N

N

Developing Specifications by using Operators: a Process
to guarantee correctness by construction

Dieu Donné Okalas Ossami, Jeanine Souquieres, Jean-Pierre Jacquot

» To cite this version:

Dieu Donné Okalas Ossami, Jeanine Souquieres, Jean-Pierre Jacquot. Developing Specifications by
using Operators: a Process to guarantee correctness by construction. 2006. hal-00104266

HAL Id: hal-00104266
https://hal.science/hal-00104266

Preprint submitted on 6 Oct 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00104266
https://hal.archives-ouvertes.fr

Developing Specifications by using Operators: a Process
to guarantee correctness by construction

Dieu Donné Okalas Ossami, Jeanine Souquiéres, and Jeae-Riequot

LORIA - Université Nancy 2 - UHP Nancy 1
Campus scientifique, BP 239
54506 Vandceuvre-lés-Nancy Cedex - France
Email: {okalas,souquier,jacquot}@loria.fr

Abstract. We propose a process model for the development of speaificati
based on the notions of multi-view state and of operatorspécification state
consists of a UML view and a B expression of the same speéditaDpera-
tors model design decisions as the simultaneous transfarmaf UML and B
descriptions. A specification development is a sequencemfcations of oper-
ators. We define a notion of coherence of a specification stateh allows us
to define formally a notion of correctness for operators. S tthe development
process guarantees that the specification can be safefiedaand validated.

Keywords: consistency, correctness, verification, validation, afmt develop-
ment process, multi-view, UML, B.

1 Introduction

Experience has shown that the most critical and least stggbphases of the software
life cycle are requirement analysis and specification. iSremd misconceptions in the
requirements will be passed on the system specification§ramdthem down the pro-
cess to show up ultimately in the programs. Formal specificatcould greatly help in
reducing the amount of errors because of the absence of aitybiig formal texts and
the availability of powerful analysis techniques and ptyping tools. However, formal
specifications are hard to write and, more importantly, hamead; this raises the prob-
lem of the validation of the specification. We believe that #ifective availability of
tools supporting specification development could greatip tin promoting the use of
formal specifications by practitioners. Tool support slddnklude guidance during the
specification development process; it should enable uselsvelop specifications in
an intuitive fashion by separating the use of design corscepin the technical details
of how they are captured in specification languages. Théafsg®on development pro-
cess should be problem oriented instead of language odiente

Validation requires users of the system to be able to “rebd"specification, hence the
importance of graphical notations. Verification requirdsianal notation. The current
issue is that no single language offers both kinds of natat®it possible to combine
graphical notations and formal languages? Currentlyetlaee two mains streams of
specification languages: graphical notations such as UM d48d mathematical nota-
tions such as B [1]. Our goal is to design a framework wherd iatds of notations

can be used together to fulfill the needs of all the peopleliech Our approach aims

at capitalising on existing languages rather than at defiainew one. This allows us to
reuse the efforts that have been out in the production ofdtrditools such as Rational
Rosé or ArgoUML? for the edition of UML diagrams, and such Batelier B [26],
B-Toolkit[3], or B4Free [4] for the formal verification of geifications. Our framework
supports multi-view specification activity by providingséstance during the develop-
ment process. Its key is the notion of operator: the devetoyrof a specification is
defined as a sequence of steps, each of which maps a develogiaterio the next by
the application of an operator.

The formalisation of object-oriented concepts has prochptany research works. Three
general approaches are identified in the literature: (Bresibn of formal notations with
object-oriented concepts, (2) extension of object-oddmiotations with formal nota-
tions, and (3) method integration between object-oriefated formal notations. Z++
[12] and Object-Z [5] are examples of the first approach wizef25] is supplemented
with object-oriented concepts and notations. In the se@pptoach, parts of the in-
formal specifications expressed in natural language atageg by formal statements
expressed in a well-known formal language, e.g. Syntropylf6the third approach,
transformation rules are defined which translate spedifisatritten in one formalism
into an “equivalent” specification written in another foriisen. One instance of this
approach is UML to B transformation: it allows specifiers sediormal techniques and
tools to check the specification. Transformation providewith automated support to
generate a B specification from UML diagrams [10, 18, 14, aBirtg into account OCL
constraints [15, 17]. Another instance is B to UML transfatimn: it eases the valida-
tion by the generation of UML diagrams (class diagrams aatkstiagrams) from a B
specification [7, 8, 27].

