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Abstract

We introduce a new model of linear regression for random func-

tional inputs taking into account the first order derivative of the data.

We propose an estimation method which comes down to solving a

special linear inverse problem. Our procedure tackles the problem

through a double and synchronized penalization. An asymptotic ex-

pansion of the mean square prevision error is given. The model and the

method are applied to a benchmark dataset of spectrometric curves

and compared with other functional models.

Keywords : Functional data, Linear regression model, Differential oper-
ator, Penalization, Spectrometric curves.

1 Introduction

Functional Data Analysis is a well-known area of modern statistics. Advances
in computer sciences make it now possible to collect data from an underlying
continuous-time processe, say (ξt)t≥0, at high frequencies. The traditional
point of view consisting in discretizing (ξt) at t1, ..., tp and studying it by
classical multidimensional tools is outperformed by interpolation methods
(such as splines or wavelets). These techniques provide the statistician with
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a reconstructed curve on which inference may be carried out through what we
may call ”functional models” i.e. versions of the classical multidimensional
models designed and suited for data that are curves. Thus, functional PCA,
ANOVA or Canonical Analysis -even density estimation for curves or pro-
cesses have been investigated. We refer to Ramsay, Silverman (1997, 2002),
Bosq (2000), Ferraty Vieu (2006) for monographs on functional data anal-
ysis. Recently many authors focused on various versions of the regression
model introduced by Ramsay and Dalzell (1991) :

yi =

∫ T

0

Xi (t) ρ (t) dt+ εi (1)

where we assume that the sample ((y1,X1) , ..., (yn, Xn)) is made of indepen-
dent copies from (y,X) . Each Xi = (Xi (t))t∈[0,T ] is a curve defined on the set
[0, T ] , T > 0, yi is a real number, εi is a white noise and ρ is an unknown func-
tion to be estimated. In other words the Xi’s are random elements defined
on an abstract probability space and taking values in a function space, say
F . The vector space F endowed with norm ‖·‖F will be described soon.We
refer for instance to Cardot, Mas, Sarda (2006) or Cai, Hall (2006) for recent
results.

In this article we study a new (linear) regression model defined below
derived from (1) and echoing the recent paper of Mas and Pumo (2006). The
key idea relies on the fact that most statisticians dealing with functional data
do not fully enjoy their functional properties. For instance in several models
integrals such as ∫

Xi (s)Xj (s) ds

are computed. The integral above is nothing but a scalar product. Never-
theless derivatives were not given the same interest. Explicit calculations of
derivatives sometimes appear indirectly in kernel methods (when estimating
the derivatives of the density or the regression function) or through semi-

norms or norms on F . But surprisingly X ′
i (or X

(m)
i ) never appear in the

models themselves whereas people dealing with functional data often say
that ”derivatives contain much information, sometimes more than the initial
curves themselves”. Our starting idea is the following. Since in a func-
tional data framework, the curve-data are explicitely known and not just
discretized, their derivatives may also be explicitely computed. As a conse-
quence these derivatives may be ”injected” in the model, which may enhance
its prediction power. The reader is referred to the forthcoming display (5) for
an immediate illustration and to Mas, Pumo (2006) for a first article dealing
with a functional autoregressive model including derivatives.
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The paper is rather theoretic even if it is illustrated by a real case study.
It is organized as follows. The next section provides the mathematical ma-
terial, dealing with Hilbert spaces and linear operators, then the model is
introduced. The next section is devoted to presenting the estimation method
and its stumbling stones. The main results are given before we focus on a real
case application to food industry. The last section contains the derivation of
the theorems.

2 About Hilbert spaces and linear operators

Silverman (1996) provided a theoretical framework for a smoothed PCA. Jim
Ramsay (2000) enlightened the very wide scope of differential equations in
statistical modelling. Our work is in a way based on this mathematically
involved article. We are aiming at proving that derivatives may be handled
in statistical models quite easily when the space F is well-chosen.

The choice of the space F is crucial. We have to think that if X ∈ F ,
X ′ does not necessarily belong to F but to another space F ′ that may be
tremendously different (larger) than F . We decide to take F = W 2,1, the
Sobolev space of order (2, 1) defined by

W 2,1 =
{
u ∈ L2 [0, 1] , u′ ∈ L2 [0, 1]

}

for at least three reasons :

• If X ∈ F , X ′ ∈ L2 [0, 1] which is a well known space.

• Both spaces are Hilbert spaces as well as

W 2,p =
{
u ∈ L2 [0, 1] , u(p) ∈ L2 [0, 1]

}
.

This is of great interest for mathematical reasons : bases are denumer-
able, projections operators are easy to handle, covariance operators
admit spectral representations, etc.

• The classical interpolation methods mentioned above (splines and wavelets)
provide estimates belonging to Sobolev spaces. So from a practical
point of view W 2,1 -and in general Wm,p, (m, p) ∈ N

2, (see Adams and
Fournier (2003) for definitions)- is a natural space in which our curves
should be imbedded.

In the sequel W 2,1 will be denoted W and W 2,0 = L2 will be denoted
L for the sake of simplicity. We keep in mind that W (resp. L) could be
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replaced by a space of higher smoothness index : W 2,p where p > 1 (resp.
W 2,p−1). The spaces W and L are separable Hilbert spaces endowed with
scalar product :

〈u, v〉W =

∫ 1

0

u (t) v (t) dt+

∫ 1

0

u′ (t) v′ (t) dt.

〈u, v〉L =

∫ 1

0

u (t) v (t) dt

and with associated norms ‖·‖W and ‖·‖L. We refer to Ziemer (1989) or
to Adams and Fournier (2003) for monographs dedicated to Sobolev spaces.
Obviously if we set Du = u′ then D maps W onto L (D is the ordinary dif-
ferential operator). Furthermore Sobolev’s imbedding theorem ensures that
(see Adams and Fournier (2003) Theorem 4.12 p.85) that

‖Du‖L ≤ C ‖u‖W
(where C is some constant which does not depend on u) i.e. D is a bounded
operator from W to L. This is a crucial point to keep in mind and the fourth
reason why the functional space was chosen to be W 2,1 : the differential
operator D may be viewed as a continuous linear mapping from W to L.

