the
estimators.

We shall consider here two different ways of aggregating estimators. The first one
is suitable when we want to choose one estimator in a large (possibly infinite) family
of estimators and possibly attach to them different prior weights. The second method
tries to find the best linear combination from a finite family of estimators of

√
s.

5.1 Estimator selection

Here we start from a finite or countable family {ŝm,m ∈ M} of intensity estimators
and a family of weights ∆m ≥ 1/10 satisfying (1.13). Our purpose is to use the process
X2 to find a close to best estimator among the family {ŝm(X1),m ∈ M}.

5.1.1 A general result

Considering each estimator ŝm(X1) as a model Sm = {ŝm(X1)} with one single point,
we set η2

m = 84∆m. Then Sm is a T-model with parameters ηm, 1/2 and B′ = e−2,
(3.2) and (3.3) hold and Theorem 3 applies. Since each model is reduced to one
point, one can find a selection procedure m̂(X2) such that the estimator s̃(X1,X2) =
ŝm̂(X2)(X1) satisfies the risk bound

Es

[

H2(s, s̃)
∣

∣X1

]

≤ C[1 + Σ] inf
m∈M

{

H2 (s, ŝm(X1))2 + ∆m

}

.

Integrating with respect to the process X1 gives

Es

[

H2(s, s̃)
]

≤ C[1 + Σ] inf
m∈M

{

Es

[

H2 (s, ŝm)
]

+ ∆m

}

. (5.1)

This result completely parallels the one obtained for density estimation in Section 9.1.2
of Birgé (2006a).

5.1.2 Application to histograms

The simplest estimators for the intensity s of a Poisson process X are histograms. Let
m be a finite partition m = {I1, . . . , ID} of X such that λ(Ij) > 0 for all j. To this
partition corresponds the linear space of piecewise constant functions on the partition

m: Sm =
{

∑D
j=1 aj1lIj

}

, the projection s̄m of s onto Sm and the corresponding his-

togram estimator ŝm of s given respectively by s̄m =
∑D

j=1

(

∫

Ij
s dλ

)

[λ(Ij)]
−11lIj

and

ŝm =
∑D

j=1Nj [λ(Ij)]
−11lIj

with Nj =
∑N

i=1 1lIj
(Xi). It is proved in Baraud and Birgé

(2006, Lemma 2) that H2 (s, s̄m) ≤ 2H2
(

s, Sm

)

. Moreover, one can show an analogue
of the risk bound obtained for the case of density estimation in Birgé and Rozenholc
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(2006, Theorem 1). The proof is identical, replacing h by H, n by 1 and the binomial
distribution of N by a Poisson distribution. This leads to the risk bound

Es

[

H2(s, ŝm

]

≤ H2 (s, s̄m) +D/2 ≤ 2H2
(

s, Sm

)

+ |m|/2.

If we are given an arbitrary family M of partitions of X and a corresponding family of
weights {∆m,m ∈ M} satisfying (1.13) and ∆m ≥ |m|/2, we may apply the previous
aggregation method which will result in an estimator s̃(X1,X2) = ŝm̂(X2)(X1) where

m̂(X2) is a data-selected partition. Finally,

Es

[

H2(s, s̃)
]

≤ C[1 + Σ] inf
m∈M

{

H2
(

s, Sm

)

+ ∆m

}

. (5.2)

Various choices of partitions and weights have been described in Baraud and Birgé
(2006) together with their approximation properties with respect to different classes of
functions. Numerous illustrations of applications of (5.2) can therefore be found there.

5.2 Linear aggregation

Here we start with a finite family {ŝi(X1), 1 ≤ i ≤ n} of intensity estimators. We
choose for M the set of all nonvoid subsets of {1, . . . , n} and to each such subset m,
we associate the |m|-dimensional linear subspace Sm of L2(λ) given by

Sm =







∑

j∈m

λj

√

ŝj(X1) with λj ∈ R for j ∈ m







. (5.3)

We then set ∆m = log

(

n
|m|

)

+ 2 log(|m|) so that (1.13) holds with Σ =
∑n

i=1 i
−2.

We may therefore apply Theorem 1 to the process X2 and this family of models
conditionally to X1, which results in the bound

Es

[

H2(s, ŝ)
∣

∣X1

]

≤ C[1 + Σ] inf
m∈M

{

inf
t∈Sm

∥

∥

√
s− t(X1)

∥

∥

2

2
+ log

(

n
|m|

)

+ log(|m|)
}

.

Note that the restriction of this bound to subsets m such that |m| = 1 corresponds to
a variant of estimator selection and leads, after integration, to

Es

[

H2(s, ŝ)
]

≤ C[1 + Σ] inf
1≤i≤n

{

inf
λ>0

Es

[

∥

∥

∥

√
s− λ

√

ŝi(X1)
∥

∥

∥

2

2

]

+ logn

}

.

This can be viewed as an improved version of (5.1) when we choose equal weights.

6 Testing balls in (Q+(X ), H)

6.1 The construction of robust tests

In order to use Theorem 3, we have to find tests ψt,u satisfying the conclusions of
Proposition 1. These tests are provided by a straightforward corollary of the following
theorem.
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Theorem 5 Given two elements πc and νc of Q+(X ) with respective densities dπc and
dνc with respect to some dominating measure λ ∈ Q+(X ) and a number ξ ∈ (0, 1/2),
let us define πm and νm in Q+(X ) by their densities dπm and dνm with respect to λ
in the following way:

√

dπm = ξ
√

dνc + (1 − ξ)
√

dπc and
√

dνm = ξ
√

dπc + (1 − ξ)
√

dνc.