One major problem in UML and B integration approaches is ta@img the consis-
tency when the specification evolves. Currently, UML and Egmation approaches
offer either UML to B [16, 24] or B to UML transformations [2&Jut not both in the
same tool. Several reasons account for this state of affi@ithe net result is the prac-
tical impossibility to define a process where both kinds ahgformation can be sym-
metrically used. As a consequence, UML to B or B to UML tramsfation induces a
sequential development process where: (i) a new specditatithe target formalism
is generated each time the rules are used. Thus, any infiomiat was previously
added in the generated specification is lost and must beigedek (i) the modifica-
tions brought into the generated specification cannot befited. This raises the issue
of consistency between the current B specification and itesponding UML specifi-
cation [11].

The paper is organised as follows. Section 2 presents th@agpwith a definition of
the consistency relation between two developments stepadore the correctness of
the construction. Section 3 presents a selection of dewsdopsteps on the generalised
railroad crossing case study. Section 4 concludes the paper

! http://ww-306.ibm.com/software/rational
2 http://www.argouml.tigris.org

2 Description of the approach

Our approach aims at modelling a process for developingifpeitons expressed si-
multaneously in an object oriented notation graphical (JMhd in a formal notation
(B). Formal and semi-formal descriptions are built by sigsbee approximations. Op-
erators are the central notion: they capture strategieslasigin concepts. They enable
the user to develop specifications in an intuitive fashioségarating the use of design
concepts from the technical details of how they are capturéte chosen specification
languages. Different development strategies can be maddibraries of operators. It
is possible to provide users with flexible development psses.

2.1 Specification state

The process model we have developed is strongly inspiredhéyransformation ap-
proaches. The final specification results from a sequencppications of transform-
ers:operators An operator is applied to specification statand produces a new spec-
ification state.
A specification state consists in two views. The UML view pd®s users with a graph-
ical notation and access to validation tools. The B view mtes users with a formal
notation and access to verification tools. The fundamerdaitps that the views are
two different expressiors the same specificatiorh state is noted as:

Spec= (SpecUML SpecB

2.2 Development operators and development step

A development operator transforms simultaneously the UMH the B views [19].
Often, the application of an operator requires some infunhfthe user. This is modelled
as operator parameters. An operator consists of:

— an application condition; it is a predicate on the curremeltgpment state. It must
hold for ensuring the preservation of the consistency pitype the specification
Specafter the application of the operator;

— a description of the actions @pecUMLandSpecBnotedOyy. andOg and

— hints about operators that can be applied next; those casdabta assist users in
following a development strategy.

Libraries of development operators support the modellihgfi@tegies. At each devel-
opment step, the specifier chooses an operator in the lilanagdyprovides it with the
required parameters. If the application condition holdgrencorrect state, the actions
are conducted to lead to a new development state.

2.3 Correctness by construction

Our development model is based on the idea that applying e operator on a
“correct” state leads to a new “correct” state. The quesamow to define what “cor-
rect” means precisely.

We propose to define the correction of a specification stata tgynsistency relation
between its views. Let us denok. the consistency relation betwe8&pecUMLand
SpecB

Let Ty_g be the set of UML to B transformation rules [13, 18] which asate each
UML artifact with one or more B artifacts. These transforinas are relative to UML 1.x
[21]. R is defined as a conjunction of four conditions:

1 Syntactic conformanct.states that botBpecUMLandSpecBnust be well-formed.
It ensures that the specification conforms to abstract gyspacified by the meta-
model, i.e. UML meta-model or B abstract syntax tree. Wef (SpecUML and
WU (SpecB be two predicates defining if a UML and a B specifications arl-we
formed.

