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Validation of UML scenarios using the B prover
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Abstract. We propose an approach to validate object-based specifi-
cations by checking that sequence diagrams can be executed in the B
world and do not conflict with safety and dynamic properties. The pro-
cess begins by a UML specification in the form of a class diagram and
sequence diagrams which express scenarios modelling the system’s be-
haviour. These diagrams are transformed into a B specification which is
completed by the definition of the operations (messages in the sequence
diagrams corresponding to the methods in the class diagram), safety and
dynamic properties on the system. The validation of scenarios and the
satisfaction of the properties is done by means of a theorem prover. The
approach is illustrated on a simplified case study: the access control of
persons to a building.

Keywords: B, object-based specification, validation, verification, proof obliga-
tions, prover

1 Introduction

Experience has shown that the most critical and least supported phases of the
software life cycle are requirement analysis and specification. Errors and mis-
conceptions in the requirements will be passed on the system specifications and
from them down the process to show up ultimately in the programs. Formal
specifications could greatly help in reducing the amount of errors because of
the absence of ambiguity in formal texts and the availability of powerful anal-
ysis techniques and prototyping tools [16]. However, formal specifications are
hard to write and, more importantly, hard to read; this raises the problem of
the validation of the specification. The validation consists in determining if the
specification is an expression of the users’ requirements. It requires users of the
system to be able to “read” the specification, hence the importance of graphi-
cal notations. Walk-through or animation of specification are usual techniques
to check that all the functional requirements have been taken into account and
that the system overall behaviour has been adequately modelled. Graphical no-
tations are well suited for these activities; support tools are available. Validating
specifications by means of scenarios is worthwhile.

Object-oriented approaches [1,9,24] offer a natural way for developing software
systems. However, the majority of these approaches suffer from the absence of
formal methods at all stages of the development. Therefore, the systems devel-
oped using these approaches generally are not reliable.



Object-based approaches based on B notations [25, 17, 22] usually integrate UML
[27,9] and B [3,30]. Those are object-oriented systems in which inheritance and
sub-typing are not considered. Object-based systems are composed of objects
which run concurrently and communicate by means of message passing. In these
approaches, a B abstract machine corresponds to a class, B relation clauses are
used to model relations between UML classes. B proof obligations guarantee the
correctness of the specification of each separated operation with the invariant.
In object-based approaches, a scenario is a textual description or a procedural
description of the actions of objects through time to perform a particular task.
It is usually defined in a UML sequence diagram describing the interactions
of messages between objects. Sequence diagrams, in which the communication
aspect is predominant, are a basis for the description of tests [28].

Dynamic constraints have been considered in B-Event [4,6] and in object ori-
ented approaches, establishing a link between time and object-orientation [12,
10]. Dynamic constraints express temporal properties on the messages exchanged
between objects, like liveness properties that the system must satisfy.

In this paper, we propose an approach to validate object-based specifications. It
consists in checking that sequence diagrams can be executed in the B world and
that they do not conflict with safety and dynamic properties on the whole system.
The process begins by a UML specification in the form of a class diagram and
sequence diagrams which express scenarios modelling the system’s behaviour.
These diagrams are transformed into a B specification allowing us to validate the
consistency of the execution of each scenario expressed by a sequence diagrams
and the simulation of scenarios with safety and dynamic properties of the system.
To reach this aim, we propose:

— to derive a B specification from the UML class diagram,

— to introduce a new B machine, called a simulation machine, in order to
specify scenarios as sequences of operations calls,

— to integrate safety and dynamic constraints on the system in this new ma-
chine.

The structure of this paper is as follows. Section 2 gives the background of the
approach with a brief presentation of the B method and the derivation of UML
classes into a B specification. Section 3 presents our approach with the structure
of the simulation machine, the expression of safety and dynamic constraints and
the definition of the proof obligations to validate the execution of a scenario with
system properties. Section 4 illustrates the approach on a case study. Section 5
presents related works. Finally, section 6 concludes and discusses further work.