Then for all x ∈ R, µ ∈ Q+(X ) and X a Poisson process with mean measure µ,

Pµ

[

log

(

dQπm

dQνm

(X)

)

≥ 2x

]

≤ exp

[

−x+ (1 − 2ξ)

(

2

ξ
H2(µ, νc) −H2(πc, νc)

)]

and

Pµ

[

log

(

dQπm

dQνm

(X)

)

≤ 2x

]

≤ exp

[

x+ (1 − 2ξ)

(

2

ξ
H2(µ, πc) −H2(πc, νc)

)]

.

Corollary 6 Let πc and νc be two elements of Q+(X ), 0 < ξ < 1/2 and

T (X) = log
(

(dQπm/dQνm)(X)
)

− 2x,

with πm and νm given by Theorem 5. Define a test function ψ with values in {πc, νc}
by ψ(X) = πc when T (X) > 0, ψ(X) = νc when T (X) < 0 (ψ(X) being arbitrary if
T (X) = 0). If X is a Poisson process with mean measure µ, then

Pµ[ψ(X) = πc] ≤ exp
[

−x− (1 − 2ξ)2H2(πc, νc)
]

if H(µ, νc) ≤ ξH(πc, νc)

and

Pµ[ψ(X) = νc] ≤ exp
[

x− (1 − 2ξ)2H2(πc, νc)
]

if H(µ, πc) ≤ ξH(πc, νc).

To derive Proposition 1 we simply set πc = µt, νc = µu, ξ = 1/4, x =
[

η2(t) − η2(u)
]

/4
and define ψt,u = ψ in Corollary 6. As to (3.5), it follows from the second bound of
Theorem 5.

6.2 Proof of Theorem 5

It is based on the following technical lemmas.

Lemma 8 Let f , g, f ′ ∈ L
+
2 (λ) and ‖g/f‖∞ ≤ K. Denoting by 〈·, ·〉 and ‖ · ‖2 the

scalar product and norm in L2(λ), we get

∫

gf−1f ′2 dλ ≤ K‖f − f ′‖2
2 + 2〈g, f ′〉 − 〈g, f〉. (6.1)

Proof: Denoting by Q the left-hand side of (6.1) we write

Q =

∫

gf−1(f ′ − f)2 dλ+ 2

∫

gf ′ dλ−
∫

gf dλ,

hence the result.
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Lemma 9 Let µ, π and ν be three mean measures with π ≪ ν and ‖dπ/dν‖∞ ≤ K2

and let X be a Poisson process with mean measure µ. Then

Eµ

[
√

dQπ

dQν
(X)

]

≤ exp
[

2KH2(µ, ν) − 2H2(π, µ) +H2(π, ν)
]

.

Proof: By (1.3) and (1.2),

Eµ

[
√

dQπ

dQν
(X)

]

= exp

[

ν(X ) − π(X )

2

]

Eµ

[

N
∏

i=1

√

dπ

dν
(Xi)

]

= exp

[

ν(X ) − π(X )

2
+

∫

X

(
√

dπ

dν
(x) − 1

)

dµ(x)

]

= exp

[

ν(X ) − π(X )

2
− µ(X ) +

∫

X

√

dπ

dν
(x) dµ(x)

]

.

Using Lemma 8 and (1.7), we derive that

∫

X

√

dπ

dν
(x) dµ(x) ≤ 2KH2(µ, ν) + 2

∫

√

dπdµ−
∫ √

dπdν

= 2KH2(µ, ν) − 2H2(π, µ) + π(X ) + µ(X )

+H2(π, ν) − (1/2)[π(X ) + ν(X )].

The conclusion follows.

To prove Theorem 5, we may assume (changing λ if necessary) that µ ≪ λ and set
v =

√

dµ/dλ. We also set tc =
√

dπc/dλ, uc =
√

dνc/dλ, tm = ξuc+(1−ξ)tc and um =
ξtc +(1−ξ)uc. Then πm = t2m ·λ and νm = u2

m ·λ. Note that tc, uc, tm, um and v belong
to L

+
2 (λ) and that for two elements w, z in L

+
2 (λ), ‖w−z‖2

2 = 2H2
(

w2 · λ, z2 · λ
)

. Since
‖tm/um‖∞ ≤ (1 − ξ)/ξ, we may apply Lemma 9 with K = (1 − ξ)/ξ to derive that

L = log

(

Eµ

[
√

dQπm

dQνm

(X)

])

≤ 1 − ξ

ξ
‖v − um‖2

2 − ‖v − tm‖2
2 +

‖tm − um‖2
2

2
.

Using the fact that

v − um = v − uc + ξ(uc − tc), v − tm = v − uc + (1 − ξ)(uc − tc),

tm − um = (1 − 2ξ)(tc − uc)

and expending the squared norms, we get, since the scalar products cancel,

L ≤ 1 − 2ξ

ξ
‖v − uc‖2

2 +

[

ξ(1 − ξ) − (1 − ξ)2 +
(1 − 2ξ)2

2

]

‖tc − uc‖2
2,

which shows that

L ≤ (1 − 2ξ)
[

2ξ−1H2(µ, νc) −H2(πc, νc)
]

.
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The exponential inequality then implies that

Pµ

[

log

(

dQπm

dQνm

(X)

)

≥ 2x

]

≤ e−x
Eµ

[
√

dQπm

dQνm

(X)

]

= exp[−x+ L],

which proves the first error bound. The second one can be proved in the same way.
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