Within all the paper and especially all along the proofs we will need
basic notions about operator theory. We recall a few important facts. A
linear mapping T from a Hilbert space H to another Hilbert space H ′ is
continuous whenever

‖T‖∞ = sup
x∈H

‖Tx‖H′

‖x‖H
< +∞. (2)

The adjoint of operator T will be classically denoted T ∗. Some finite rank
operators are defined by means of the tensor product : if u and v belong to
H and H ′ respectively u⊗H v is the operator defined on H by, for all h ∈ H :

(u⊗H v) (h) = 〈u, h〉H v.
Compact operators : Amongst linear operators the class of compact

operators is one of the best known. Compact operators generalize matrix
to the infinite-dimensional setting and feature nice properties. The general
definition of compact operators may be found in Dunford Schwartz (1988) or
Gohberg, Goldberg and Kaashoek (1991) for instance. By CH (resp. CHH′) we
denote the space of compact operators on the Hilbert spaceH (resp. mapping
the Hilbert space H ontoH ′). If T is a compact operator from a Hilbert space
H1 to another Hilbert space H2, T admits the Schmidt decomposition :

T =
∑

k∈N

µk (uk ⊗ vk) (3)
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where uk (resp. vk) is a complete orthonormal system in H1 (resp. in H2) and
µk are the characteristic numbers of T (i.e. the square root of the eigenvalues
of T ∗T ) and

lim
k→+∞

µk = 0.

From (2) we obtain
‖T‖∞ = sup

k
{µk} .

When T is symmetric µk is the kth eigenvalue of T (then uk = vk). In this
situation and from (3) one may define the square root of T whenever T maps
H ont H and is positive : T 1/2 is still a linear operator defined by :

T 1/2 =
∑

k∈N

√
µk (uk ⊗ uk) . (4)

Note that finite rank operators are always compact.
Hilbert-Schmidt operators : We also mention the celebrated space of
Hilbert-Schmidt operators HS (H1, H2) - a subspace of CH1H2

. Let (ui)i≥0 be
a basis of H1 then T ∈ HS (H1, H2) whenever

+∞∑

i=1

‖T (ui)‖2
H2
< +∞.

The space HS is itself a separable Hilbert space endowed with scalar product

〈T, S〉HS =

+∞∑

i=1

〈T (ui) , S (ui)〉H2

and 〈T, S〉HS does not depend on the choice of the basis (ui)i≥0 . Finally the
following bound is valid for all T ∈ HS :

‖T‖∞ ≤ ‖T‖HS .

Unbounded operators : If T is a one to one (injective) selfadjoint compact
operator mapping a Hilbert space H onto H , T admits an inverse T−1. The
operator T−1 is defined on a dense (and distinct) subspace of H :

D
(
T−1

)
=

{
x =

∑

p∈N

xpup :
∑

p∈N

x2
p

µ2
p

< +∞
}
.

It is unbounded which also means that T−1 is continuous at no point for
which it is defined and ‖T−1‖∞ = +∞.
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3 The model

We are now in position to introduce this (random input - linear) regression
model :

yi = 〈φ,Xi〉W + 〈ψ,X ′
i〉L + εi (5)

where all random variables are assumed to be centered. The main result
of the paper (see next section) gives an asymptotic expansion for the mean
square prediction error in (5).

The unknown functions φ and ψ belong to W and L respectively.
Obviously we are going to face two issues :

• Studying the identifiability of φ and ψ in the model above.

• Providing a consistent estimation procedure for φ and ψ.

From now on we suppose that :

A1 : ‖X‖W < M a.s.

This assumption could be relaxed for milder moment assumptions. We
claim that our main result holds whenever

A′1 : E ‖X‖8
W < M.

is true. But considering A′1 would lead us to longer and more intricate
methods of proof.

4 Estimation procedure

4.1 The moment method

Inference is based on moment formulas. From (5) we derive the two follow-
ing normal equation -multiply with 〈Xi, ·〉 and 〈X ′

i, ·〉 successively then take
expectation : {

δ = Γφ+ Γ′ψ,
δ′ = Γ′∗φ+ Γ′′ψ.

(6)

where Γ, Γ′, Γ′∗, Γ′′ are the covariance and cross-covariance of the couple
(Xi, X

′
i)1≤i≤n defined by :

Γ = E (X ⊗W X) , Γ′∗ = E (X ⊗W X ′) ,

Γ′ = E (X ′ ⊗L X) , Γ′′ = E (X ′ ⊗L X
′) ,
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and
δ = E (yX) ∈W, δ′ = E (yX ′) ∈ L.

Under assumption A1 or A′1 the covariance operators belong to HS (W ),
HS (W,L), HS (L,W ) or to HS (L). Besides the covariance and cross-
covariance mentioned above are linked through the relation

Γ′∗ = DΓ, Γ′′ = DΓ′.

Resolving the system (6) is apparently easy but we should be aware of
two facts :

• Operators (here, Γ,Γ′...) do not commute !

• The inverse operators of Γ, and Γ′′ do not necessarily exist and when
they do, they are unbounded, i.e. not continuous (recall that Γ, and Γ′′

are compact operators and that compact operators have no bounded
inverses).

Before trying to solve (6) we will first study identifiability of the unknown
infinite dimensional parameter (φ, ψ) ∈ W × L in the next subsection. We
complete our definitions and notations first.

We start from a sample (Xi, X
′
i)1≤i≤n. By Γn,Γ

′
n,Γ

′∗
n ,Γ

′′
n, δn and δ′n we

denote the empirical counterparts of the operators and vectors introduced
above and based on the sample (yi, Xi, X

′
i)1≤i≤n. For example :

Γn =
1

n

n∑

k=1

Xk ⊗W Xk, (7)

Γ′
n =

1

n

n∑

k=1

X ′
k ⊗L Xk,

δn =
1

n− 1

n−1∑

k=1

ykXk.

