
HAL Id: hal-00104266
https://hal.science/hal-00104266v1

Preprint submitted on 6 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Developing Specifications by using Operators: a Process
to guarantee correctness by construction

Dieu Donné Okalas Ossami, Jeanine Souquières, Jean-Pierre Jacquot

To cite this version:
Dieu Donné Okalas Ossami, Jeanine Souquières, Jean-Pierre Jacquot. Developing Specifications by
using Operators: a Process to guarantee correctness by construction. 2006. �hal-00104266�

https://hal.science/hal-00104266v1
https://hal.archives-ouvertes.fr

Developing Specifications by using Operators: a Process
to guarantee correctness by construction

Dieu Donné Okalas Ossami, Jeanine Souquières, and Jean-Pierre Jacquot

LORIA - Université Nancy 2 - UHP Nancy 1
Campus scientifique, BP 239

54506 Vandœuvre-lès-Nancy Cedex - France
Email: {okalas,souquier,jacquot}@loria.fr

Abstract. We propose a process model for the development of specifications
based on the notions of multi-view state and of operators. A specification state
consists of a UML view and a B expression of the same specification. Opera-
tors model design decisions as the simultaneous transformation of UML and B
descriptions. A specification development is a sequence of applications of oper-
ators. We define a notion of coherence of a specification statewhich allows us
to define formally a notion of correctness for operators. Thus, the development
process guarantees that the specification can be safely verified and validated.

Keywords: consistency, correctness, verification, validation, operator, develop-
ment process, multi-view, UML, B.

1 Introduction

Experience has shown that the most critical and least supported phases of the software
life cycle are requirement analysis and specification. Errors and misconceptions in the
requirements will be passed on the system specifications andfrom them down the pro-
cess to show up ultimately in the programs. Formal specifications could greatly help in
reducing the amount of errors because of the absence of ambiguity in formal texts and
the availability of powerful analysis techniques and prototyping tools. However, formal
specifications are hard to write and, more importantly, hardto read; this raises the prob-
lem of the validation of the specification. We believe that the effective availability of
tools supporting specification development could greatly help in promoting the use of
formal specifications by practitioners. Tool support should include guidance during the
specification development process; it should enable users to develop specifications in
an intuitive fashion by separating the use of design concepts from the technical details
of how they are captured in specification languages. The specification development pro-
cess should be problem oriented instead of language oriented.

Validation requires users of the system to be able to “read” the specification, hence the
importance of graphical notations. Verification requires aformal notation. The current
issue is that no single language offers both kinds of notation. Is it possible to combine
graphical notations and formal languages? Currently, there are two mains streams of
specification languages: graphical notations such as UML [22] and mathematical nota-
tions such as B [1]. Our goal is to design a framework where both kinds of notations
can be used together to fulfill the needs of all the people involved. Our approach aims

1

at capitalising on existing languages rather than at defining a new one. This allows us to
reuse the efforts that have been out in the production of industrial tools such as Rational
Rose1 or ArgoUML2 for the edition of UML diagrams, and such asl’Atelier B [26],
B-Toolkit[3], or B4Free [4] for the formal verification of specifications. Our framework
supports multi-view specification activity by providing assistance during the develop-
ment process. Its key is the notion of operator: the development of a specification is
defined as a sequence of steps, each of which maps a development state to the next by
the application of an operator.

The formalisation of object-oriented concepts has prompted many research works. Three
general approaches are identified in the literature: (1) extension of formal notations with
object-oriented concepts, (2) extension of object-oriented notations with formal nota-
tions, and (3) method integration between object-orientedand formal notations. Z++
[12] and Object-Z [5] are examples of the first approach whereZ [25] is supplemented
with object-oriented concepts and notations. In the secondapproach, parts of the in-
formal specifications expressed in natural language are replaced by formal statements
expressed in a well-known formal language, e.g. Syntropy [6]. In the third approach,
transformation rules are defined which translate specification written in one formalism
into an “equivalent” specification written in another formalism. One instance of this
approach is UML to B transformation: it allows specifiers to use formal techniques and
tools to check the specification. Transformation provides us with automated support to
generate a B specification from UML diagrams [10, 18, 14, 23] taking into account OCL
constraints [15, 17]. Another instance is B to UML transformation: it eases the valida-
tion by the generation of UML diagrams (class diagrams and state diagrams) from a B
specification [7, 8, 27].

