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BOREL HIERARCHY AND OMEGA

CONTEXT FREE LANGUAGES

Olivier Finkel ∗

Equipe de Logique Mathématique

CNRS et Université Paris 7, U.F.R. de Mathématiques

2 Place Jussieu 75251 Paris cedex 05, France.

Abstract

We give in this paper additional answers to questions of Lescow and Thomas [Logi-
cal Specifications of Infinite Computations, In:”A Decade of Concurrency”, Springer
LNCS 803 (1994), 583-621], proving topological properties of omega context free lan-
guages (ω-CFL) which extend those of [O. Finkel, Topological Properties of Omega
Context Free Languages, Theoretical Computer Science, Vol. 262 (1-2), 2001, p.
669-697]: there exist some ω-CFL which are non Borel sets and one cannot decide
whether an ω-CFL is a Borel set. We give also an answer to a question of Niwin-
ski [Problem on ω-Powers Posed in the Proceedings of the 1990 Workshop ”Logics
and Recognizable Sets”] and of Simonnet [Automates et Théorie Descriptive, Ph.D.
Thesis, Université Paris 7, March 1992] about ω-powers of finitary languages, giving
an example of a finitary context free language L such that L

ω is not a Borel set.
Then we prove some recursive analogues to preceding properties: in particular one
cannot decide whether an ω-CFL is an arithmetical set. Finally we extend some
results to context free sets of infinite trees.

Key words: Context free ω-languages; topological complexity; Borel hierarchy;
analytic sets.
1991 MSC: 03D05, 03E15, 68Q45

1 Introduction

Since Büchi studied the ω-languages recognized by finite automata to prove
the decidability of the monadic second order theory of one successor over
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the integers [Büc60a] the so called ω-regular languages have been intensively
studied. See [Tho90] and [PP01] for many results and references.

As pushdown automata are a natural extension of finite automata, Cohen and
Gold [CG77] , [CG78] and Linna [Lin76] studied the ω-languages accepted
by omega pushdown automata, considering various acceptance conditions for
omega words. It turned out that the omega languages accepted by omega
pushdown automata were also those generated by context free grammars where
infinite derivations are considered , also studied by Nivat [Niv77], [Niv78]
and Boasson and Nivat [BN80]. These languages were then called the omega
context free languages (ω-CFL). See also Staiger’s paper [Sta97a] for a survey
of general theory of ω-languages.

Topological properties of ω-regular languages were first studied by Landweber
in [Lan69] where he showed that these languages are boolean combinations of
Gδ sets. He also characterized the ω-regular languages in each of the Borel
classes F,G,Fσ,Gδ, and showed that one can decide, for an effectively given
ω-regular language L, whether L is in the Borel class F,G,Fσ, or Gδ.
It turned out that an ω-regular language is in the class Gδ iff it is accepted by
a deterministic Büchi automaton. These results were extended to deterministic
ω-CFL by Linna [Lin77]. In the non deterministic case, Cohen and Gold proved
in [CG78] that one cannot decide whether an ω-CFL is in the class F,G or
Gδ.

We have begun a similar study for ω-CFL in [Fin01a]. we proved that ω-CFL
exhaust the finite ranks of the Borel hierarchy and that, for any Borel class
Σ0

n
or Π0

n
, n being an integer, one cannot decide whether an ω-CFL is in Σ0

n

or Π0

n
. Our proof used the Wadge game and the operation of exponentiation

of sets defined by Duparc [Dup01].

We pursue this study in this paper. We first show that there exist some ω-
CFL which are analytic but non Borel sets. Then we extend the preceding
undecidability result to every Borel class (of finite or infinite rank) and we
prove that one cannot even decide whether an ω-CFL is a Borel set.

The question of the topological complexity of the ω-power of a finitary lan-
guage is mentioned in [Sta97a] [Sta97b]. Niwinski asked in [Niw90] for an
example of a (finitary) language L such that Lω is not a Borel set. Simonnet
asked in [Sim92] for the topological complexity of Lω where L is a context
free language. We proved in [Fin01a] that there exist context free languages
Ln such that (Ln)ω is a Π0

n
-complete set for each integer n ≥ 1.