4.2 Identifiability

Both equations in (6) are the starting point of the estimation procedure. We
should make sure that solutions to these equations are well and uniquely
defined. Suppose for instance that KerΓ 6= {0} and take h in it. Now set

φ̃ = φ+ h. Then
Γφ̃ = Γφ+ Γh = Γφ.

7



So Γφ̃ = Γφ and since Γ′∗ = DΓ it is plain that Γ′∗φ̃ = Γ′∗φ. Consequently φ̃ is
another solution to (6). There are indeed even infinitely many solutions in the
space φ+KerΓ. For similar reasons about ψ we should impose KerT = {0}
for T = {Γ,Γ′,Γ′∗,Γ′′} . It turns out that the only necessary assumption is

A2 : KerΓ = KerΓ′′ = {0} .

It is easily seen that A2 implies KerΓ′ = KerΓ′∗ = {0} . With other words
we suppose that both operators Γ and Γ′′ above are one to one.

We are now ready to solve the identification problem.

Proposition 1 The couple (φ, ψ) ∈ W × L is identifiable for the moment
method proposed in (6) if and only if A2 holds and (φ, ψ) /∈ N where N is
the vector subspace of W × L defined by :

N = {(φ, ψ) : φ+D∗ψ = 0} . (8)

The above Proposition is slightly abstract but (8) may be simply rewrit-
ten: (φ, ψ) ∈ N whenever for all function f in W,

∫
(fφ+ f ′φ′ + f ′φ) = 0

Note that N is a closed set in W ×L. From now on we will assume that
:

A3 : (φ, ψ) /∈ N .

5 Definition of the estimates

The estimates stem from (6) which is a non invertible system. Under as-
sumption A2 the solution exists and is unique :

{
φ = (Γ − Γ′Γ′′−1Γ′∗)

−1
[δ − Γ′Γ′′−1δ′] ,

ψ = (Γ′′ − Γ′∗Γ−1Γ′)
−1

[δ′ − Γ′∗Γ−1δ] .
(9)

Let us denote

Sφ = Γ − Γ′Γ′′−1Γ′∗,

Sψ = Γ′′ − Γ′∗Γ−1Γ′.

The reader should note two crucial facts. On the one hand Γ−1 and Γ′′−1 are
unbouded operators but closed graphs argument ensure that Γ′Γ′′−1δ′ and
Γ′∗Γ−1δ exist in W and L respectively. On the other hand δ−Γ′Γ′′−1δ′ (resp.
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δ′ − Γ′∗Γ−1δ) belong to the domain of the unbounded operator S−1
φ (resp.

S−1
ψ ) which also ensures the finiteness of both solutions given in the display

above.
Finding approximations to the solutions of (9) is known in the mathemat-

ical literature as ”solving a linear inverse problem”. The book by Tikhonov
and Arsenin (1977) -as many other references therein- is devoted to this the-
ory well-known in image reconstruction. The unboundedness of S−1

φ may

cause large variation of S−1
φ x even for small variations of x. This lack of

stability turns out to damage, as well as the traditional ”curse of dimension-
ality”, the rates of convergence of our estimates.

Unfortunately we cannot simply replace ”theoretical” operators and vec-
tors by their empirical estimates because Γn and Γ′′

n are not invertible. Indeed
they are finite-rank operators (for example the image of Γ is span(X1, ..., Xn))
hence not even injective. We are classically going to add a small perturba-
tion to regularize Γn and Γ′′

n (see Tikhonov and Arsenin (1977)) and another
one for S−1

φ and make them invertible. At last Γ−1 is approximated by

Γ†
n = (Γn + αnI)

−1 , Γ′′−1 by Γ′′†
n = (Γ′′

n + αnI)
−1 and S−1

φ by (Sn,φ + βnI)
−1

where
Sn,φ = Γn − Γ′

n

(
Γ′′†
n

)
Γ′∗
n .

and αn > 0, βn > 0. We also set :

Sn,ψ = Γ′′
n − Γ′∗

n

(
Γ†
n

)
Γ′
n, (10)

un,φ = δn − Γ′
n

(
Γ′′†
n

)
δ′n, (11)

un,ψ = δ′n − Γ′∗
n

(
Γ†
n

)
δn. (12)

In the sequel we will assume that both strictly positive sequences αn and
βn decay to zero in order to get the asymptotic convergence of the estimates.

Definition 2 The estimate of the couple (φ, ψ) is
(
φ̂n, ψ̂n

)
based on (9) and

defined by : {
φ̂n = (Sn,φ + βnI)

−1 un,φ,

ψ̂n = (Sn,ψ + βnI)
−1 un,ψ.

(13)

The predictor is defined as

ŷn+1 =
〈
φ̂n, Xn+1

〉

W
+

〈
ψ̂n, X

′
n+1

〉

L
.
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6 Main results and comments

In Mas, Pumo (2006) the authors obtained convergence in probability for
their estimates in a quite different model. We are now in position to assess
deeper results. Mean square prediction error is indeed given an asymptotic
development depending on both smoothing sequences αn and βn.

Before stating the main result of this article, we give and comment the
next and last assumption :

A4 :

{ ∥∥Γ−1/2φ
∥∥
W
< +∞∥∥∥(Γ′′)−1/2 ψ
∥∥∥
L
< +∞ (14)

For the definition of Γ−1/2 and Γ′′−1/2 we refer to (4). Let us explain
briefly what both conditions in (14) mean. To that aim we rewrite the first
by developing Γ−1/2φ in a basis of eigenvectors of Γ, say up

Γ−1/2φ =

+∞∑

p=1

〈φ, up〉√
λp

up

hence
∥∥Γ−1/2φ

∥∥2

W
=

+∞∑

p=1

〈φ, up〉2
λp

The first part of assumption A4 tells us that ”〈φ, up〉 should tend to zero
quickly enough with respect to λp”. In other words φ should belong to an
ellipsöıd of W which may be more or less ”flat” depending on the rate of
decay of the λp’s to zero. Assumption A4 is in fact a regularity condition

on functions φ and ψ : function φ (resp. ψ) should be smoother than X
(resp. X ′).