One major problem in UML and B integration approaches is maintaining the consis-
tency when the specification evolves. Currently, UML and B integration approaches
offer either UML to B [16, 24] or B to UML transformations [28]but not both in the
same tool. Several reasons account for this state of affair,but the net result is the prac-
tical impossibility to define a process where both kinds of transformation can be sym-
metrically used. As a consequence, UML to B or B to UML transformation induces a
sequential development process where: (i) a new specification in the target formalism
is generated each time the rules are used. Thus, any information that was previously
added in the generated specification is lost and must be redesigned; (ii) the modifica-
tions brought into the generated specification cannot be retrofitted. This raises the issue
of consistency between the current B specification and its corresponding UML specifi-
cation [11].

The paper is organised as follows. Section 2 presents the approach with a definition of
the consistency relation between two developments steps toensure the correctness of
the construction. Section 3 presents a selection of development steps on the generalised
railroad crossing case study. Section 4 concludes the paper.

1 http://www-306.ibm.com/software/rational
2 http://www.argouml.tigris.org

2

2 Description of the approach

Our approach aims at modelling a process for developing specifications expressed si-
multaneously in an object oriented notation graphical (UML) and in a formal notation
(B). Formal and semi-formal descriptions are built by successive approximations. Op-
erators are the central notion: they capture strategies anddesign concepts. They enable
the user to develop specifications in an intuitive fashion byseparating the use of design
concepts from the technical details of how they are capturedin the chosen specification
languages. Different development strategies can be modelsas libraries of operators. It
is possible to provide users with flexible development processes.

2.1 Specification state

The process model we have developed is strongly inspired by the transformation ap-
proaches. The final specification results from a sequence of applications of transform-
ers:operators. An operator is applied to aspecification stateand produces a new spec-
ification state.
A specification state consists in two views. The UML view provides users with a graph-
ical notation and access to validation tools. The B view provides users with a formal
notation and access to verification tools. The fundamental point is that the views are
two different expressionsof thesame specification. A state is noted as:

Spec= 〈SpecUML, SpecB〉

2.2 Development operators and development step

A development operator transforms simultaneously the UML and the B views [19].
Often, the application of an operator requires some input from the user. This is modelled
as operator parameters. An operator consists of:

– an application condition; it is a predicate on the current development state. It must
hold for ensuring the preservation of the consistency property of the specification
Specafter the application of the operator;

– a description of the actions onSpecUMLandSpecB, notedOUML andOB and
– hints about operators that can be applied next; those can be used to assist users in

following a development strategy.

Libraries of development operators support the modelling of strategies. At each devel-
opment step, the specifier chooses an operator in the libraryand provides it with the
required parameters. If the application condition holds onthe correct state, the actions
are conducted to lead to a new development state.

2.3 Correctness by construction

Our development model is based on the idea that applying a “correct” operator on a
“correct” state leads to a new “correct” state. The questionis now to define what “cor-
rect” means precisely.

3

We propose to define the correction of a specification state bya consistency relation
between its views. Let us denoteRelC the consistency relation betweenSpecUMLand
SpecB.

Let TU→B be the set of UML to B transformation rules [13, 18] which associate each
UML artifact with one or more B artifacts. These transformations are relative to UML 1.x
[21]. RelC is defined as a conjunction of four conditions:

1 Syntactic conformance.It states that bothSpecUMLandSpecBmust be well-formed.
It ensures that the specification conforms to abstract syntax specified by the meta-
model, i.e. UML meta-model or B abstract syntax tree. LetWF(SpecUML) and
WF(SpecB) be two predicates defining if a UML and a B specifications are well-
formed.

2 Local consistency.It requires that both specifications must be internally consistent.
That means they do not contain contradictions, but they could be incompletely de-
fined. We write itconsistent(SpecUML)andconsistent(SpecB).

Global consistency is defined with respect to UML to B transformation rules designed
by Meyer, Souquières and Ledang [13, 18].