2 Local consistencyt requires that both specifications must be internally siest.
That means they do not contain contradictions, but theyctbalincompletely de-
fined. We write itconsistent(SpecUMIgndconsistent(SpecB)

Global consistency is defined with respect to UML to B transfation rules designed
by Meyer, Souquieres and Ledang [13, 18].

3 Elements traceabilityit states that for any elements &f (SpecUML) ey, that can
be transformed by a rul€, there exists inD (SpecBh set of artifactdeg} result-
ing from the application of to ey.

4 Semantic preservationt states that any statemegtsatisfying the semantics of
SpecUMLmust satisfySpecB The semantics o8pecUMLIis defined asly_.g
(SpecUML. This means that UML artifacts that have no B semantics define
Ty_.pg are not concerned by the consistency relatitelc. This has important im-
plications throughout the verification process. For examijlis well known that
checking pairwise integration of a set of software spedifice is only possible if
one is able to transform them into a semantic domain supgbgteools. B is our
semantic domain and any UML statement that has no B forntimlisaannot be
verified in our framework.

Qs

i ! Relc | Relc

Fig. 1. Correctness of an operat6k

We use the B theorem prover to prove that a statermeinolds in SpecB(condition
(2)) and due taondition (3) we derive the consistency 8pecUML.and therefore the
consistency of the multi-view specificati@pec

Definition 1 (Consistency relation)
SpecUMLRelc SpecB

(1) WF(SpecUMD A WF(SpecB
(2) consistent(SpecUML) consistent(SpecB)

(3)V eu.(eu € ID(SpecUML, ~)* =
3 {es}, T.({es} C ID(SpecB)A T € Ty_sg A T(ew) = {es}))

(4)V ¢.(Tu_p(SpecUMLY £ ¢ = SpecBF ¢))

* SpecUML,, ~_ denotes the restriction @pecUMLto elements for which there is
transformation rule to B defined ifiy_.g

P Ty _s(SpecUML) denotes the application of the set of UML to B tfanmation rules
on SpecUML

The notion of correctness for operators is then easy to €egin operator is correct iff
its application on a state wheBpecUMLandSpecBare consistent and its application
condition holds leads to a state whé&gy (SpecUML andOg(SpecB are consistent,
see Figure 1. Proof that an operator is correct may not belmégsynce done, it ensures
thatall applications of that operator produce consistent spetiiics.

3 A small case study

We consider the generalised railroad cross-
ing case study, called th@RC problem [9].
The system to be specified aims at control-
& & ling a gate at a railroad crossing so that trains
! can safely go through. The informal text de-

far > scribes the problem as a monitoring of trains.
near e The GRC lies in a region of intere®, as
R presented in Figure 2. Trains travel in one di-

rection througtR, which is decomposed into
Fig. 2. The generalised railroad crossing three regions far, nearandon. The regions

determine the position of trains R Each of
these regions has a light signal, which mayéx: yellowor greenand which is seen by
the train when it leaves the previous region and enter thé Aetrain leaves a region
when its last carriage leaves the region. It is at this pdiat tights state may change
and require the train to stop.
We present three development steps to illustrate our appreee start from this infor-
mal description. For each step, we give the idea we follow,dperator chosen in the
library with its parameters and the new state produced bgpipdication of the operator
on the current state of the specification. In the new spetificastate, the new UML
part is written in bold face and the new B part is in a box. Forerioformation on the
definition of operators, see [19]. For space reasons, wewiltentrate on the definition
of the train component.

3.1 Firstdevelopment step

From the informal requirement, we identify three stafies, (hear, on) and three events
(enter, cross leave which change the state of the train when it arrives, crosstsaves

the regionR. This leads us to use the classical specification techni§irgroducing

a state machine to model the description. This techniquepsuced in the operator
calledModel-StateMachinel he required parameters are easily extracted from the text
description and the application of the operator leads talédvelopment state presented
in Figure 3. The resulting UML view is composed of a class thag with one class
(Train) and an enumeration (the states), and of a state-transitagram. Three ma-
chines and a refinment have been introduced in the B view.