We could try and state convergence results for φ̂n and ψ̂n separatedly but
it turns out that :

• The real statistical interest of the model relies on its predictive power.
The statistician is mainly interested in ŷn+1, not in φ̂n and ψ̂n in a first
attempt. The issue of goodness of fit tests (involving φ and ψ alone) is
beyond the scope of this article.

• Considering the mean square norm of
〈
φ̂n, Xn+1

〉

W
(instead of φ̂n or

even of
〈
φ̂n, x

〉
W

for a nonrandom x) has a smoothing effect on our
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estimates and partially counterbalance the side effects of the underly-
ing inverse problem as will be seen within the proofs (especially along
Lemma 14).

Turning to ŷn+1, the next question is : what should we compare ŷn+1

with ? The right answer is not yn+1. Obviously we could, but it is also plain
that, due to the random εn+1 the best possible prediction for yn+1 knowing
Xn+1 (or even the ”past” i.e. X1, ..., Xn) is the conditional expectation :

y∗n+1 = E (yn+1|X1, ..., Xn+1) = 〈φ,Xn+1〉W +
〈
ψ,X ′

n+1

〉
.

We are now ready to state the main theoretical result of this article.

Theorem 3 When assumptions A1 − A4 hold the following expansion is
valid for the prediction mean square error :

E
(
ŷn+1 − y∗n+1

)2
= O

(
β2

α2

)
+O

(
1

α2β2n

)

Remark 4 Replacing y∗n+1 with yn+1 is still possible. We may easily prove
that :

E (ŷn+1 − yn+1)
2 = E

(
ŷn+1 − y∗n+1

)2
+ σ2

ε .

Corollary 5 From Theorem 3 above an optimal choice for β is β∗ ≍ n−1/4,
then the convergence rate is :

E (ŷi − y∗i )
2 = O

(
1

α2n1/2

)

and may be quite close from 1/n1/2.

The proof of the Corollary will be omitted. Studying the optimality of
this rate of convergence over the classes of functions defined by A4 is beyond
the scope of this article but could deserve more attention.

Remark 6 Originally the linear model (5) is subject to serious multicolin-
earity troubles since X ′

n = DXn. Even if the curve X ′
n usually looks quite

different from Xn, there is a total stochastic dependence between them. The
method used in this article to tackle this problem (as well as the intrinsic
”inverse problem” aspects related to the inversion of the covariance operators
Γ and Γ′′) is new up to the authors’ knowledge. As it can be seen through
above at display (13) or in the proofs below, it relies on a double penalization
technique first by the index αn then by βn linking both indexes in order to
suppress the bias terms asymptotically .
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Figure 1: Centered original spectra of four samples (256 measures)

7 An application to spectrometric data

In this section we will present an application of the Functional Linear Re-
gression with Derivatives (FLRD) introduced in this paper to a spectroscopic
calibration problem. Quantitative NIR (near-infrared) spectroscopy is used
to analyze food and agricultural materials. The NIR spectrum of a sample
is a continuous curve giving the absorption, that is log10 1/R where R is the
reflection of the sample, against wavelength measured in nanometers (nm).

In the cookie example considered here the aim is to predict the percent-
age of each ingredient y given the NIR spectrum x of the sample (see Osborne
et al. (1984) for a full description of the experiment). The constituents under
investigation are: fat, sucrose, dry flour, and water. There were 39 samples
in the calibration set, sample number 23 having been excluded from the orig-
inal 40 as an outlier, and a further validation set with 31 samples, again after
the exclusion of one outlier.

An NIR reflectance spectrum is available for each dough. The original
spectral data consists of 700 points measured from 1100 to 1498 nm in steps
of 2 nm. Following Brown et al. (2001) we reduced the number of spectral
points to 256 by considering only the spectral range 1380-2400 nm in step of
4 nm. Samples of centered spectra are plotted in Figure 1.
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A classical tool employed in the chemiometric literature for the prediction
of y knowing the associated NIR spectra (xj, j = 1, . . . , 256) is the linear
model:

y =
∑

j=1,256

θjxj + ǫ (15)

The problem then is to use the calibration data to estimate the unknown
parameters θj . Clearly in this application since 39 ≪ 256 the ordinary least
squares fails and many authors proposed to use alternative methods to tackle
the problem: principal component regression (PCR) or partial least squares
regression (PLS). We invite the reader to look at the paper of Frank and
Friedman (1993) for a statistical view of some chemiometrics regression tools.

Following an idea of Hastie and Mallows, in their discussion of Frank and
Friedman’s paper, we consider a spectrum as a functional observation. The
functional Linear Regression (FLR) corresponding to the model 15 defined
above is:

y =

∫

δ

x(t)θ(t)dt+ ε

where y is a scalar random variable, x a real function defined on δ =
[1100, 2400] and θ(t) the unknown parameter function. Brown et al. (2001),
Ferraty and Vieu (2003), Marx and Eilers (2002) or Amato et al. (2006) used
such a model for a prediction problem with spectrometric data.

The model FLRD introduced in this paper can be written as:

y =

∫

δ

x(t)φ(t)dt+

∫

δ

x′(t)ψ(t)dt+ ε

where φ(t) and ψ(t) are unknown functions (see display (5) for an equiv-
alent definition). In this paragraph we compare the performance of PCR,
PLS, FLR, FLRD, Spline Smoothing model proposed by Cardot, Ferraty
and Sarda (2006) and Bayes wavelet predictions proposed by Brown et al.
(2001).

We used the calibration data set for the estimation of parameter functions
φ(t) and ψ(t) and validation data for calculation of the MSEP (Mean Squared
Error of Predictions):

MSEP =
1

31

31∑

j=1

(yj − ŷj)
2

where ŷj is the prediction of yj obtained by the model with estimated pa-
rameters. The choice of the parameters α and β is crucial for the prediction
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model. We used a cross-validation approach based on the evaluation of the
standard error of prediction CVMSEP :

CVMSEP (α, β) =
1

39

39∑

i=1

[
1

38

∑38

j=1
(yci − ŷcj(i;α, β))2],

where ŷcj(i;α, β) denotes the prediction of ycj in the calibration set without
sample i. Results for different methods of prediction of four ingredients are
displayed in Table 1. We used B-spline basis (k = 100) for obtaining predic-
tions with Spline Smoothing, Spline Ridge RLF and Spline RLFD methods.
For each of those methods we give the values of the smoothing or penalty
parameters based on an analogous cross-validation approach.