We give here an example of a context free language L such that Lω is an
analytic but not Borel set, answering to questions of Niwinski and Simonnet.

Then we derive some new arithmetical properties of omega context free lan-
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guages from the preceding topological properties. We prove that one cannot
decide whether an ω-CFL is an arithmetical set in

⋃
i≥1 Σn. Then we show that

one cannot decide whether the complement of an ω-CFL is accepted by a (non
deterministic) Turing machine (or more generally by a non deterministic X-
automaton as defined in [EH93]) with Büchi (respectively Muller) acceptance
condition. The above results give additional answers to questions of Thomas
and Lescow [LT94].

Finally we extend some undecidability results to context free sets of infinite
trees, as defined by Saoudi [Sao92].

The paper is organized as follows. In sections 2 and 3, we first review some
above definitions and results about ω-regular, ω-context free languages, and
topology. Then in section 4 we prove our main topological results from which
we deduce in section 5 the result about ω-powers and in section 6 arithmetical
properties of ω-CFL. Section 7 deals with context free languages of infinite
trees.

2 ω-regular and ω-context free languages

We assume the reader to be familiar with the theory of formal languages and of
ω-regular languages, see for example [HU69] ,[Tho90]. We first recall some of
the definitions and results concerning ω-regular and ω-context free languages
and omega pushdown automata as presented in [Tho90] [CG77] , [CG78].
When Σ is a finite alphabet, a finite string (word) over Σ is any sequence
x = x1 . . . xk , where xi ∈ Σ for i = 1, . . . , k ,and k is an integer ≥ 1. The
length of x is k, denoted by |x| .
we write x(i) = xi and x[i] = x(1) . . . x(i) for i ≤ k.
If |x| = 0 , x is the empty word denoted by λ.
Σ⋆ is the set of finite words over Σ.
The first infinite ordinal is ω.
An ω-word over Σ is an ω -sequence a1 . . . an . . ., where ai ∈ Σ,∀i ≥ 1.
When σ is an ω-word over Σ, we write σ = σ(1)σ(2) . . . σ(n) . . .

σ[n] = σ(1)σ(2) . . . σ(n) is the finite word of length n, prefix of σ.
The set of ω-words over the alphabet Σ is denoted by Σω.
An ω-language over an alphabet Σ is a subset of Σω.

The usual concatenation product of two finite words u and v is denoted u.v

(and sometimes just uv). This product is extended to the product of a finite
word u and an ω-word v: the infinite word u.v is then the ω-word such that:
(u.v)(k) = u(k) if k ≤ |u| , and
(u.v)(k) = v(k − |u|) if k > |u|.
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For V ⊆ Σ⋆, V ω = {σ = u1 . . . un . . . ∈ Σω | ui ∈ V, ∀i ≥ 1} is the ω-power of
V .
For V ⊆ Σ⋆, the complement of V (in Σ⋆) is Σ⋆ − V denoted V −.
For a subset A ⊆ Σω, the complement of A is Σω − A denoted A−.

The prefix relation is denoted ⊑: the finite word u is a prefix of the finite
word v (denoted u ⊑ v) if and only if there exists a (finite) word w such that
v = u.w.
This definition is extended to finite words which are prefixes of ω-words:
the finite word u is a prefix of the ω-word v (denoted u ⊑ v) iff there exists
an ω-word w such that v = u.w.