3 Elements traceability.It states that for any elements ofID(SpecUML), eU, that can
be transformed by a ruleT, there exists inID(SpecB)a set of artifacts{eB} result-
ing from the application ofT to eU.

4 Semantic preservation.It states that any statementφ satisfying the semantics of
SpecUMLmust satisfySpecB. The semantics ofSpecUMLis defined asTU→B

(SpecUML). This means that UML artifacts that have no B semantics defined in
TU→B are not concerned by the consistency relationRelC. This has important im-
plications throughout the verification process. For example, it is well known that
checking pairwise integration of a set of software specifications is only possible if
one is able to transform them into a semantic domain supported by tools. B is our
semantic domain and any UML statement that has no B formalisation cannot be
verified in our framework.

Oi

OUML

OB

RelC RelC

SpecUML SpecUML′

SpecB SpecB′

Fig. 1.Correctness of an operatorOi

We use the B theorem prover to prove that a statementφ holds inSpecB(condition
(2)) and due tocondition (3), we derive the consistency ofSpecUML, and therefore the
consistency of the multi-view specificationSpec.

4

Definition 1 (Consistency relation)
SpecUMLRelC SpecB:

(1) WF(SpecUML) ∧ WF(SpecB)

(2) consistent(SpecUML)∧ consistent(SpecB)

(3) ∀ eU.(eU ∈ ID(SpecUML|TU→B
) a ⇒

∃ {eB}, T.({eB} ⊆ ID(SpecB)∧ T ∈ TU→B ∧ T(eU) = { eB}))

(4) ∀ φ.(TU→B(SpecUML)b � φ ⇒ SpecB� φ))

a SpecUML|TU→B
denotes the restriction ofSpecUMLto elements for which there is a

transformation rule to B defined inTU→B
b

TU→B(SpecUML) denotes the application of the set of UML to B transformation rules
onSpecUML

The notion of correctness for operators is then easy to derive: an operator is correct iff
its application on a state whereSpecUMLandSpecBare consistent and its application
condition holds leads to a state whereOUML(SpecUML) andOB(SpecB) are consistent,
see Figure 1. Proof that an operator is correct may not be easybut once done, it ensures
thatall applications of that operator produce consistent specifications.

3 A small case study

onnear

R

far
far

Train

Fig. 2.The generalised railroad crossing

We consider the generalised railroad cross-
ing case study, called theGRC problem [9].
The system to be specified aims at control-
ling a gate at a railroad crossing so that trains
can safely go through. The informal text de-
scribes the problem as a monitoring of trains.
The GRC lies in a region of interestR, as
presented in Figure 2. Trains travel in one di-
rection throughR, which is decomposed into
three regions :far, nearandon. The regions
determine the position of trains inR. Each of

these regions has a light signal, which may bered, yellowor greenand which is seen by
the train when it leaves the previous region and enter the next. A train leaves a region
when its last carriage leaves the region. It is at this point that lights state may change
and require the train to stop.
We present three development steps to illustrate our approach; we start from this infor-
mal description. For each step, we give the idea we follow, the operator chosen in the
library with its parameters and the new state produced by theapplication of the operator
on the current state of the specification. In the new specification state, the new UML
part is written in bold face and the new B part is in a box. For more information on the
definition of operators, see [19]. For space reasons, we willconcentrate on the definition
of the train component.

5

3.1 First development step

From the informal requirement, we identify three states (far, near, on) and three events
(enter, cross, leave) which change the state of the train when it arrives, crossesor leaves
the regionR. This leads us to use the classical specification technique of introducing
a state machine to model the description. This technique is captured in the operator
calledModel-StateMachine. The required parameters are easily extracted from the text
description and the application of the operator leads to thedevelopment state presented
in Figure 3. The resulting UML view is composed of a class diagram with one class
(Train) and an enumeration (the states), and of a state-transitiondiagram. Three ma-
chines and a refinment have been introduced in the B view.