2 Background

In this section, we give a brief overview of the B formal method and the back-
ground necessary to understand the transformation of UML classes into B.

2.1 The B method

B [3] is a formal software development method, originally developed by J.-R.
Abrial. The B notations are based on set theory, generalised substitutions and



first order logic. The B method enables an incremental development process,
known as a refinement process. A system development begins by the definition
of an abstract view which can be refined step by step until an implementation is
reached. The refinement over models is a key feature for developing incrementally
models from a textually-defined system, while preserving correctness. It imple-
ments the proof-based development paradigm [21,31]. The method has been
successfully used in the development of several complex real-life applications,
like the METEOR project [7]. It is one of the few formal methods which has
robust and commercially available support tools for the entire development life-
cycle from specification down to code generation [8]. Specifications are composed
of abstract machines which are very closed to notions well-known in program-
ming under the name of modules, classes or abstract data types. Each abstract
machine consists of a set of variables, invariant properties of those variables and
operations. The state of the system, i.e. the set of variable values, is modifi-
able by operations which must preserve its invariant. Proofs for invariance and
refinement are parts of each development. The proof obligations are generated
automatically by support tools like AtelierB [31], B-Toolkit [21] and B4free [11],
an academic version of AtelierB. The check of proof obligations with B sup-
port tools either through automatic or interactive proofs [2], is an efficient and
practical way to detect errors introduced during the specification development.

2.2 Transformation of UML classes into B

The transformation of UML into B [14,22,25,18] aims at using B as an object-
based specification language and to verify UML specifications thanks to B sup-
port tools. Our proposal takes into account this work in which a UML class is
derived into a B machine, see Figure 1, where:

— a constant CLASS corresponds to a set of possible objects of the class.
CLASS is defined as a subset of the set of all possible object, OBJECTS,
which is defined as a deferred set,

— a variable class models the set of objects generated by the class. class is
defined as a subset of CLASS.

The attribute attrib is derived into a variable, attrib, in the abstract machine
Class. Tts type is defined in the INVARIANT clause as a relation between the
set of objects instantiated from the class and its type attribType. Operations of
a class are derived as operations of the B abstract machine Class. The relation
clauses between B abstract machines are used to connect the machines derived
from classes in a class diagram.

3 Simulation machine

We introduce a new machine in B, namely the simulation machine, in order
to express scenarios corresponding to the transformation of UML sequence di-
agrams, taking into account safety and dynamic properties of the system. We
present the structure of the simulation machine and propose proof obligations
to test the execution of scenarios using the B theorem prover.



MACHINE Class
SETS OBJECTS
CONSTANTS
CLASS
PROPERTIES
CLASS C OBJETS
VARIABLES
INVAflfiiilgIei‘Mb attrib : attribType
class C CLASS A
attrib € class < attribType
INITIALISATION
class, attrib := @,2
END

Class

Fig. 1. Derivation of a UML class into B

3.1 Structure of the simulation machine

The basic idea is to simulate UML2.0 sequence diagrams which describe the
interaction between messages. These diagrams may include guards: when mod-
elling object interactions, there will be times when a condition must be met
for a message to be sent to the object. Guards are not sufficient to handle the
logic required for a sequence being modelled. We take into account the notation
element called Combined Fragments in UML2.0, used to group sets of messages
together to show conditional flow in a sequence diagram, namely alternative and
option choices. Alternatives are used to designate a mutually exclusive choice
between two or more message sequences, modelling the “if then else” statement.
The option combination fragment is used to model a sequence that, given a cer-
tain condition, will occur; otherwise, the sequence does not occur. It is used to
model a simple “f then” statement.