Definition 2.1 A finite state machine (FSM) is a quadruple M = (K, Σ, δ, q0),
where K is a finite set of states, Σ is a finite input alphabet, q0 ∈ K is the
initial state and δ is a mapping from K ×Σ into 2K . A FSM is called deter-
ministic (DFSM) iff : δ : K × Σ → K.
A Büchi automaton (BA) is a 5-tuple M = (K, Σ, δ, q0, F ) where M ′ =
(K, Σ, δ, q0) is a finite state machine and F ⊆ K is the set of final states.
A Muller automaton (MA) is a 5-tuple M = (K, Σ, δ, q0, F ) where M ′ =
(K, Σ, δ, q0) is a FSM and F ⊆ 2K is the collection of designated state sets.
A Büchi or Muller automaton is said deterministic if the associated FSM is
deterministic.
Let σ = a1a2 . . . an . . . be an ω-word over Σ.
A sequence of states r = q1q2 . . . qn . . . is called an (infinite) run of M =
(K, Σ, δ, q0) on σ, starting in state p, iff: 1) q1 = p and 2) for each i ≥ 1,
qi+1 ∈ δ(qi, ai).
In case a run r of M on σ starts in state q0, we call it simply ”a run of M on
σ ” .
For every (infinite) run r = q1q2 . . . qn . . . of M , In(r) is the set of states in
K entered by M infinitely many times during run r:
In(r) = {q ∈ K | {i ≥ 1 | qi = q} is infinite }.
For M = (K, Σ, δ, q0, F ) a BA , the ω-language accepted by M is L(M) =
{σ ∈ Σω | there exists a run r of M on σ such that In(r) ∩ F 6= ∅}.
For M = (K, Σ, δ, q0, F ) a MA, the ω-language accepted by M is L(M) =
{σ ∈ Σω | there exists a run r of M on σ such that In(r) ∈ F}.

The classical result of R. Mc Naughton [MaN66] established that the expressive
power of deterministic MA (DMA) is equal to the expressive power of non
deterministic MA (NDMA) which is also equal to the expressive power of non
deterministic BA (NDBA) .
There is also a characterization of languages accepted by MA by means of the
”ω-Kleene closure” of which we give now the definition:

Definition 2.2 For any family L of finitary languages over the alphabet Σ,
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the ω-Kleene closure of L, is :

ω − KC(L) = {∪n
i=1Ui.V

ω
i | Ui, Vi ∈ L,∀i ∈ [1, n]}

Theorem 2.3 For any ω-language L, the following conditions are equiva-
lent:

(1) L belongs to ω−KC(REG) , where REG is the class of (finitary) regular
languages.

(2) There exists a DMA that accepts L.
(3) There exists a MA that accepts L.
(4) There exists a BA that accepts L.

An ω-language L satisfying one of the conditions of the above Theorem is
called an ω-regular language. The class of ω-regular languages will be denoted
by REGω.

We now define pushdown machines and the class of ω-context free languages.

Definition 2.4 A pushdown machine (PDM) is a 6-tuple M = (K, Σ, Γ, δ, q0, Z0),
where K is a finite set of states, Σ is a finite input alphabet, Γ is a finite push-
down alphabet, q0 ∈ K is the initial state, Z0 ∈ Γ is the start symbol, and δ is
a mapping from K × (Σ ∪ {λ}) × Γ to finite subsets of K × Γ⋆ .
If γ ∈ Γ+ describes the pushdown store content, the leftmost symbol will be
assumed to be on ” top” of the store. A configuration of a PDM is a pair (q, γ)
where q ∈ K and γ ∈ Γ⋆.
For a ∈ Σ ∪ {λ}, β, γ ∈ Γ⋆ and Z ∈ Γ, if (p, β) is in δ(q, a, Z), then we write
a : (q, Zγ) 7→M (p, βγ).
7→⋆

M is the transitive and reflexive closure of 7→M . (The subscript M will be
omitted whenever the meaning remains clear).
Let σ = a1a2 . . . an . . . be an ω-word over Σ. an infinite sequence of configura-
tions r = (qi, γi)i≥1 is called a complete run of M on σ, starting in configura-
tion (p, γ), iff:

(1) (q1, γ1) = (p, γ)
(2) for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} satisfying bi : (qi, γi) 7→M

(qi+1, γi+1) such that a1a2 . . . an . . . = b1b2 . . . bn . . .

