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We study theoretically the smectic mediated interactions between pointlike inclusions in a lamellar phase.
The two-body interaction is derived and we discuss the virial expansion in the limits of weak and strong
interactions. The leading order finite density corrections to the interaction potential are calculated using a mean
field theory, which allows the particle density, potential, and effective smectic moduli to be calculated self-
consistently. The effective bending modulus of the membranes is found to increase linearly with the particle
density. We also give the structure factor S(q) for small but finite particle density. [S1063-651X(97)50602-7]

PACS number(s): 61.30.Cz, 82.70.Dd

INTRODUCTION

It is well known that the physical properties of many sys-
tems are highly sensitive to the presence of impurities or
defects. A dramatic example is the increased conductivity
observed in impure semiconductors [1]. Liquid crystalline
systems have been of interest to physicists for many decades
[2] and it seems natural to seek to understand the role of
impurities in these systems too. We might also be motivated
by the numerous industrial applications of liquid crystals or a
marked similarity with certain biological systems, e.g., cell
membranes, which are known to contain many impurities
[3,4]. Some theoretical [5] and experimental [6] studies of
the interaction between particles embedded in a single (or
pair of) membrane(s) have been carried out. In addition we
recently [7] presented a description of aggregation processes
involving particles incorporated into a bulk (3d) lamellar
phase in which the aggregates were treated as noninteracting.
Our interest in such bulk systems has been fueled by recent
experimental studies [8,9]. It is our aim here to study the
interactions between particulate inclusions residing in such a
bulk smectic phase.

This paper is organized as follows: In Sec. I we briefly
discuss the background theory and introduce our model for
the particle-layer interactions. We obtain the interaction
potential for two particles embedded in a bulk smectic-A
phase. We employ these results in Sec. II to construct a
self-consistent mean field theory for the two-particle interac-
tions at finite density. We calculate the linear correction to
the interaction potential and find that this can be interpreted
in terms of a stiffening of the membranes, with their com-
pressibility unchanged. This is in contrast to one earlier
study, albeit on a somewhat different system, which pre-
dicted a decrease in the bending modulus [10]. In Sec. III
we discuss the static structure factor for scattering from
impurities embedded in a smectic phase. Finally we briefly
discuss the far-field contribution to the second virial co-
efficient for finite particle densities. We present brief con-
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clusions in Sec. V. Throughout, we employ units in which
k BT: 1.

I. THEORY FOR PARTICLE-SMECTIC COUPLING

In the smectic phase the layers are on average flat and
equidistant with layer spacing d and normal in the z direc-
tion. Deformation of the average layer position away from
this state may conveniently be parametrized by the continu-
ous scalar displacement field u, which represents the normal
displacement of the layers in the z direction. Such a descrip-
tion leads to the so-called Landau—de Gennes Hamiltonian
[2,11,12]. We model the effect of pointlike particles in the
smectic phase by including a term ~ pd,u in the energy den-
sity that represents the lowest order coupling between the
particle density p(r) and the local layer compression (or ex-
pansion) d,u. (The reader may be surprised to learn that
coupling terms like ~pru lead to identical results. This
subtle point will be discussed in a future article.) We omit
terms scaling like ~ p2, which corresponds to direct interpar-
ticle interactions, as these depend on microscopic details of
the particles involved. It is our aim here to study only the
membrane-mediated interparticle interactions. Our coupling
term is formally the simplest in that it is the only term qua-
dratic in {p,u} involving only a first derivative that is accept-
able on symmetry grounds. The Hamiltonian 7 now reads

H= l;f e[ (0.u)*+ N} (Vi) +Bpdul. (1)

In this expression V| is the gradient operator in the x-y
plane, A= JK/B is a length characteristic of the smectic
(typically of the order of the layer spacing d), and B and
K are respectively the compressional and bending moduli of
the smectic. The coupling constant 3, with dimensions of
volume, controls the amplitude of the local deformation. Its
value depends on the microscopic details of the particle-layer
interactions. The particles either provide a local inwards
pinch (8>0) or outwards push (8<<0) to the neighboring
layer. Certain proteins [3,9] are known to bind to aqueous
surfactant membranes more or less fixing the layer separation
very locally. In such systems B could be chosen so that a
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single particle fixes the local layer separation at d*. Such a
condition may be shown to imply [7] B=Nd(d—d*).

Minimization of Eq. (1) and subsequent calculations are
most easily performed in Fourier space. The Fourier trans-
form is defined by f,=Jd’rf(r),z)e U * %2 with rj and
q) vectors in the x-y plane. Minimizing Eq. (1) with respect
to u, the energy is given by [7]

d3
H:f(quPquqp—qud3r,fd3rG(r—r')p(r)p(r’),

(2)

where

q2
Gy=—E\d*—5—57. 3)
a qz + )\qu
with
VKB B?