Scenarios described by UML2.0 sequence diagrams are transformed into a simu-
lation machine, as presented Figure 2. Each message in an object-based system
is specified by a B operation in an abstract machine. The simulation machine is
composed of four clauses:

— the clause INVARIANT expresses safety properties on the system,

— the clause MODALITIES expresses dynamic properties, which are presented
in the section 3.3,

— the clause INITTALISATION allows to give initial values to the state of the
system for the given scenario,

— the clause SCENARIOS contains the definition of different scenarios. It cor-
responds to the transformation of UML2.0 sequence diagrams, each one com-
posed of a sequence of operation calls, including guard, alternative and option
statements.



SIMULATION System
INVARIANT
aJg
MODALITIES
P =3o0)
O(P= Q@ WR)
INITIALISATION
Init
SCENARIOS
scenario-name(param) =
begin
OP
end

END

Fig. 2. Structure of the simulation machine

3.2 Proof obligations associated to the scenarios clause

As presented above, a scenario is specified by a combination of sequence oper-
ation calls, including guards, alternatives and options to control flow and take

into account choices.

MACHINE C(Class
SETS T
CONSTANTS C
PROPERTIES Prop
VARIABLES V
INVARIANT I
INITIALISATION U
OPERATIONS
00 <— Op(ii) = pre P then S end;

END

Fig. 3. B abstract machine derived from a UML class

Let us recall the definition of proof obligations [3] for a B abstract machine with
the clauses presented Figure 3. A number of proof obligations have to be checked
to ensure that the machine is internally consistent and useful. In particular, it

is necessary to ensure that:

— the initialisation U is guaranteed to establish the invariant I, under the
assumption that Prop holds, that the context of the machine is satisfactory:

T A Prop = [U]I



— each operation, composed of a precondition P and a substitution body .S,
preserves the invariant I

T ANProp NIANP=[S]|I

(i). Proof obligations associated to a scenario defined by a sequence
of operation calls

Let us consider the case where a scenario is specified by a sequence of n oper-
ation calls. Each one is indexed by 4 and composed of a precondition P and a
substitution body S:

OP = OPq; OPs;...; OP,
OP; = P; | S;

SO
OP =[Py | S1];[Pa | Sal; -5 [Pn | Snl

The invariant of each abstract machine and the one of the simulation machine
must hold in the simulated execution. In order to perform the simulation, we re-
place parameters in the called operations by their effective values. The definition
of the operation OP; is expressed by:

r; «— OP;(paray, paraz, ..., para,)
and its call is of the form:

v; «— OP;(valuey , values, ..., value,,)

For each operation OP; called, according to the definition of the semantics of the
substitution, we have to prove that the effective values of its parameters satisfy
its precondition P;:

P, = [paray, paray, paray, := valuey , values, .., valuey, | P;

After replacing each parameter in the body of the operation by its value, we
obtain:

Siv = [ri, paray, paraz, ..., paray, := v;, valuey, values, .., value,,]S;

Let [S] be the execution of substitutions in the body of the first i operations
of the scenario after replacing each parameter of each operation by its value,
taking into account the initialisation of the simulation machine:

[SZ] = [Imt][Slv][ng][Sw]

A scenario of the simulation machine calls n operations defined in abstract ma-
chines. Let A be the conjunction of constraints of sets, Prop the conjunction of
properties and I the conjunction of invariants of all the k abstract machines of
the system (j € [1..k]):

A= A\A,;, Prop=\Propj, I =\I



The execution of this scenario is validated if the following proof obligations are
verified:

— For :=0..n—-1.

The proof obligations guarantee that the execution of the system establishes
the invariant I of all the abstract machines defining the system. For each
called operation OP;, we have to verify that the precondition of OP;;; of
the (i+1)* operation call is satisfied by the postcondition obtained by the
execution of the first i operation calls of the scenario. In object-based ap-
proaches, the execution of the (i+1)* operation call is ensured by the result
of the execution of the first 7 operation calls of the scenario:

AN Prop N1 A Py = [Si1(Piizye AI) (1)

— For i = n.
The proof obligations guarantee that the execution of the scenario preserves
the invariant I of all the abstract machines:

ANProp NI AP, = [SPT (2)