As for FSM, for every such run, In(r) is the set of all states entered infinitely
often during run r.
A complete run r of M on σ , starting in configuration (q0, Z0), will be simply
called ” a run of M on σ ”.

Definition 2.5 A Büchi pushdown automaton (BPDA) is a 7-tuple M =
(K, Σ, Γ, δ, q0, Z0, F ) where M ′ = (K, Σ, Γ, δ, q0, Z0) is a PDM and F ⊆ K is
the set of final states.
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The ω-language accepted by M is L(M) = {σ ∈ Σω | there exists a complete
run r of M on σ such that In(r) ∩ F 6= ∅}.

Definition 2.6 A Muller pushdown automaton (MPDA) is a 7-tuple M =
(K, Σ, Γ, δ, q0, Z0, F ) where M ′ = (K, Σ, Γ, δ, q0, Z0) is a PDM and F ⊆ 2K is
the collection of designated state sets.
The ω-language accepted by M is L(M) = {σ ∈ Σω | there exists a complete
run r of M on σ such that In(r) ∈ F}.

Remark 2.7 We consider here two acceptance conditions for ω-words, the
Büchi and the Muller acceptance conditions, respectively denoted 2-acceptance
and 3-acceptance in [Lan69] and in [CG78] and (inf,⊓) and (inf, =) in
[Sta97a].

Cohen and Gold and independently Linna established a characterization The-
orem for ω-CFL:

Theorem 2.8 Let CFL be the class of context free (finitary) languages. Then
for any ω-language L the following three conditions are equivalent:

(1) L ∈ ω − KC(CFL).
(2) There exists a BPDA that accepts L.
(3) There exists a MPDA that accepts L.

In [CG77] are also studied ω-languages generated by ω-context free grammars
and it is shown that each of the conditions 1), 2), and 3) of the above Theorem
is also equivalent to: 4) L is generated by a context free grammar G by leftmost
derivations. These grammars are also studied in [Niv77] [Niv78].
Then we can let the following definition:

Definition 2.9 An ω-language is an ω-context free language (ω-CFL) (or
context free ω-language ) iff it satisfies one of the conditions of the above
Theorem.

3 Topology

We assume the reader to be familiar with basic notions of topology which may
be found in [LT94] [PP01] [Kur66] [Mos80] [Kec95].

Topology is an important tool for the study of ω-languages, and leads to
characterization of several classes of ω-languages.
For a finite alphabet X, we consider Xω as a topological space with the Cantor
topology. The open sets of Xω are the sets in the form W.Xω, where W ⊆ X⋆.
A set L ⊆ Xω is a closed set iff its complement Xω − L is an open set. The
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class of open sets of Xω will be denoted by G or by Σ0

1
. The class of closed

sets will be denoted by F or by Π0

1
. Define now the next classes of the Borel

Hierarchy:

Definition 3.1 The classes Σ0

n
and Π0

n
of the Borel Hierarchy on the topo-

logical space Xω are defined as follows:
Σ0

1
is the class of open sets of Xω.

Π0

1
is the class of closed sets of Xω.

Π0

2
or Gδ is the class of countable intersections of open sets of Xω.

Σ0

2
or Fσ is the class of countable unions of closed sets of Xω.

And for any integer n ≥ 1:
Σ0

n+1
is the class of countable unions of Π0

n
-subsets of Xω.

Π0

n+1
is the class of countable intersections of Σ0

n
-subsets of Xω.

The Borel Hierarchy is also defined for transfinite levels. The classes Σ0

α and
Π0

α, for a countable ordinal α, are defined in the following way:
Σ0

α is the class of countable unions of subsets of Xω in ∪γ<αΠ
0

γ.
Π0

α is the class of countable intersections of subsets of Xω in ∪γ<αΣ
0

γ.

Recall some basic results about these classes, [Mos80]:

Proposition 3.2

(a) Σ0

α ∪ Π0

α ( Σ0

α+1
∩ Π0

α+1
, for each countable ordinal α ≥ 1.