Model−StateMachine(Train, {(far, enter, near), (near, cross, on), (on, leave, far)})

far
near
on

«enumeration»
TRAIN_STATES

far near

on

Train

+state : TRAIN_STATES

+enter()

Train
enter()/

leave()/ cross()/+cross()
+leave()

MACHINE Types
SETS
OBJECTS;
TRAIN STATES =;

{far, near, on}
CONSTANTS
TRAIN

PROPERTIES
TRAIN ⊆ OBJECTS
END

MACHINE Train
SEES Types

VARIABLES
train, Train state

INVARIANT
train ⊆ TRAIN ∧
Train state ∈ train → TRAIN STATES
INITIALISATION
ANY tt
WHERE

tt ⊆ TRAIN ∧
tt 6= {}

THEN
train := tt ||
Train state := tt × TRAIN STATES

END
OPERATIONS
Train TransFarNear(oo) =
PRE

oo ∈ train ∧
Train state(oo) = far

THEN
Train state(oo) := near

END;
...
END

MACHINE System
SEES Types
INCLUDES Train

OPERATIONS
enter(oo) =
PRE

oo ∈ train
THEN

skip
END;
...
END

REFINEMENT Systemref
REFINES System
SEES Types
INCLUDES Train

OPERATIONS
enter(oo) =
PRE

oo ∈ train
THEN

Tran TransFarNear(oo)
END;
...
END

Fig. 3.Application of theModel-StateMachine operator at the beginning of the development

6

3.2 Introduction of different kinds of train

Model−StateMachine(TrainM, {(far, enter, near), (far, wait, stopped),
(stopped, restart, near), (near, cross, on), (on, leave, far)});

Model−StateMachine(TrainV, {(far, enter, near), (near, cross, on), (on, leave, far)})

context Train inv :

self −> forAll (tr | tr : Train

implies (tr.pos = near implies tr.Ht > 2 and and

tr.pos = on implies tr.Ht < 2))

TRAIN_STATES

«enumeration»

far

near

on

+state: TRAIN_STATES

TrainV

+enter()

+state : TRAIN_STATES

+Ht : Int

Train

+state: TRAINM_STATES

TrainM

+enter()near
on
stopped

far

«enumeration»
TRAINM_STATES

far near

on

Train

far near

on

TrainV

far

on

near

stopped

TrainM

tr.Ht < 5

+cross()
+leave()

+enter()

+cross()

+leave()

+cross()
+leave()
+wait()
+restart()

enter()/

leave()/ cross()/

enter()/

leave()/ cross()/ cross()/

enter()/

leave()/

restart()/

wait()/

MACHINE Types
SETS
...
TRAINM STATES

{far, near, on, stopped}
CONSTANTS
...
TRAINV, TRAINM

PROPERTIES
...
TRAINM ⊆ OBJECTS ∧
TRAINV ⊆ OBJECTS

END

MACHINE Train
...
END

MACHINE System
SEES Types
INCLUDES Train,

TrainM, TrainV

OPERATIONS
enter(oo) = ...

...
wait(oo) = ...

...

END

MACHINE TrainV
SEES Types
VARIABLES
trainv, TrainV state

INVARIANT
trainv ⊆ TRAINV ∧
TrainV state ∈

trainv → TRAIN STATES
INITIALISATION
...
OPERATIONS
TrainV TransFarNear(oo) = ...

...
END

MACHINE TrainM
SEES Types
VARIABLES
trainm, TrainM state

INVARIANT
trainm ⊆ TRAINM ∧
TrainM state ∈

trainm → TRAINM STATES
INITIALISATION
...
OPERATIONS
TrainM TransFarNear(oo) = ...

TrainM TransFarStopped(oo) =
...

...
END

REFINEMENT Systemref
REFINES System
SEES Types
INCLUDES Train, TrainM, TrainV
OPERATIONS
enter(oo) = ...

PRE
oo ∈ OBJECTS

THEN
IFoo ∈ train
THEN

Train TransFarNear(oo)

ESLE IFoo ∈ trainv
THEN

TranV TransFarNear(oo)
ELSE IFoo ∈ trainm
THEN

TranM TransFarNear(oo)

ELSEskip
END END

END;

wait(oo) = ...

restart(oo) = ...

...
END

Fig. 4. Introduction of two kinds of trains

7

Further analysis of the problem indicates that different kinds of trains are authorised to
travel on the GRC: freight trains and passenger trains. The following characteristics are
identified:

– freigth trains can stop when they reach the statefar after the eventwait occurs.
They go from the statestoppedto the statenearwhen the eventrestartoccurs;

– passenger trains are of two types,TGV andTrainCorail.