(ii). Proof obligations associated to a scenario which includes if state-
ments

Let us now consider the case where a scenario is specified by a sequence of
operation calls including if statements. A general conditional statement which
allows branching depending on a particular value is defined as follows:

IF P THEN @ ELSE R END

This construction makes use of the interaction between choice and guards. In
providing a weakest precondition rule for this construct, there are two cases to
consider. In order to ensure that 7 will be true after its execution, if P is true
then @) must establish T, and if P is false, then R must establish 7. This results
in the following rule:

[IF P THEN Q ELSE R ENDI|T = (P = [Q]T)[](~ P = [R]T)

Let us consider the case where both ) and R denote a list of operations, expressed
by:

Q = OPgi;...; OPy,
R = OP,y;...; OP,,

The scenario including a if statement is expressed by:

OP;; OP5; ...OP;;
IF P THEN OPpgy;...; OPyg ELSE OP,1;...; OPy. END;
OP;y4;...; OP,

Two cases have to be considered:



— when [51][S2]...[Si](P) = true, the path of the execution of the scenario is:

OPy; OPy;...0P;; OPy1; ... OPgq; OPjiyq; ...; OPy,

— when [51][S2].-.[Si](P) = false, the path of the execution of the scenario is:

OP;; OPs;...0P;; OP,q; ...; OPpp; OPiyq; .. OPy,

For each case of the decomposition of the scenario, we obtain a sequence of op-
erations, going back to the proof obligations of a scenario defined by a sequence
of operation calls, see (i.).

Remark. Guarded and option statements allowed in UML2.0 sequence diagrams
are included in the if statement. They both correspond to a simple “if P then
Q7 statement:

— in the case of a guarded statement, @) corresponds to a single message,
— in the case of an option statement, () corresponds to a sequence of messages.

3.3 Expression of system dynamic properties and proof obligations

We present the system properties that must be satisfied by the execution of
scenarios and their proof obligations. These properties are expressed in the sim-
ulation machine by:

— safety properties in the clause INVARIANT and

— dynamic properties in the clause MODALITIES. We introduce liveness prop-
erties [23], which have been already introduced in object-oriented nota-
tions [12,13,32].

A. Safety property. A safety property refers to a formula P and requires that
P is an invariant over all the computations of the specification in which P is
defined. In the temporal logic notation, such a property is expressed by OP.

The following proof obligation guarantees that the execution of the scenario
establishes the invariant J of the simulation machine.

Vi.(i € [0..n] = AA Prop AI A Py, = [SE]J) (3)

B. Liveness properties. We consider two kinds of liveness property, the re-
sponse property and the precedence property [12].

B1. A response property refers to two formulae P and @ and requires that every
P-state, i.e. a state satisfying P, arising in an execution is eventually followed
by a @-state. In the temporal logic notation, this is expressed by O(P = Q).
To verify this property, the following two proof obligations have to be established:

Ji.(i € [0..n—=1] A AA Prop AI APy = [SIIP)  (4)



This first proof obligation for this property (4) verifies if P can be established by
the execution of the scenario. If this proof obligation is satisfied, which means
that there exists an operation OP; (i € [1...n—1]) in the scenario which leads to
the state s; where P holds, we have to verify the second proof obligation (5):

3j.(j € [i+1..n] A AA Prop NI APy, =[SI]1Q)  (5)

This proof obligation verifies if the predicate () is satisfied on the state s; which
follows the state s; in the execution of the scenario (j > 7).

B2. A precedence property refers to three formulae P, ) and R. It requires that
every P-state is followed by a sequence in which () is satisfied and that sequence
is either terminated by a R-state or by a -state. In the temporal logic, this
property is expressed by O(P = Q@ W R).