MSE Validation
Method and parameters Fat Sugar Flour Water
PLS 0.151 0.583 0.375 0.105
PCR 0.160 0.614 0.388 0.106
Spline Smoothing (kn = 8) 0.546 0.471 2.226 0.183
Spline Ridge FLR (β = 0.00002) 0.044 0.494 0.318 0.087
Spline FLRD (α = 0.07, β = 0.15) 0.092 0.450 0.332 0.069
Bayes Wavelet 0.063 0.449 0.348 0.050

Table 1: MSEP criterion for all models (see Brown et al. for results of PLS,
PCR and Bayes wavelet methods).

We note that functional approaches work better then PLS or PCR meth-
ods for the four predicted variables with respect to MSEP criterion. Our
simulation, as noted also by Marx and Eilers (2002), show that functional
methods lead to more stable prediction. The Spline FLRD method produces
in general equivalent results in terms of predictions with the best methods
presented in table 1.

8 Proofs

In the sequel M and M ′ will stand for constants.
Let S and T be two selfadjoint linear operators on a Hilbert space H, we

denote T ≪ S whenever for all x inH, 〈Tx, x〉 ≤ 〈Sx, x〉 then ‖T‖∞ ≤ ‖S‖∞.
The norm in the space L2 (B) where (B, ‖·‖B) is a Banach space is defined

the following way : let X be a random element in the Banach space B, then

‖X‖L2(B) =
(
E ‖X‖2

B

)1/2

14



When the notation is not ambiguous we systematically drop the index B i.e

: ‖X‖L2 =
(
E ‖X‖2

B

)1/2
.

8.1 Preliminary facts :

In order to gain some clarity in the proofs and to alleviate them we first list
a few results stemming from operator or probabillity theory.

Fact 1: If T is a positive operator (either random or not), T + γI is
invertible for all γ > 0 with bounded inverse and

∥∥(T + γI)−1
∥∥
∞

≤ γ−1.
Hence ∥∥Γ†

n

∥∥
∞

=
∥∥Γ†

∥∥
∞

=
∥∥Γ′′†

n

∥∥
∞

=
∥∥Γ′′†

∥∥
∞

= α−1 (16)

Fact 2: As a consquence of assumption A1 and of the strong law of large
numbers for Hilbert valued random elements (see Ledoux, Talagrand (1991)
Chapter 7),

Tn →
n→+∞

T a.s.

whenever Tn = Γn,Γ
′
n,Γ

′∗
n ,Γ

′′
n (resp. T = Γ,Γ′,Γ′∗,Γ′′) since all theses ran-

dom operators may be rewritten as sums of i.i.d. random variables. These
sequences of random operators are almost surely bounded

sup
n

‖Tn‖∞ ≤M a.s. (17)

which also means that

max

(
sup
n

‖δn‖W , sup
n

‖δ′n‖L
)

≤M ′ (18)

since (for instance) δn = Γnφ + Γ′
nψ + en where en is again a sum of i.i.d

random elements :

en =
1

n

n∑

k=1

Xkεk

We also set

e′n =
1

n

n∑

k=1

X ′
kεk

(see below for details).
Fact 3: The Central Limit Thorem in Hilbert spaces (or standards re-

sults on rates of convergence for Hilbert valued random elements in square
norm) provide a rate in the L2 convergence of several random variables of
interest in the proofs. See for instance Ledoux, Talagrand (1991) or Bosq
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(2000) . Whenever Tn = Γn,Γ
′
n,Γ

′∗
n ,Γ

′′
n (resp. T = Γ,Γ′,Γ′∗,Γ′′) we have

E ‖Tn − T‖2
HS = O

(
1
n

)
hence

‖Tn − T‖L2(HS) = O

(
1√
n

)
(19)

since all theses random operators may be rewritten as sums of i.i.d. random
variables.

We begin with proving Proposition 1.
Proof of Proposition 1 :

The method of the proof may be adapted from the model studied in Mas,
Pumo (2006). The couple (φ, ψ) will be identified whenever, for any other
couple (φa, ψa), if

{
δ = Γφ+ Γ′ψ = Γφa + Γ′ψa,
δ′ = Γ′∗φ+ Γ′′ψ = Γ′∗φa + Γ′′ψa.

(φa, ψa) = (φ, ψ). This will be true if
{

Γ (φ− φa) + Γ′ (ψ − ψa) = 0,
Γ′∗ (φ− φa) + Γ′′ (ψ − ψa) = 0.

This means that the couple (φ− φa, ψ − ψa) belongs to the kernel of the
linear operator defined blockwise on W × L by :

(
Γ Γ′

Γ′∗ Γ′′

)
.

As Γ′∗ = DΓ and Γ′′ = DΓ′, the Proposition will be proved if the blockwise
operator defined on W × L and with values in W :

(
Γ Γ′

)
=

(
Γ ΓD∗

)

is one to one. It is plain that the kernel of this operator is precisely the space
N that appears at display (8).

This finishes the proof of the Proposition.
The next two general Propositions are proved for further purpose.

Proposition 7

sup
n

∥∥∥
(
Γ′′†
n

)1/2
Γ′∗
n

∥∥∥
∞
< M a.s.,

sup
n

∥∥∥Γ′
n

(
Γ′′†
n

)1/2
∥∥∥
∞
< M a.s.,

sup
n

∥∥∥
(
Γ′′†

)1/2
Γ′∗

∥∥∥
∞
< M,

sup
n

∥∥∥Γ′
(
Γ′′†

)1/2
∥∥∥
∞
< M.
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Proof. We prove only the first bound since the method may be copied for
the other ones. Set Rn = DΓ

1/2
n then :

Γ′′
n = RnR

∗
n,

(
Γ′′†
n

)1/2
Γ′∗
n = (RnR

∗
n + αI)−1/2RnΓ

1/2
n .