To introduce the different trains, we have a choice between at least two development
approaches: passenger and freight trains can be modeled independantly from theTrain
entity, or they can be modeled as specialisation of theTrain entity. Let us use the first
approach which corresponds to a bottom-up strategy.
We use again theModel-StateMachineoperator, once for the freigth trains (TrainM) and
once for the passenger train (TrainV). The new specification state is presented in Figure
4. Two classes, one enumeration, two state diagrams have been introduced in the UML
view. Two new machines have been introduced and three other entities (Types, System,
andSystemref) have been updated in the B view.

Note that there is a development step missing here; namely the one concerning the
addition of the invariant with associated attributHt on which the invariant is expressed
in the context the classTrain.

3.3 Generalisation

The bottom-up approach lead to introduce three unconnectedentities. A close look on
the diagrams and machines reveals strong similarities. In fact, we have modeled twice
the same general behaviour. Moreover, we have now enough knowledge of the problem
to realize thatenter, crossand leaveare three instances of the same behaviour:move.
This situation is quite common while developing specification and can be solved by
generalising.
A generalisation operatorGeneralize-Operation models this approach. We se-
lect the parameters to indicate thatTrainV andTrainM are subkinds ofTrain and that
one operation,move, replaces the other three.
The new specification state is presented Figure 5. We can notethat the UML view has
been augmented with inheritance relations and the attribute lists of the classes have
been adapted. The B view shows modifications in the classes. It should be noted that
the B view undergoes many modifications, but all of them are systematic and easily
computed.
Each operator that we used in this development case study canbe proved to be correct.
Hence, we are ensured that a verification of the B view with a B prover and a validation
on the UML view are two checking processes for the same specification.

8

Generalize−Operation({enter, cross, leave}, {TrainV, TrainM}, Train, move)

«enumeration»

TRAIN_STATES

far

near

on

TRAINM_STATES

«enumeration»

far

near

on

stopped

far

on

near

stopped

TrainM

far near

on

TrainV

far near

on

context Train inv :

self −> forAll (tr | tr : Train

implies (tr.pos = near implies tr.Ht > 2 and and

tr.pos = on implies tr.Ht < 2))

TrainMTrainV

context

self −> forAll(e | e : classifier and self.isSuperClass(e)

implies self −> includesAll(e))

Train inv :

+state: TRAINM_STATES
+state: TRAIN_STATES

+Ht : Int

Train

+state : TRAIN_STATES

TrainV

cross()/

enter()/

leave()/

restart()/

wait()/

leave()/ cross()/

enter()/

tr.Ht < 5

+wait()

+restart()

+move()

move()[Ht<4]/

move()[Ht>4 and Ht<10]/Ht := 0

move()[Ht>2 and Ht<5]/Ht := 0

move()/Ht := 0

move()[Ht<2]/

MACHINE Types
SETS
...
PROPERTIES
TRAINV ⊆ TRAIN ∧
TRAINM ⊆ TRAIN

END

MACHINE Train
...
OPERATIONS
Train TransFarNear(oo) = ...

Train TransNearOn(oo) =
PRE

oo ∈ train ∧

Train state(oo) = near

(Train Ht(oo) > 2 ∧
Train Ht(oo) < 5) ∨
(Train Ht(oo) > 4 ∧
Train Ht(oo) < 10)

THEN
Train state(oo) := on ||
Train Ht(oo) := 0

END;
...
END

MACHINE TrainV
SEES Types

EXTENDS Train
...

INVARIANT
...
TrainV Ht ∈ trainv → NAT

trainv ⊆ train
...
OPERATIONS
TrainV TransFarNear(oo) =
...
END

MACHINE TrainM
SEES Types

EXTENDS Train
...

INVARIANT
...
TrainM Ht ∈ trainm → NAT

trainm ⊆ train
...
OPERATIONS
TrainM TransFarNear(oo) =
...
END

MACHINE System
SEES Types
INCLUDES Train, TrainM, TrainV
OPERATIONS
move(oo) =
...

...