First, we have to verify that the predicate P is established by the execution of
the scenario:

Ji.(i € [0..n—1] A AA Prop NI APy, = [SE]P)  (6)

If the predicate P is satisfied on the state s;, (i < n), we verify that there exists
an operation call OP; (j € [i+1..n] ) in the scenario which leads to a state s;
where R holds:

3j.(j € [i+1.n] A AAProp NI AP, =[SI]R) (7)

— If the predicate R is not established, we have to prove that each operation
call OP; (where j € [i+1..n] ) in the scenario establishes the predicate Q:

Vj.(j € [i+l..n] = AA Prop NI A Py, = [S7]Q) (8)

— If the predicate R is established on a state s;, we have to prove that the
predicate @ is not established for this state:

ANProp NIAP, =>[S1(=Q) (9

3.4 The use of the proof to validate B object-based specifications

The idea we have developed is to check the specification of B operations specified
in abstract machines relatively to the safety and dynamic properties by simu-
lating scenarios of the system’s behaviour. With the use of B notations and the
definition of proof obligations for the simulation machine introduced as a new
notation in B, we are able to use the B theorem prover to validate the execution
of scenarios of the system. This is done in two steps:

— first, we prove a scenario of the behaviour of the system defined as a UML2.0
sequence diagram,

— once the execution of this given scenario has been proven, we prove that the
scenario satisfies safety and dynamic properties of the system.



4 Case study

We illustrate our approach on a simplified case study. The system will be able
to control the access of persons to a given building.

4.1 Presentation of the case study

The control takes place on the basis of the authorisation that each concerned
person is supposed to possess. Each person involved receives a magnetic card
with a unique identifying code, which is engraved on the card itself. A card
reader is installed at the entrance (and at the exit) of the building. A person
wishing to enter the building follows a systematic procedure composed of the
sequence of events which follows.

The person puts his card into the card reader and inputs his code. One is then
faced with the following alternative:

— if he is authorised, his entrance is accepted:

the door is open,

the card is ejected by the card reader,

the person takes his card,

the person enters the building and

the door is closed;

— if he is not authorised, his entrance is refused:
e the door remains closed,
e the card is ejected by the card reader and
e the person takes his card.

The system will control if persons wishing to enter the building are not already
in the building.

4.2 UML Specification

We first introduce a UML class diagram to structure this system. Then we model
the proposed system’s behaviour by means of a sequence diagram. We clarify
the properties of the system.

1. UML class diagram.
As cards are the only informations known by the controller, we have decided
to mix up a person and a card in our model, introducing a class Card. As
we have simplified the problem taking into account only one building, we do
not introduce the notion of building in the model.
The operation insertCard in the class Reader includes the insertion of the
card into the card reader and the input of the code by the person.
The authorisations are represented in the class Controller by a set named
authorised_cards. The dynamic situation of persons in the building is repre-
sented by the set inside_cards: at any moment, we know which is inside the
building.

10



Card Reader

pin: PIN current_card : CARD
. _
code : CODE State : READER_STATE
createCard(pin,code) insertCard()
gjectCard()
takeCard()

0

Controller

authorised_cards : CARD
inside_cards : CARD

Door

door_state : DOOR_STATE . .
isAuthorised(): BOOL

openDoor() Ienter()
closeDoor() eave()

Fig. 4. Class diagram of the simplified access control system

2. Sequence diagram.

As an example of scenario, we propose to describe the entry of a person into
the building. It is presented in Figure 5 by a UML2.0 sequence diagram [26].
This scenario is parameterised by a card, known by means of a pin and a
code. In the sequence diagram, the “alt” combined fragment corresponds to
the two cases:

— the person (i.e. the card) is authorised to enter,

— the person is not authorised to enter.

Remark. A person is authorised to enter if he is known of the system and
he is not inside.

3. Constraints on the system.
An implicit property concerns the impossibility for a same person to be in
the given building and to wish to enter in this building. This safety property
can be expressed as follow:
— at any one moment, a person authorised to enter the building is either
inside the building or outside.
The system must satisfy the next dynamic constraints:
— if a person inputs a card, this card will be ejected,
— the door is maintained closed until a person is authorised to enter.