At last,

∥∥∥
(
Γ′′†
n

)1/2
Γ′∗
n

∥∥∥
∞

≤
∥∥∥(RnR

∗
n + αI)−1/2 Rn

∥∥∥
∞

∥∥Γ1/2
n

∥∥
∞
.

It is plain that
sup
n

∥∥Γ1/2
n

∥∥
∞

≤M a.s.

If the Schmidt decomposition of Rn is :

Rn =
∑

k∈N

µk,n (uk,n ⊗ vk,n) ,

(uk,n ∈W, vk,n ∈ L) it is simple algebra to get :

(RnR
∗
n + αI)−1/2 Rn =

∑

k∈N

µk,n√
µ2
k,n + α

(uk,n ⊗ vk,n) (20)

which yields
∥∥∥(RnR

∗
n + αI)−1/2 Rn

∥∥∥
∞

= supk

{
µk,n√
µ2

k,n
+α

}
≤ 1.

Proposition 8
∥∥(Sn + βI)−1

∥∥
∞

≤ 1

β
.

Proof. The proof of this Lemma is similar to Lemma 7.4 in Mas, Pumo
(2006). It was then proved for S instead of Sn and all operators should
be changed to their empirical counterparts (e.g : Γn insted of Γ). We give
a sketch of it. The proof relies on the Schmidt decomposition of Sn. One
would get

Sn = Γ1/2
n Λn (α) Γ1/2

n

where Λn (α) and Γ
1/2
n are symmetric positive operators, which implies that

Sn itself is positive. It suffices then to apply Fact 2 (see the ”Preliminary
facts” subsection) to get the desired result.

17



8.2 Outline of the proof of Theorem 3 :

The following bound is valid :

[
ŷn+1 −

(
〈φ,Xn+1〉W +

〈
ψ,X ′

n+1

〉
L

)]2

=
(〈
φ− φ̂, Xn+1

〉
W

+
〈
ψ − ψ̂, X ′

n+1

〉
L

)2

≤ 2

[〈
φ− φ̂, Xn+1

〉2

W
+

〈
ψ − ψ̂, X ′

n+1

〉2

L

]
.

Then

E

〈
φ− φ̂, Xn+1

〉2

W
= E

[
E

〈
φ− φ̂, Xn+1

〉2

W
|X1, ..., Xn

]

= E

[
E

〈
φ− φ̂, Xn+1

〉2

W
|φ̂

]

= E

[∥∥∥Γ1/2
(
φ− φ̂

)∥∥∥
2

W

]

Similarly,

E

〈
ψ − ψ̂, X ′

n+1

〉2

L
= E

[∥∥∥Γ′′1/2
(
ψ − ψ̂

)∥∥∥
2

L

]

Both preceding equations feature similar expressions. We focus on the term
involving φ ; we will prove that :

E

[∥∥∥Γ1/2
(
φ− φ̂

)∥∥∥
2

W

]
= O

(
β2

α2

)
+O

(
1

α2β2n

)
.

Within the proof the reader will easily be convinced that the method would
lead to an analogous result for the term with ψ. From now in order to alleviate
notations we drop the index φ in Sn,φ and un,φ. The sequences (αn)n∈N

and
(βn)n∈N

will be denoted α and β respectively and for short.
We start from

φ̂n =
(
Γn − Γ′

nΓ
′′†
n Γ′∗

n + βI
)−1 (

δn − Γ′
nΓ

′′†
n δ

′
n

)

= (Sn + βI)−1 un

φ =
(
Γ − Γ′Γ′′†Γ′∗

)−1 (
δ − Γ′Γ′′†δ′

)

= S−1u

18



where we recall that :

u = δ − Γ′Γ′′†δ′,

un = δn − Γ′
nΓ

′′†
n δ

′
n,

S = Γ − Γ′Γ′′†Γ′∗,

Sn = Γn − Γ′
nΓ

′′†
n Γ′∗

n .

The proof relies on the following decomposition :

φ̂n − φ = (Sn + βI)−1 (un − u) +
(
(Sn + βI)−1 − S−1

)
u

= (Sn + βI)−1 (un − u) + (Sn + βI)−1 (S − Sn − βI)S−1u

= An +Bn + Cn (21)

where

An = (Sn + βI)−1 (un − u) (22)

Bn = (Sn + βI)−1 (S − Sn)φ (23)

Cn = β (Sn + βI)−1 φ (24)

Along the forthcoming Lemmas we determine rates of convergence for these
three terms. We will prove that the rate of decrease to zero in L2 norm
is (αβ

√
n)

−1
for An and Bn. The rest of the proof of the main Theorem is

postponed to the end of the next and last subsection.

8.3 Proof of the main Theorem

The first Lemma gives a reta of convergence for Sn − S.

Lemma 9 The following holds :

Sn − S = Γn − Γ′
nΓ

′′†
n Γ′∗

n − Γ + Γ′Γ′′†Γ′∗ = OL2

(
1

α
√
n

)

Proof. First of all by (19) :

‖Γn − Γ‖L2(HS) = O

(
1√
n

)

We focus on

Γ′
nΓ

′′†
n Γ′∗

n − Γ′Γ′′†Γ′∗

= Γ′
nΓ

′′†
n Γ′∗

n − Γ′Γ′′†
n Γ′∗

n + Γ′Γ′′†
n Γ′∗

n − Γ′Γ′′†
n Γ′∗

+ Γ′Γ′′†
n Γ′∗ − Γ′Γ′′†Γ′∗.
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Then dealing with each of these three terms separatedly we get
∥∥Γ′

nΓ
′′†
n Γ′∗

n − Γ′Γ′′†
n Γ′∗

n

∥∥
∞

≤ ‖Γ′
n − Γ′‖∞

∥∥Γ′′†
n Γ′∗

n

∥∥
∞

≤ ‖Γ′
n − Γ′‖∞

∥∥(
Γ′′†
n

)∥∥
∞
‖Γ′∗

n ‖∞
≤ C

‖Γ′
n − Γ′‖∞
α

a.s.