(b) ∪γ<αΣ
0

γ = ∪γ<αΠ
0

γ ( Σ0

α ∩ Π0

α, for each countable limit ordinal α.
(c) A set W ⊆ Xω is in the class Σ0

α iff its complement is in the class Π0

α.
(d) Σ0

α − Π0

α 6= ∅ and Π0

α − Σ0

α 6= ∅ hold for every countable ordinal α ≥ 1.

We shall say that a subset of Xω is a Borel set of rank α, for a countable
ordinal α, iff it is in Σ0

α ∪ Π0

α but not in
⋃

γ<α(Σ0

γ ∪ Π0

γ).

Furthermore, when X is a finite set, there are some subsets of Xω which are
not Borel sets. Indeed there exists another hierarchy beyond the Borel hierar-
chy, which is called the projective hierarchy and which is obtained from the
Borel hierarchy by successive applications of operations of projection and com-
plementation. More precisely, a subset A of Xω is in the class Σ1

1
of analytic

sets iff there exists another finite set Y and a Borel subset B of (X×Y )ω such
that x ∈ A ↔ ∃y ∈ Y ω such that (x, y) ∈ B.
Where (x, y) is the infinite word over the alphabet X×Y such that (x, y)(i) =
(x(i), y(i)) for each integer i ≥ 0.
Now a subset of Xω is in the class Π1

1
of coanalytic sets iff its complement

in Xω is an analytic set.
The next classes are defined in the same manner, Σ1

n+1
-sets of Xω are projec-

tions of Π1

n
-sets and Π1

n+1
-sets are the complements of Σ1

n+1
-sets.

Recall also the notion of completeness with regard to reduction by continuous
functions.
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A set F ⊆ Xω is a Σ0

α (respectively Π0

α)-complete set iff for any set E ⊆ Y ω

(Y a finite alphabet):
E ∈ Σ0

α (respectively E ∈ Π0

α) iff there exists a continuous function f from
Y ω into Xω such that E = f−1(F ).
A similar notion exists for classes of the projective hierarchy: in particular a
set F ⊆ Xω is a Σ1

1
(respectively Π1

1
)-complete set iff for any set E ⊆ Y ω (Y

a finite alphabet):
E ∈ Σ1

1
(respectively E ∈ Π1

1
) iff there exists a continuous function f from

Y ω into Xω such that E = f−1(F ).

A Σ0

α (respectively Π0

α, Σ1

1
)-complete set is a Σ0

α (respectively Π0

α, Σ1

1
)- set

which is in some sense a set of the highest topological complexity among the
Σ0

α (respectively Π0

α, Σ1

1
)- sets.

4 topological properties of ω-CFL

Recall first previous results. ω-CFL exhaust the finite ranks of the Borel hier-
archy.

Theorem 4.1 ([Fin01a]) For each integer n ≥ 1, there exist some Σ0

n
-

complete ω-CFL and some Π0

n
-complete ω-CFL.

Cohen and Gold proved that one cannot decide whether an ω-CFL is in the
class F,G or Gδ. We have extended in [Fin01a] this result to all classes Σ0

n

and Π0

n
, for n an integer ≥ 1. (We say that an ω-CFL A is effectively given

when a MPDA accepting A is given).

Theorem 4.2 ([Fin01a]) Let n be an integer ≥ 1. Then it is undecidable
whether an effectively given ω-CFL is in the class Σ0

n
( repectively Π0

n
).

When considering ω-CFL, natural questions now arise: are all ω-CFL Borel
sets of finite rank, Borel sets, analytic sets....? First recall the following:

Theorem 4.3 ([Sta97a]) Every ω-CFL over a finite alphabet X is an ana-
lytic subset of Xω.

Proof. we just sketch the proof.
Every ω-CFL A ⊆ Σω is the projection of a deterministic ω-CFL onto Σω but
deterministic ω-CFL are Borel sets of rank at most 3, and it is well known
that such a projection of a Borel set is an analytic subset of Σω. Remark that
in fact each ω-CFL is the projection of an ω-CFL which is accepted by a
deterministic Büchi pushdown automaton and therefore which is a Π0

2
-set. ¤

Remark 4.4 This above theorem is in fact true for ω-languages accepted
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by Turing machines which are much more powerful accepting devices than
pushdown automata [Sta97a].