Model-StateMachine(Train, {(far, enter, near), (near, cross, on), (on, leave, far)})

‘ Train ‘
«enumeration» . enter()/
TRAIN_STATES Train f ,
far +state : TRAIN_STATES il @
oo et o]
+Cross
+|eave8 leave()/ m cross()/
MACHINE Train MACHINE System
SEES Types SEES Types
INCLUDES Train
VARIABLES
train, Train_state OPERATIONS
enter(oo) =
INVARIANT PRE
train C TRAIN A 00 € train
Train_state € train — TRAINSTATES THEN
MACHINE Types INITIALISATION skip
SETS ANY tt END;
OBJECTS WHERE
TRAINSTATES =; tt € TRAIN A END
{far, near, on} t # {}
CONSTANTS THEN REFINEMENT Systenref
TRAIN train = tt|| REFINES System
PROPERTIES Train_state := tt x TRAIN.STATES SEES Types
TRAIN C OBJECTS END INCLUDES Train
END OPERATIONS
Train_TransFarNeafoo) = OPERATIONS
PRE enter(oo) =
00 € train A PRE
Train_statgoo) = far 00 € train
N THEN
Train_statg0o) := near Tran_TransFarNeaf00)
D; END;
END END

Fig. 3. Application of theModel-StateMachine operator at the beginning of the development

3.2

Introduction of different kinds of train

Model-StateMachine(TrainM, {(far, enter, near), (far, wait, stopped),
(stopped, restart, near), (near, cross, on), (on, leave, far)});

Model-StateMachine(TrainV, {(far, enter, near), (near, cross, on), (on, leave, far)})

conted Train inv
Self=> forAl (] Train

ples (.

es wH>2 g GHI<S and
e urez) |

Train ‘

«enumeration»
TRAIN_STATES

Train

far

+state : TRAIN_STATES

venter()
+cross()
+leave)

.e

enter()/

cross()/

«enumeration» Trainv

TrainM ‘

TrainV |(

TrainM

TRAINM_STATES

+state: TRAIN_STATES
far

+state: TRAINM_STATES

+enter()
+cross()

near

on
stopped +leave()

+enter()
+cross()
+leave()
+wait()
+restart()

far

enter()/

(]

wait()/

T)
enter()/

Cl

r
.

cross()/ ross()/

MACHINE Types
SETS

TRAINM.STATES
{far, near, on, stopped
CONSTANTS

| TRAINV, TRAINM |
PROPERTIES

TRAINM
TRAINV

END

OBJECTS A

-
C OBJECTS

MACHINE TrainV
SEES Types
VARIABLES

trainv, TrainV_state

INVARIANT
trainv. € TRAINV A
TrainV_state €

trainv — TRAINSTATES
INITIALISATION

OPERATIONS
TrainV_TransFarNeafoo) = ...

END

MACHINE Train
END
MACHINE System

SEES Types
INCLUDES Train,

TrainM, TrainV

OPERATIONS
enteoo) = ...

|“\;vait(00) = ... |

END

MACHINE TrainM
SEES Types
VARIABLES

trainm, TrainM_state

INVARIANT
trainm C TRAINM A
TrainM_state €

trainm — TRAINM.STATES

INITIALISATION

OPERATIONS
TrainM_TransFarNeafoo) = ...
TrainM_TransFarStoppe(bo)

REFINEMENT Systenref
REFINES System
SEES Types
INCLUDES Train, TrainM, TrainV
OPERATIONS
entefoo) = ...
PRE
o0 € OBJECTS
THEN
IFoo € train
THEN
Train_TransFarNeaf00)

ESLE IFoo € trainv
THEN
TranV_TransFarNeafoo)
ELSE IFoo € trainm
THEN
TranM_TransFarNeafoo)

ELSEskip
END END

END;

wait(oo) = ...
restart(00)

END

END

Fig. 4. Introduction of two kinds of trains

restart()/

Further analysis of the problem indicates that differentlsi of trains are authorised to
travel on the GRC: freight trains and passenger trains. ®h@fing characteristics are
identified:

— freigth trains can stop when they reach the sfateafter the eventvait occurs.
They go from the statstoppedo the statenearwhen the eventestartoccurs;
— passenger trains are of two typd@%V andTrainCorail.