The last bound was derived from (17) and (16).
∥∥Γ′Γ′′†

n (Γ′∗
n − Γ′∗)

∥∥
∞

≤ C
‖Γ′∗

n − Γ′∗‖∞
α

a.s.

At last,

Γ′
(
Γ′′†
n − Γ′′†

)
Γ′∗ = Γ′Γ′′†

n (Γ′′ − Γ′′
n) Γ′′†Γ′∗

= Γ′Γ′′†
n (Γ′′ − Γ′′

n) Γ′′†Γ′∗

= (Γ′ − Γ′
n) Γ′′†

n (Γ′′ − Γ′′
n) Γ′′†Γ′∗

+ Γ′
nΓ

′′†
n (Γ′′ − Γ′′

n) Γ′′†Γ′∗

Then,
∥∥Γ′

(
Γ′′†
n − Γ′′†

)
Γ′∗

∥∥
∞

≤
∥∥(Γ′ − Γ′

n) Γ′′†
n (Γ′′ − Γ′′

n) Γ′′†Γ′∗
∥∥
∞

+
∥∥∥Γ′

n

(
Γ′′†
n

)1/2
∥∥∥
∞

∥∥∥
(
Γ′′†
n

)1/2
(Γ′′ − Γ′′

n)
(
Γ′′†

)1/2
∥∥∥
∞

∥∥∥
(
Γ′′†

)1/2
Γ′∗

∥∥∥
∞

By Proposition 7 the second term may be bounded by

C
∥∥∥
(
Γ′′†
n

)1/2
(Γ′′ − Γ′′

n)
(
Γ′′†

)1/2
∥∥∥
∞

= OL2

(
1

α
√
n

)

since ∥∥Γ′′†1/2
n

∥∥
∞

=
∥∥Γ′′†1/2

∥∥
∞

= α−1/2.

Cauchy-Schwartz inequality yields for the first :

E
∥∥(Γ′ − Γ′

n) Γ′′†
n (Γ′′ − Γ′′

n) Γ′′†Γ′∗
∥∥2

∞

≤M
(

E
∥∥(Γ′ − Γ′

n) Γ′′†
n

∥∥4

∞
E

∥∥(Γ′′ − Γ′′
n) Γ′′†

∥∥4

∞

)1/2

≤M
1

n2α4
,

hence ∥∥(Γ′ − Γ′
n) Γ′′†

n (Γ′′ − Γ′′
n) Γ′′†Γ′∗

∥∥ = OL2

(
1

α2n

)
.

The proof of Lemma 9 is finished.
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Lemma 10 We have :

un − u = OL2

(
1

α
√
n

)
.

Proof. We start with :

un − u = δn − δ + Γ′Γ′′†δ′ − Γ′
nΓ

′′†
n δ

′
n.

Clearly δn − δ = OL2

(
1√
n

)
and we study the second term

Γ′
nΓ

′′†
n δ

′
n − Γ′Γ′′†δ′ = (Γ′

n − Γ′) Γ′′†
n δ

′
n + Γ′

(
Γ′′†
n − Γ′′†

)
δ′n

+ Γ′Γ′′† (δ′n − δ′) .

Since δ′n is almost surely bounded (see (18)), Γ′
n−Γ = OL2

(
1√
n

)
, δ′n−δ′ =

OL2

(
1√
n

)
and

∥∥Γ′′†
∥∥
∞

=
∥∥Γ′′†

n

∥∥
∞

= α−1 we get :

∥∥(Γ′
n − Γ′) Γ′′†

n δ
′
n

∥∥
W

= OL2

(
1

α
√
n

)
,

∥∥Γ′Γ′′† (δ′n − δ′)
∥∥
W

= OL2

(
1

α
√
n

)
.

The remaining term is

Γ′
(
Γ′′†
n − Γ′′†

)
δ′n = Γ′Γ′′† (Γ′′ − Γ′′

n) Γ′′†
n δ

′
n

= Γ′Γ′′† (Γ′′ − Γ′′
n) Γ′′†

n (Γ′∗
nφ+ Γ′′

nψ + u′n) ,

= Γ′
(
Γ′′†

)1/2
(m1 +m2 +m3)

where

m1 =
(
Γ′′†

)1/2
(Γ′′ − Γ′′

n)
(
Γ′′†
n

)1/2 (
Γ′′†
n

)1/2
Γ′∗
nφ,

m2 =
(
Γ′′†

)1/2
(Γ′′ − Γ′′

n) Γ′′†
n Γ′′

nψ,

m3 =
(
Γ′′†

)1/2
(Γ′′ − Γ′′

n) Γ′′†
n e

′
n.

First we drop Γ′
(
Γ′′†

)1/2
since the norm of this operator may be bounded by

a constant independent from α (see Proposition 7). We turn to :

‖m1‖ ≤ M ‖(Γ′′ − Γ′′
n)‖∞

∥∥∥
(
Γ′′†
n

)1/2
∥∥∥
∞

∥∥∥
(
Γ′′†

)1/2
∥∥∥
∞
,

‖m2‖ ≤ ‖ψ‖L
∥∥∥
(
Γ′′†

)1/2
∥∥∥
∞
‖(Γ′′ − Γ′′

n)‖∞
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since
∥∥Γ′′†

n Γ′′
n

∥∥
∞

≤ 1 almost surely. The consequence of the display above is

‖m1‖L2 = O

(
1

α
√
n

)
and ‖m2‖L2 = O

(
1√
αn

)
.

We can deal withm3 as was done within the proof of the preceding Lemma
9. Clearly we may cope with m3 as if the random Γ′′†

n was replaced by the
non random Γ′′†. We should study

[(
Γ′′†

)1/2
(Γ′′ − Γ′′

n)
(
Γ′′†

)1/2
] [(

Γ′′†
)1/2

e′n

]
.