Eo= g @

a number characterizing the energy scale of the interactions
and, in real space

G(r)= 2[4 2 1 il i 5
=gxlz AN P AN ©®)

The fact that Eq. (5) diverges in the limit z—0 does not
reflect an underyling problem in the theory since the energy
is well behaved for densities p(r) that are smoothly varying
[13]. The two-body interaction potential for z>d is approxi-
mately U, ,(r)=2G(r) [the factor 2 arises because of the
intrinsic double counting in Eq. (2)].

From Eq. (5) we see that the interaction between two
particles is long ranged in the z direction and is anisotropic
and radially nonmonotonic. This anisotropy is characterized
by the paraboloid rﬁ=4)\|z , which also appears in the clas-
sical problem of the interaction between two dislocations in
smectic A [2], although the precise functional form is rather
different in this case. One can also show that the energy scale
for the interaction potential E, is equal to the (self-) energy
of a single isolated particle @E |, to within a numerical pref-
actor a of order unity [7]. A quantitative estimate of this
prefactor formally requires an improvement in Eq. (1) and
also depends on microscopic details.

II. FINITE DENSITY CORRECTIONS TO THE TWO-
BODY INTERACTION: A SELF-CONSISTENT
MEAN FIELD THEORY

We now examine the effect of surrounding particles on
the two-body interaction potential. We will employ a mean
field theory in which the particle density and potential fields
are determined self-consistently. Such an approach has been
employed with success in many other physical problems.
Perhaps the best known example is the Debye-Huckel theory
for electrolytes. In the present work we use the smectic po-
tential ¢ (in kzT units) determined via our modified
Landau—de Gennes functional (1). We assume Boltzmann
statistics for the distribution of particles and solve the linear-
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ized version of the resulting equations to obtain corrections
to the two-body interaction potential.

We calculate the potential field ¢(r) due to a particle at
the origin and its associated correlated neighbors. Thus the
energy required to move an infinitesimal number of inclu-
sions on from infinity to r is on¢(r).

Invoking Boltzmann statistics the density field near the
particle is of the form

p(r)=pe I+ 5(r), ©)

where p is the density at infinity and the term &(r) fixes one
particle at the origin.

We may linearize Eq. (6) whenever ¢<<1, which is satis-
fied whenever the energy scale Ey<<1. The linearized form
of Eq. (6) is

p(r)=p[ 1= (r)]+ 8(r)=py=pl(27)*5(q) — Pyl + 1(-7)

Our second equation relates the potential ¢ to the density via
the bare two-body Green’s function G. From Eq. (2) we have

¢(r):f &' G(r—r")p(r' )= dq=Gypq. (8)

Solving Egs. (7) and (8) for ¢, and substituting Eq. (3) we
find [14]

s Eo\d* q: o)
T 1 —pEN? 42N 7q)”

where
)\’=(l—p_E0)\d2)71/2)\, (10)

a result that is valid for ¢,<<1/d. In some sense Eq. (10)
indicates that the range of the interactions is increasing with
the particle density. Transforming Eq. (9) we find that the
real space potential is well approximated by the following
form for z>d:

2 2
¢(r)= : (g) ( 1- il )exp_ a
87(1—pEoNd?)2\ 2 4N'|z] 4N'|7]

(11)

We may calculate the correction to the zero density interac-
tion potential either by expanding Eq. (11) directly in powers
of p or, equivalently, by expanding Eq. (9) before transform-
ing to real space. Writing the real space potential
d=G+ ¢ we find

S NENEL,
+

0PN =113 N

where we neglect terms of O(p?). This function is plotted in
Fig. 1. This finite density correction to the interactions can
be identified with weakly correlated three-body interactions.

Finally we can examine the influence of the particles on
the effective moduli K’ and B'. These moduli are those
which mimic the effect of the finite particle density. In the
limit of zero particle density they are merely the bare smectic
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FIG. 1. Plot of the bare potential, or Greens function G(r) (solid
line) Eq. (5) and the finite density corrections to the potential 5¢
(broken line) Eq. (12) against 7j=r)/(4\|z])"*. The function
G(r) is shown in units where (E(/8 m)(d/z)>=1 and the correc-
tion 8¢ is in units where (pAd’E3/167)(d/z)*=1.

moduli K and B introduced in Sec. I. However, identifying
the scaling E,«\KB Eq. (4) and A\=\K/B we see that
E{=Ey(1—pEo\d*)~"* and Eq. (10) together imply a
renormalization of K to

K' = K (13)
1—pEo\d®’

with B’ =B unchanged at leading order. Equation (13) indi-
cates an increase in the effective bending modulus with par-
ticle density.