To introduce the different trains, we have a choice betwedaast two development
approaches: passenger and freight trains can be modelegendantly from th&rain
entity, or they can be modeled as specialisation ofTitzn entity. Let us use the first
approach which corresponds to a bottom-up strategy.

We use again thilodel-StateMachineperator, once for the freigth traingr@inM) and
once for the passenger traifréinV). The new specification state is presented in Figure
4. Two classes, one enumeration, two state diagrams haveteeduced in the UML
view. Two new machines have been introduced and three othiges (Types System
andSystenref) have been updated in the B view.

Note that there is a development step missing here; namelptie concerning the
addition of the invariant with associated attrilptiton which the invariant is expressed
in the context the clasBain.

3.3 Generalisation

The bottom-up approach lead to introduce three unconnextttiies. A close look on
the diagrams and machines reveals strong similaritiesadt) fve have modeled twice
the same general behaviour. Moreover, we have now enoughl&dge of the problem
to realize thaenter, crossandleaveare three instances of the same behavimove
This situation is quite common while developing specifmatand can be solved by
generalising.

A generalisation operatdgener al i ze- Oper at i on models this approach. We se-
lect the parameters to indicate thatinV and TrainM are subkinds ofrain and that
one operationmove replaces the other three.

The new specification state is presented Figure 5. We cantimatéhe UML view has
been augmented with inheritance relations and the atribists of the classes have
been adapted. The B view shows modifications in the classsBould be noted that
the B view undergoes many modifications, but all of them astesyatic and easily
computed.

Each operator that we used in this development case studyecproved to be correct.
Hence, we are ensured that a verification of the B view with ad¥gr and a validation
on the UML view are two checking processes for the same spatidn.

Generalize-Operation({enter, cross, leave}, {TrainV, TrainM}, Train, move)

\4

context Train inv.

self=> forAll (i1 Train

implies (t-pos = nea

=near implies WH>2 and IHI<S and
wpos=on imples trHi<2)

context Train inv :

self —>forAll(e | e : classifier and self.isSuperClass(e)
implies self —> includesAll(e))

TrainV

«enumeration»
enumeratio «enumeration»

TRAINM_STATES TRAIN STATES

far far HEInt

+siate : TRAIN_STATES

move(/Ht =0

move([HI>2 and Hi: =0

move([Ht4-aid Hi<10JHt =

0

on on +move()
| | ‘ TrainV | TrainM
‘ Trainv ‘ TrainM enter()/ wa\t(/ Stopped
etate: TRAIN_STATES s T STATeS ar emer(
wait() near
+restart() restart()/
leave()/ m cross()/ leave(/ cross()/

MACHINE System
SEES Types
INCLUDES Train, TrainM, TrainV
OPERATIONS

MACHINE Types MACHINE TrainV moveoo) =

SETS SEES Types

PROPERTIES EXTENDS Train END

TRAINV C TRAIN A

TRAINM T TRAIN INVARIANT

END e) REFINEMENT Systenref

TrainV_Ht € trainv. — NAT REFINES System
|tra|nv C train | SEES Types))

INCLUDES Train, TrainM, TrainV

MACHINE Train

OPERATIONS
Train_TransFarNeaf00)
Train_TransNearO(i0o)
PRE

00 € train A

Train_statg00) =

(Train_Ht(oo) > 2 A
TrainHt(oo) < 5) V
(TraintHt(oo) > 4 A
Train.Ht(oo) < 10)

THEN
Train_statg0o) := on ||
Train_Ht(oo0) := 0
END;

END

OPERATIONS INVARIANT
TrainV_TransFarNeaf00) TRAINV N TRAINM :=
5}
END OPERATIONS
MACHINE TrainM move&oo) =
SEES Types PRE

- 00 € OBJECTS
EXTENDS Train THEN
IF oo € trainv
INVARIANT THEN

TrainM_Ht € traihnm — NAT
|tra|nm C train |

OPERATIONS
TrainM_TransFarNeaf0o)

END

THEN

ELSE

TrainV_TransFarNeaf00);