It is enough to get a rate of decrease for each of the these terms. Once again
we have :

∥∥∥
(
Γ′′†

)1/2
(Γ′′ − Γ′′

n)
(
Γ′′†

)1/2
∥∥∥
L2

= O

(
1

α
√
n

)

∥∥∥
(
Γ′′†

)1/2
e′n

∥∥∥
L2

= O

(
1√
αn

)

which completes the proof of Lemma 10.
Now we are ready to go back to (22) and (23) as announced sooner.

Lemma 11 We have :

An = OL2

(
1

αβ
√
n

)
,

Bn = OL2

(
1

αβ
√
n

)
.

Proof. Since
‖An‖ ≤

∥∥(Sn + βI)−1
∥∥
∞
‖un − u‖W

by Lemma 10 and Proposition 8 we get the first desired result
Once again the proof of the second relies on Proposition 8 and Lemma 9.

Indeed

‖Bn‖W ≤
∥∥(Sn + βI)−1

∥∥
∞
‖S − Sn‖∞ ‖φ‖W

≤ ‖φ‖W
β

‖S − Sn‖∞

hence the result.
We should deal with the last term. In a first step we prove that Sn may

be replaced by S.

Lemma 12 When αβ
√
n→ +∞,

Cn = β (S + βI)−1 φ (1 + o (1)) .
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Remark 13 The preceding equality should be understood with respect to the
L2 norm.

Proof. Successively,

Cn = β (Sn + βI)−1 φ

= β
(
(Sn + βI)−1 − (S + βI)−1)φ+ β (S + βI)−1 φ

=
[(

(Sn + βI)−1 (S − Sn)
)

+ I
]
β (S + βI)−1 φ

and

‖Cn‖ ≤
∥∥β (S + βI)−1 φ

∥∥
W

(
1 +

∥∥(Sn + βI)−1 (S − Sn)
∥∥
∞

)
.

Now it suffices to apply Lemma 11 to get the desired result.
The next Lemma may be hard to understand at first glance. Within the

forthcoming proof of Theorem 3 the bias term Cn will slightly change. We
refer to displays (28) and (29) below for a deeper understanding.

Lemma 14 The following holds :

∥∥Γ1/2 (S + βI)−1 Γ1/2
∥∥
∞

= O

(
1

α

)
.

Proof. Once again it takes two steps to get the result. First note that
Γ1/2 (S)−1 Γ1/2 is a bounded linear operator. Indeed

S = Γ − Γ′Γ′′†Γ′∗ = Γ1/2ΛαΓ
1/2 (25)

where R = DΓ1/2,
Λα = I −R∗ (RR∗ + αI)−1R.

The Schmidt decomposition of R is (see (20) above for the empirical version)
:

R =
∑

k∈N

µk (uk ⊗ vk) .

where (uk)k∈N
(resp. (vk)k∈N

) is a complete orthonormal system in W (resp.
L). Hence :

Λα =
∑

k∈N

(
1 − µ2

k

µ2
k + α

)
(uk ⊗ uk)

=
∑

k∈N

α

µ2
k + α

(uk ⊗ uk) .
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The operator Λα has a bounded inverse

Λ−1
α =

1

α

∑

k∈N

(
µ2
k + α

)
(uk ⊗ uk)

and ‖Λ−1
α ‖∞ = 1 + (supµ2

k) /α ≤ M/α for M large enough (or α small
enough).
Hence

Γ1/2 (S)−1 Γ1/2 = Γ1/2Γ−1/2Λ−1
α Γ−1/2Γ1/2 = Λ−1

α . (26)

Now (second step) we prove that :

Γ1/2 (S + βI)−1 Γ1/2 ≪ Γ1/2S−1Γ1/2.

Let us pick a given x in W , then

〈
Γ1/2 (S + βI)−1 Γ1/2x, x

〉
W

=
〈
(S + βI)−1 Γ1/2x,Γ1/2x

〉
W

It suffices to get for all y in in the domain of operator Γ−1/2 :

〈
(S + βI)−1 y, y

〉
W

≤
〈
S−1y, y

〉
W

(27)

Standard results on the spectrum of (S + βI)−1 S prove that (S + βI)−1 S ≥
0 and that

∥∥(S + βI)−1 S
∥∥ ≤ 1 which is enough to claim (27).

We are now in position to finixh the proof of the Lemma. It is plain from
(27) that

∥∥Γ1/2 (S + βI)−1 Γ1/2
∥∥
∞

≤
∥∥Γ1/2 (S)−1 Γ1/2

∥∥
∞

=
∥∥Λ−1

α

∥∥
∞

≤ C

α

which is the claimed result.

Proof of Theorem 3:
Now starting from (21) we get

∥∥∥Γ1/2
(
φ− φ̂

)∥∥∥
2

W
≤M

∥∥Γ1/2 (An +Bn + Cn)
∥∥2

W

≤M
(
‖An‖2

W + ‖Bn‖2
W +

∥∥Γ1/2Cn
∥∥2

W

)
. (28)

Lemmas 11 gives the rates of convergence for ‖An‖2
W and ‖Bn‖2

W respec-
tively. But Lemma 12 is unfortunately not enough to get a rate in the last
term. However this previous Lemma enables to focus on :

βΓ1/2 (S + βI)−1 φ = βΓ1/2 (S + βI)−1 Γ1/2Γ−1/2φ (29)
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and ∥∥Γ1/2Cn
∥∥2

W
≤Mβ2

∥∥Γ1/2 (S + βI)−1 Γ1/2
∥∥2

∞

∥∥Γ−1/2φ
∥∥
W
. (30)

By assumption A4,
∥∥Γ−1/2φ

∥∥
W

is finite. We deal with the central term,
namely :

Γ1/2 (S + βI)−1 Γ1/2 = Γ1/2
(
Γ1/2ΛαΓ

1/2 + βI
)−1

Γ1/2

≪ Γ1/2
(
Γ1/2ΛαΓ

1/2
)−1

Γ1/2 = Λ−1
α .

(see (25)) and ∥∥Λ−1
α

∥∥2

∞
= O

(
α−2

)
.

Collecting this last display with (30) we get

∥∥Γ1/2Cn
∥∥2

W
= O

(
β2

α2

)
.

This finishes the proof of Theorem 3.
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