III. STATIC STRUCTURE FACTOR

Static scattering measurements measure the ensemble av-
erage of the Fourier transform of the density-density corre-
lation function [15]

S(q)=C§]lv<f fd3rd3r’p(r)p(r’)e’"(r—rl) . (14)

where C, is the scattering amplitude per inclusion and N is
the total number of particles. We wish to calculate this func-
tion for scattering from inclusions incorporated in a lamellar
phase and assume that this signal can be isolated from that
scattered by the lamellae. If we treat the inclusions as point-
like and neglect the details of the short range interactions we
may write S(q) in terms of the two-body potential ¢(r) by
invoking Boltzmann statistics

S(q)zciﬁf d’re’4 T4, (15)

By assuming that the potential ¢ is small, which is often a
reasonable approximation for uncharged lyotropic systems,
we may expand the exponential in Eq. (15) to obtain S(q)
for small but finite q.

S(@)=—Cipdy. (16)

where ¢, is given by Eq. (9). This prediction allows for a
test of the present theory on two grounds. Firstly a structure
factor of the form S(q)~q§/(qf+)\'2qﬁ) would provide
strong evidence that the particle-layer coupling in a given
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system is well described by the ~pd.u term in Eq. (1). Sec-
ondly the finite density corrections calculated in Sec. II pre-
dict variation of the length A’ with particle density according
to Eq. (10).

IV. AVERAGE PARTICLE INTERACTIONS AND THE
SECOND VIRIAL COEFFICIENT

For dilute systems an expansion of the free energy density
F/V in powers of the particle concentration p can usually be
performed. Provided that such an analytic expansion exists
the second virial coefficient By is given by [16]

1
BV:Ef d’r(1—e V), (17)

where U, is the two-body interaction potential for particles
separated by a vector r and the zero of free energy is taken to
be the pure smectic phase. If we consider only the long range
membrane mediated interactions, neglecting any additional
microscopic short range forces, we can estimate the far field
contribution to By, in both the limits Eq<<1 and Ey>1.

The weak interaction limit £,<<1 may often be appropri-
ate for lyotropic phases, in which the characteristic energy
scale Ey=<1. In this regime the far field contribution B%‘r may
be calculated by expanding the exponential factor in Eq.
(17). The second order term is found to give the leading
order far field contribution

By=—Ei\d*> for Ey<I, (18)

which is negative, implying that the net interactions are at-
tractive. This result necessarily neglects all additional short
range interactions and involves crudely cutting off the vol-
ume integral in Eq. (17) at z=wd (with v of order unity).
The numerical prefactor depends on the choice of this cutoff.

The opposite, strong interactions, limit may often be rel-
evant for particles incorporated in thermotropic liquid crys-
tals, such as the diblock copolymer lamellar phases. In this
limit we can no longer expand the exponential e~ Y12 in Eq.
(17) everywhere but can make a crude estimate of the far
field contribution to By by (i) integrating Eq. (17) by steepest
descents in the regime where U,>1 and (ii) expanding the
exponential when U ,<<1. We proceed by crudely cutting off
the integral at z=vd, as before, and find

ij‘rz—)\d2E53lzexp[EO/(4TrezV2)] for Eg>1.
(19)

This represents a large (exponential) average attraction be-
tween particles.

We emphasize again that these results neglect any addi-
tional short range interactions not described by the linear
coupling term Bpd.u in Eq. (1).

CONCLUSION

We have studied the effect of particulate inclusions in a
bulk smectic-A phase and have derived equations for the
energy of an arbitrary distribution of particles. These results
are used to develop a self-consistent mean field theory for the
particle distribution, which is used to study the effect of fi-
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nite particle density on the effective two-body interaction
potential. The correction to this potential is computed and we
find that although the effective compressional modulus of the
phase is unchanged, the effective bending modulus increases
linearly with the particle density according to Eq. (13). This
result is in contrast to one, rather different, study of mem-
brane impurities, which predicted a decrease in the bending
modulus [10], but is in qualitative agreement with the trend
observed for membranes densely decorated with PEG lipids
[17]. In addition both of these studies show a change in B (an
increase in the first and a decrease at large densities in the
second). The qualitative differences with the present theory
are unsurprising in view of the differences between the sys-
tems. We give the static structure factor for the particles and
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suggest that direct measurements of this may provide a direct
test of our theory. We also briefly discuss the second virial
coefficient for the mixed particle-lamellar system, noting that
the far-field interactions are always attractive on average.
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