4.3 B specification

1. Abstract machines.
The class diagram of the Figure 4 is derived into a B specification using
automatic transformation rules [25]. Each abstract machine is completed by
the definition of the needed operations. For example, the operation enter in
the Controller abstract machine, as shown Figure 6, provokes the entrance of a
person in the building. This event should only be able to happen (necessarily
condition) if the person is authorised to be in the building and if he is not
already inside. This event can happen, that does not necessarily mean that it

11



/% :Reader :Controller :Door
I

no_card_inside
insertCard()

c
g

isAuthorised()

I
I
:
1 card_inside
I
I
I
I
U

openDoor()

ejectCard()

ejected

takeCard()

no_ca‘rd_i nside
enter()

Iﬁ

closeDoor()

gectCard()

card_ejected

takeCard() |

2

no_card_inside

Fig. 5. Scenario for the entry to a building

is in fact going to happen. It is triggerable and therefore could be observed.
The invariant of this machine says that the persons present in the building
at a given moment do have the right to be there by stipulating that the set
inside_cards is included (or equal) in the set authorised_cards.

. Simulation machine.

Figure 7 gives the simulation machine of this system with one scenario corre-
sponding to the entry to the building described in the sequence diagram pre-
sented Figure 5. Constraints on the system are expressed by the invariant and
the modalities clauses, including safety and dynamic properties presented in
the section 4.2. The initialisation gives a starting point for validating this
scenario.

4.4 Validation of the scenario Entry_ Buiding

The scenario proposed Figure 7 does not modify the set of existing cards nor the
set of authorised cards. Giving a card, i.e. a pin and a code, it first verifies if the
card is authorised to enter or not the building. To simulate each situation, we
have to introduce three test cases.

(i.) Normal case where the person is authorised to enter the building.

Table 1 presents the evolution of the different variables of the system when ex-
ecuting each step of the scenario Entry_Building for a given card, pin = 1, code
= a. The column Precondition of the operation recalls, for each operation of the

12



MACHINE Controller
INCLUDES Reader, Door
VARIABLES authorised_cards, varsinside_cards
INVARIANT aquthorised_cards C cards A inside_cards C authorised_cards
INITIALISATION aquthorised_cards := @ || inside_cards = &
OPERATIONS
bb «— isAuthorised(ca) =

pre ca € cards

then bb := (ca € authorised_cards — inside_cards)

end;
enter(ca) =

pre ca € (authorised_cards — inside_cards)

then inside_cards := inside_cards U {ca}

end

END

Fig. 6. Control abstract machine

scenario, its precondition defined in the B abstract machines. We can see that
they are satisfied for each operation call.

The execution of this scenario is validated if the proof obligations presented
section 3.2 are proved. Let us see the proof obligation (1). As an example, we can
see that after the execution of substitutions in the body of the first 4 operations
of the scenario, [S;}], the value of the variable state which shows the state of the
card reader is state = card_ejected. This state satisfies the precondition of the
next operation of the scenario, namely takeCard (i=5).

At the end of the execution of the scenario the invariant of the system Controller
is satisfied, i.e. inside_cards C authorised_cards . This corresponds to the proof
obligation (2).

Proof of the invariant: a safety property.
/** At any one moment, a person authorised to enter the building is either in-
side the building or outside */
Vzx.(zz € authorised_cards)
O(zz € inside_cards V zz € authorised_cards — inside_cards)

The proof obligation (3) is satisfied by the execution of the scenario.

Proof of the modalities: liveness properties.
The response property is expressed by:

/** If a person inputs a card, this card will be ejected */
O(state = card_inside = state = card_ejected)

In the introduction of response properties given Figure 2,

P corresponds to (state = card_inside) and

13



Operation 1% Precondition state door_state|inside_cards|current_card
of the operation variable variable variable variable
0 (Init) - no_card_inside| close {3 = ¢} %]
1 (insertCard) |state = no_card_inside| card_inside close {3—=c} | {1 —» a}
2 (isAuthorised) card € cards card_inside close 3= ¢}t | {1 —» a}
authorised = true
3 (openDoor) door_state = close card_inside open 3= ¢}t | {1 —» a}
4 (ejectCard) state = card_inside card_ejected open {3 — ¢} %]
5 (takeCard) state = card_ejected |no_card_inside| open {3 —» ¢} %]
6 (enter) authorised = true |no_card_inside| open {3 — ¢, 2}
1 — a}
7 (closeDoor) door_state = open |no_card_inside| close {3 — ¢ @
1 — a}