TrainV_TransNearOiioo);

TrainV_TransOnFafo0)
ELSE IF oo € trainm

TrainM_TransFarNeafoo);
TrainM_TransNearOK00);
TrainM_TransOnFafoo)

Train_TransFarNeafoo);
Train_TransNearO(00);
Train_TransOnFaf00)

END

Fig. 5. Application of theGeneralize-Operation operator on the specification state of FIG 4

In ordr to avoid indeterminisms in the state diagram assedito the super-clagsain
due to the replacement of ttemter, cross andleave by move, somme guards have
been added to corresponding transitions. This is done Imguke appropriate operator
present in operators’ library.

4 Conclusion

This paper presents a specification development processhviiiegrates the use of
several formalisms. The key notion is the operator which e®@nd implements a
property of correctness for the evolution of a multi-vievesification. The idea to mix

different formalisms is not new but was hampered by the gnobbdf maintaining the

consistency between the two specifications. Operatorg $bis problem. They enable
users to develop specifications in an intuitive fashion Ipasating the use of design
concepts from the technical details of how they are captursgecification languages.
They offer flexibility since it is possible to define librasi®f operators capturing al-
ternative definitions of particular concepts and strategidgey allow us to model the
development of a specification as a process of successivexampation. The purpose
of operators is to capture the specifiers’ knowledge.

The benefits of the approach can be summed up as follows:

— separation of concern. Operators enable the specifier ttsfon methodological
issues and on problem solving issues rather than to focuswrtdexpress them
in the target languages;

— documentation. The use of two complementary languagegrapaical and object-
oriented and the other formal, makes the specification etmsisnderstand and help
the developers to verify and refine the system under devedopm

— support for guidance. At any stage of the construction scte specifier knows
what remains to be done. Libraries of operators with a libese of the “remain
to be done” clause can be constructed to model and enfortieyar development
strategies. In addition, operators preconditions lowerribk of mis-using opera-

tors;
— correctness by construction. As the correctness of eactatipéas been defined,

the specification obtained by the application of opera®mdved to be correct.

Operators can be compared with specification templatesdatred in [29], where a
template formalises a Lotos specification style for OSI asagrhent of specification
text that can be conveniently retrieved and inserted in &ifpation. To enhance the
value of such templates and to increase their generalitpl@es are parameterised.

An implementation of this framework with some operatorsrisier development. It is
an extension of thé&rgoUML+B [16] platform, allowing to automatically transform
some UML diagrams to B specificationargoUML+B is based on thérgoUML3
project, dedicated to the edition and design of UML diagramkis extension includes
SmartToolg2, 20] to dynamically represent B specifications as instaraf the B AST
(abstract syntax tree), taking into account the multi-vep&cification.

% http://www.argouml.tigris.org

10

References

[1]
(2]

(3]
[4]
[5]

[6]
[7]
(8]

9]

(10]

(11]

(12]
(13]

(14]
(15]

(16]
(17]
(18]
(19]
[20]
(21]

(22]
(23]

J.R. Abrial. The B Book -Assigning Programs to Meaning&€ambridge University Press,
1996. ISBN 0-521-49619-5.

I. Attali, C. Courbis, P. Degenne, A. Fau, J. Fillon, D.rigat, C. Pasquier, and C. S.
Coen. SmartTools: a development environment generatadbas XML technologies.
In In XML Technologies and Software Engineering. ICSE wornisko01.

Oxford(UK) B-Core(UK) Ltd. B-Toolkit User's Manual 1996.

B4Free. avaible at : http://www.b4free.com/.

D.A. Carrington, D. Duke, R. Duke, P. King, G.A. Rose, a@d Smith. Object-Z: An
object-oriented extension to Z. Formal Description Techniques Il, FORTES;§8ages
281-296, 1990.

S. Cook and J. Daniels. Let's get formalJournal of Object-Oriented Programming
(JOOP) pages 22—-24 and 64—66, 1994.

F. Houda and S. Merz. Transformation de spécificationsBiagrammes UML. IriPro-
ceedings of AFADL'042004.

A. Idani and Y. Ledru. Object Oriented Concepts Idenéfion from Formal B Specifica-
tions. In9th Int.Workshop on Formal Methods for Industrial Criticaystems, FMICS’'Q4
2004.