END

REFINEMENT Systemref
REFINES System
SEES Types
INCLUDES Train, TrainM, TrainV
INVARIANT

TRAINV ∩ TRAINM :=
∅

OPERATIONS
move(oo) =
PRE

oo ∈ OBJECTS
THEN

IF oo ∈ trainv
THEN

TrainV TransFarNear(oo);
TrainV TransNearOn(oo);
TrainV TransOnFar(oo)

ELSE IF oo ∈ trainm
THEN

TrainM TransFarNear(oo);
TrainM TransNearOn(oo);
TrainM TransOnFar(oo)

ELSE
Train TransFarNear(oo);
Train TransNearOn(oo);
Train TransOnFar(oo)

END

Fig. 5.Application of theGeneralize-Operation operator on the specification state of FIG 4

9

In ordr to avoid indeterminisms in the state diagram associated to the super-classTrain
due to the replacement of theenter, cross and leave by move, somme guards have
been added to corresponding transitions. This is done by using the appropriate operator
present in operators’ library.

4 Conclusion

This paper presents a specification development process which integrates the use of
several formalisms. The key notion is the operator which models and implements a
property of correctness for the evolution of a multi-view specification. The idea to mix
different formalisms is not new but was hampered by the problem of maintaining the
consistency between the two specifications. Operators solve this problem. They enable
users to develop specifications in an intuitive fashion by separating the use of design
concepts from the technical details of how they are capturedin specification languages.
They offer flexibility since it is possible to define libraries of operators capturing al-
ternative definitions of particular concepts and strategies. They allow us to model the
development of a specification as a process of successive approximation. The purpose
of operators is to capture the specifiers’ knowledge.

The benefits of the approach can be summed up as follows:

– separation of concern. Operators enable the specifier to focus on methodological
issues and on problem solving issues rather than to focus on how to express them
in the target languages;

– documentation. The use of two complementary languages, onegraphical and object-
oriented and the other formal, makes the specification easier to understand and help
the developers to verify and refine the system under development;

– support for guidance. At any stage of the construction process, the specifier knows
what remains to be done. Libraries of operators with a liberal use of the “remain
to be done” clause can be constructed to model and enforce particular development
strategies. In addition, operators preconditions lower the risk of mis-using opera-
tors;

– correctness by construction. As the correctness of each operator has been defined,
the specification obtained by the application of operators is proved to be correct.

Operators can be compared with specification templates introduced in [29], where a
template formalises a Lotos specification style for OSI as a fragment of specification
text that can be conveniently retrieved and inserted in a specification. To enhance the
value of such templates and to increase their generality, templates are parameterised.

An implementation of this framework with some operators is under development. It is
an extension of theArgoUML+B [16] platform, allowing to automatically transform
some UML diagrams to B specifications (ArgoUML+B is based on theArgoUML3

project, dedicated to the edition and design of UML diagrams). This extension includes
SmartTools[2, 20] to dynamically represent B specifications as instances of the B AST
(abstract syntax tree), taking into account the multi-viewspecification.
3 http://www.argouml.tigris.org

10

References

[1] J.R. Abrial. The B Book -Assigning Programs to Meanings.-. Cambridge University Press,
1996. ISBN 0-521-49619-5.

[2] I. Attali, C. Courbis, P. Degenne, A. Fau, J. Fillon, D. Parigot, C. Pasquier, and C. S.
Coen. SmartTools: a development environment generator based on XML technologies.
In In XML Technologies and Software Engineering. ICSE workshop, 2001.

[3] Oxford(UK) B-Core(UK) Ltd.B-Toolkit User’s Manual. 1996.
[4] B4Free. avaible at : http://www.b4free.com/.
[5] D.A. Carrington, D. Duke, R. Duke, P. King, G.A. Rose, andG. Smith. Object-Z: An

object-oriented extension to Z. InFormal Description Techniques II, FORTES’89, pages
281–296, 1990.

[6] S. Cook and J. Daniels. Let’s get formal.Journal of Object-Oriented Programming
(JOOP), pages 22–24 and 64–66, 1994.

[7] F. Houda and S. Merz. Transformation de spécifications B en diagrammes UML. InPro-
ceedings of AFADL’04, 2004.