Table 1. Validation of the scenario Entry_Building with an authorised card

Q to (state = card_ejected)
The proof obligation (4) is established for ¢ = 1:
[SYP = true
The proof obligation (5) is established for j = 4:
[S7]1Q = true

The precedence property is expressed by:

/** The door is maintained closed until a person is authorised to enter*/
dzz.(zz € cards) O(state = no_card_insidedoor_state = close =
door_state = close W

(zz € authorised_cards—inside_cards A door_state = open))

In the introduction of precedence properties given Figure 2,

P corresponds to (state = no_card_inside A door_state = close)
Q to (door_state = close)
R to (zz € authorised_cards—inside_cards A door_state = open)

The proof obligation (6) says that P is established for ¢+ = 0, at the initialisation.
The proof obligation (7) says that R is established for j = 3, with the operation
OpenDoor. The proof obligation (9) is proved for j = 3: [S2] = Q. The proof
obligation (8) is proved for j = 1..2:

Vj.( € 1.2] = [5]]Q)
(ii.) Case where the person is not authorised to enter the building.

Table 2 presents the evolution of the different variables of the system when ex-
ecuting each step of the scenario Entry_Building for a non authorised card: pin

14




Operation 3 Precondition state door_state|inside_cards|current_card

of the operation variable variable variable variable
0 (Init) - no_card_inside| close {3 = ¢} %]

1 (insertCard) |state = no_card_inside| card_inside close 3¢} | {1}

2 (isAuthorised) card € cards card_inside close 3= ¢} | {1 » f}

authorised = false

3 (ejectCard) state = card_inside | card_ejected close {3 = ¢} IZ]
4 (takeCard) state = card_ejected |no_card_inside| close {3 — ¢} IZ]

Table 2. Validation of the scenario Entry_Building with a non authorised card

=1, code = f.

(iii.) Case where the person is already inside the building.

Table 3 presents the evolution of the different variables of the system when ex-
ecuting each step of the scenario Entry_Building for a card already inside the
building: pin = 3, code = c.

Operation 1 Precondition state door_state|inside_cards|current_card

of the operation variable variable variable variable
0 (Init) - no_card_inside| close {3 —» ¢} IZ]

1 (insertCard) |state = no_card_inside| card_inside close 83— ¢} | {1 » f}

2 (isAuthorised) card € cards card_inside close 3= ¢} | {1 » f}

authorised = false

3 (ejectCard) state = card_inside | card_ejected close {3 —» ¢} IZ]
4 (takeCard) state = card_ejected |no_card_inside| close {3 —» ¢} IZ]

Table 3. Validation of the scenario Entry_Building with a card already inside

At the end of the execution of the scenario with the three test cases, we can see

that:

— the scenario is proved and
— the safety as well as the dynamic properties of the system are satisfied.

The principal property of the system which shows that the control is being done
correctly, that is to say that each person is, at each moment, authorised to be
in the building in which he finds himself is satisfied.

The result of the three tables can be validated with system properties by the
automatic proof of the proposed proof obligations.
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5 Related work

The use of scenario expressed by UML sequence diagrams to validate object ori-
ented specification is considered in [28]. This approach uses the TeLa language!
where tests can be described using TeLa one-tier scenario, associating conditions
on messages in the UML sequence diagram, or TeLa two-tier scenario diagrams,
combining UML activity diagrams with sequence diagrams. Our proposition is
inspired from this approach to test the execution of operations specified in B
abstract machines.