L. Jansen and E. Schnieder. Traffic control system cas#ysProblem description and a
note on domain-based software specification. Technicalrtefolorado State University,
January, 2000.

R. Laleau and F. Polack. A Rigorous Metamodel for UMLtBt&onceptual Modelling
of Information Systems. I#dvanced Information Systems Engineering. 13th Int. Conf.
CAISE 2001volume 2068 ot NCS pages 402—-416. Springer, 2001.

R. Laleau and F. Polack. Coming and Going from UML to B :#posal to support Trace-
ability in Rigorous IS Development. [AB’2002 — Formal Specification and Development
in Z and B pages 517-534, 2002.

K. Lano. Z++, an object-orientated extension to z.Pioceedings of the Fifth Annual Z
User Meetingpages 151-172. Springer-Verlag, 1991.

H. Ledang and J. Souquiéres. Modeling class operatioBs application to UML behav-
ioral diagrams ASE2001: 16th IEEE Int. Conf. on Automated Software Engingd EEE
Computer Society2001.

H. Ledang and J. Souquiéres. Integrating FormaliziiglBehavioral Diagrams with B.
Workshop on Integration and Transformation of UML mod2302.

H. Ledang and J. Souquieres. Integration of UML and Bc8jmation Techniques: Sys-
tematic Transformation from OCL Expressions into B.ARSEC 2002, IEEE Computer
Society 2002.

H. Ledang, J. Souquiéres, and S. Charles. ArgoUML+B otil de transformation sys-
tématique de spécifications UML vers B. Pnoceedings of AFADL'Q32003.

R. Marcano and N. Levy. Using B formal specifications &oralysis and verification of
UML/OCL models. In L. Kuzniarz, G. Reggio, J. L. Sourroujliend Z. Huzar, editors,
Workshop on Consistency Problems in UML-based SoftwarelBegwentpages 91-105,
2002.

E. Meyer and J. Souquieres. A systematic approach tsftoam OMT diagrams to a B
specification. InProceedings of the Formal Method Conferenoember 1708 in LNCS,
pages 875—895. Springer-Verlag, 1999.

D. Okalas Ossami, J. Souquiéres, and J-P. Jacquot.istamsy in UML and B multi-view
specifications. In LNCS, editoRroceeding of the International Conference on Integrated
Formal Methods, IFM’05number 3771, pages 386—405, 2005.

D. Parigot and C. Courbis. avaible at : http://www-sopa.fr/smartool/.

J. Rumbaugh, I. Jacobsen, and G. Bodghified Modeling Language Reference Manual
Addison-Wesley, 1997.

J. Rumbaugh, I. Jacobson, and G. Boochhe Unified Modeling Language Reference
Manual. Addison-Wesley, 1998. ISBN 0-201-30998-X.

C. Snook, M. Butler, and I. Oliver. Towards a UML profilerfUML-B. Technical report,
DSSE-TR-2003-3, Electronics and Computer Science, Usityeof Southampton, 2003.

11

[24] C. Snook and M. Buttler. U2B: a tool for combining UML ar8. Avaible at
http://www.ecs.soton.ac.uk/ cfs/lU2Bdownloads/.

[25] J.M. Spivey.The Z Notation: A Reference Manu&rentice Hall, 1992.

[26] STERIA. Manuel de référence du langage ElearSy-, novembre, 1998.

[27] B. Tatibouet and J.-C. Voisinet. Generating statetshiom B specifications. 146th Int.
Conf. Software & Systems Engineering and their applicatid8@SSEA20032003.

[28] B. Tatibouet and J.C. Voisinet. jBtools and B2UML : atef@arm and a tool to provide a
UML class diagram since a B specification. IBSSEA : 14th Int. Conf. on Software and
Systems Engineering and Their Applicationslume 2, 2001.

[29] K. J. Turner. Relating architecture and specificati@umputer Networks and ISDN Sys-
tems April 1996.

12