[8] A. Idani and Y. Ledru. Object Oriented Concepts Identification from Formal B Specifica-
tions. In9th Int.Workshop on Formal Methods for Industrial CriticalSystems, FMICS’04,
2004.

[9] L. Jansen and E. Schnieder. Traffic control system case study: Problem description and a
note on domain-based software specification. Technical report, Colorado State University,
January, 2000.

[10] R. Laleau and F. Polack. A Rigorous Metamodel for UML Static Conceptual Modelling
of Information Systems. InAdvanced Information Systems Engineering. 13th Int. Conf.,
CAiSE 2001, volume 2068 ofLNCS, pages 402–416. Springer, 2001.

[11] R. Laleau and F. Polack. Coming and Going from UML to B : A Proposal to support Trace-
ability in Rigorous IS Development. InZB’2002 – Formal Specification and Development
in Z and B, pages 517–534, 2002.

[12] K. Lano. Z++, an object-orientated extension to z. InProceedings of the Fifth Annual Z
User Meeting, pages 151–172. Springer-Verlag, 1991.

[13] H. Ledang and J. Souquières. Modeling class operationsin B: application to UML behav-
ioral diagrams.ASE2001: 16th IEEE Int. Conf. on Automated Software Engineering, IEEE
Computer Society, 2001.

[14] H. Ledang and J. Souquières. Integrating Formalizing UML Behavioral Diagrams with B.
Workshop on Integration and Transformation of UML models, 2002.

[15] H. Ledang and J. Souquières. Integration of UML and B Specification Techniques: Sys-
tematic Transformation from OCL Expressions into B. InAPSEC 2002, IEEE Computer
Society, 2002.

[16] H. Ledang, J. Souquières, and S. Charles. ArgoUML+B : Unoutil de transformation sys-
tématique de spécifications UML vers B. InProceedings of AFADL’03, 2003.

[17] R. Marcano and N. Levy. Using B formal specifications foranalysis and verification of
UML/OCL models. In L. Kuzniarz, G. Reggio, J. L. Sourrouille, and Z. Huzar, editors,
Workshop on Consistency Problems in UML-based Software Development, pages 91–105,
2002.

[18] E. Meyer and J. Souquières. A systematic approach to transform OMT diagrams to a B
specification. InProceedings of the Formal Method Conference, number 1708 in LNCS,
pages 875—895. Springer-Verlag, 1999.

[19] D. Okalas Ossami, J. Souquières, and J-P. Jacquot. Consistency in UML and B multi-view
specifications. In LNCS, editor,Proceeding of the International Conference on Integrated
Formal Methods, IFM’05, number 3771, pages 386–405, 2005.

[20] D. Parigot and C. Courbis. avaible at : http://www-sop.inria.fr/smartool/.
[21] J. Rumbaugh, I. Jacobsen, and G. Booch.Unified Modeling Language Reference Manual.

Addison-Wesley, 1997.
[22] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Modeling Language Reference

Manual. Addison-Wesley, 1998. ISBN 0-201-30998-X.
[23] C. Snook, M. Butler, and I. Oliver. Towards a UML profile for UML-B. Technical report,

DSSE-TR-2003-3, Electronics and Computer Science, University of Southampton, 2003.

11

[24] C. Snook and M. Buttler. U2B: a tool for combining UML andB. Avaible at
http://www.ecs.soton.ac.uk/ cfs/U2Bdownloads/.

[25] J.M. Spivey.The Z Notation: A Reference Manual. Prentice Hall, 1992.
[26] STERIA. Manuel de référence du langage B. -ClearSy-, novembre, 1998.
[27] B. Tatibouet and J.-C. Voisinet. Generating statecharts from B specifications. In16th Int.

Conf. Software & Systems Engineering and their applications, ICSSEA’2003, 2003.
[28] B. Tatibouet and J.C. Voisinet. jBtools and B2UML : a plateform and a tool to provide a

UML class diagram since a B specification. InICSSEA : 14th Int. Conf. on Software and
Systems Engineering and Their Applications, volume 2, 2001.

[29] K. J. Turner. Relating architecture and specification.Computer Networks and ISDN Sys-
tems, April 1996.

12