The concept of specification based testing has been initiated by the work of Hall
[15]. His proposition, based on a Z specification, is to partition its input space
by examining predicates in the operations.

BZ-TT [19, 5] is an environment for boundary-value test generation from Z and B
specifications. The underlying method is based on a set-oriented constraint logic
programming technology. Z and B specifications are translated into constraints
and the constraint solver is used to calculate boundary value test cases. All the
possible behaviours of the specification are tested at every boundary state using
their input boundary values: the goal is to invoke each modification operation
specified in the system, with extremum values of the sub-domains of its input
parameters. The environment concentrates on testing the precondition and the
execution of substitutions of each operation.

ProTest [29] is an automatic test environment for B specifications. It is based on
ProB, a model checker and an animation tool for B [20]. It generates test cases
from B specifications by partition analysis of the state invariant and the opera-
tion preconditions of a specification. It simultaneously animates the specification
and runs the implementation with respect to the test cases and assigns verdicts
whether the implementation has passed the tests. This test environment imposes
some restrictions on arguments and results. ProTest animates and model checks
only one single B machine.

As BZ-TT, ProTest only checks the correctness of a single operation at a time
and does not take into account dynamic properties. With our proposition, we
validate the execution of a sequence of operations, and check that they do not
conflict with safety/dynamic constraints of the system. These points are not
been taken into account the BZ-TT and ProTest approaches.

6 Conclusion

We have presented an approach to validate object-based specifications checking
that sequence diagrams can be executed in the B world and do not conflict
with safety and dynamic properties. We start from an UML specification in the
form of a class diagram and a set of sequence diagrams expressing scenarios of
the behaviour of the system. The class diagram is then derived automatically
into a B specification. This specification is completed by the definition of the
operations (messages in the sequence diagrams corresponding to the methods in
the class diagram) and by a new machine, called the simulation machine. This

! Test Description Language
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machine contains the derivation of sequence diagrams augmented by safety and
dynamic properties of the system. At the end of the construction process, we
have an object-based B specification at our disposal.

The validation of scenarios and the satisfaction of the properties is done by
means of a B theorem prover. In order to use this prover, we have defined the
proof obligations for the simulation machine introduced as a new notation in B.
The validation is done in two steps:

e first, we validate a scenario of the behaviour of the system by an execution of
the operation calls expressed in this scenario;

e once the execution of this given scenario has been proved, we validate safety
and dynamic properties of the system.

Future work.

In order to take into account more complex scenarios, we have to introduce loop
statement in the scenarios. Another question to solve concerns the possibility of
introducing an initialisation specific to each scenario.

The use of theorem provers presents some limits in the proof of predicates. As
a perspective, we will study their replacement by a model checker, allowing to
check all states of objects instantiated for the execution.

We are working on the implementation in Java of the generation of the new
proof obligations corresponding to the simulation machine.
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SIMULATION Access_Control

INVARIANT
/** At any one moment, a person authorised to enter the building is either inside the
building or outside */
Vzz.(zz € authorised_cards)
O(zz € inside_cards V zz € authorised_cards — inside_cards)

MODALITIES
/** If a person inputs a card, this card will be ejected */
O(state = card_inside = state = card_ejected)

/** The door is maintained closed until a person is authorised to enter*/
Jzz.(zz € cards) O(state = no_card_inside A door_state = close =
door_state = close W
(zz € authorised_cards—inside_cards A door_state = open))

INITIALISATION
cards := {1 — a,2 — b, 3 — ¢, 4 — d}|
authorised_cards := {1 — a, 2 = b, 3 = c}||
inside_cards := {3 — c} ||
door_state := close ||
state := no_card_inside ||
current_card := &

SCENARIOS
Entry_Building(pin,code) =
begin
var card, authorised in
card <— insertCard(pin, code);
authorised <— isAuthorised(card);
if authorised then
openDoor;
ejectCard,
takeCard;
enter(card);
closeDoor
else
ejectCard,
takeCard
end
end
end

END

Fig. 7. Simulation machine with one scenario
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