The following question now arises: are there ω-CFL which are analytic but
not Borel sets?

Theorem 4.5 There exist ω-CFL which are Σ1

1
-complete hence non Borel

sets.

Proof. We shall use here results about languages of infinite binary trees whose
nodes are labelled in a finite alphabet Σ.
A node of an infinite binary tree is represented by a finite word over the
alphabet {l, r} where r means ”right” and l means ”left”. Then an infinite
binary tree whose nodes are labelled in Σ is identified with a function t :
{l, r}⋆ → Σ. The set of infinite binary trees labelled in Σ will be denoted T ω

Σ .

There is a natural topology on this set T ω
Σ [Mos80] [LT94][Sim92]. It is defined

by the following distance. Let t and s be two distinct infinite trees in T ω
Σ . Then

the distance between t and s is 1
2n where n is the smallest integer such that

t(x) 6= s(x) for some word x ∈ {l, r}⋆ of length n.
The open sets are then in the form T0.T

ω
Σ where T0 is a set of finite labelled

trees. T0.T
ω
Σ is the set of infinite binary trees which extend some finite labelled

binary tree t0 ∈ T0, t0 is here a sort of prefix, an ”initial subtree” of a tree in
t0.T

ω
Σ .

The Borel hierarchy and the projective hierarchy on T ω
Σ are defined from open

sets in the same manner as in the case of the topological space Σω.

Let t be a tree. A branch B of t is a subset of the set of nodes of t which is
linearly ordered by the tree partial order ⊑ and which is closed under prefix
relation, i.e. if x and y are nodes of t such that y ∈ B and x ⊑ y then x ∈ B.
A branch B of a tree is said to be maximal iff there is not any other branch
of t which strictly contains B.

Let t be an infinite binary tree in T ω
Σ . If B is a maximal branch of t, then this

branch is infinite. Let (ui)i≥0 be the enumeration of the nodes in B which is
strictly increasing for the prefix order.
The infinite sequence of labels of the nodes of such a maximal branch B, i.e.
t(u0)t(u1) . . . t(un) . . . is called a path. It is an ω-word over the alphabet Σ.

Let then L ⊆ Σω be an ω-language over Σ. Then we denote Path(L) the set
of infinite trees t in T ω

Σ such that t has (at least) one path in L.

It is well known that if L ⊆ Σω is an ω-language over Σ which is a Π0

2
-

complete subset of Σω (or a set of higher complexity in the Borel hierarchy)
then the set Path(L) is a Σ1

1
-complete subset of T ω

Σ . Hence Path(L) is not a

9



Borel set, [Niw85] [Sim92] [Sim93].

Whenever B is an ω-CFL we shall find another ω-CFL C and a continuous
function

h : T ω
Σ → (Σ ∪ {A})ω

such that Path(B) = h−1(C). For that we will code trees labelled in Σ by
words over Σ ∪ {A} = ΣA, where A is supposed to be a new letter not in Σ.

Consider now the set {l, r}⋆ of nodes of binary infinite trees. For each integer
n ≥ 0, call Cn the set of words of length n of {l, r}. Then C0 = {λ}, C1 =
{l, r}, C2 = {ll, lr, rl, rr} and so on. Cn is the set of nodes which appear in
the (n + 1)th level of an infinite binary tree. The number of nodes of Cn is
card(Cn) = 2n. We consider now the lexicographic order on Cn (assuming
that l is before r for this order). Then, in the enumeration of the nodes with
regard to this order, the nodes of C1 will be: l, r; the nodes of C3 will be:
lll, llr, lrl, lrr, rll, rlr, rrl, rrr.
Let un

1 , . . . , u
n
j , . . . , un

2n be such an enumeration of Cn in the lexicographic
order and let vn

1 , . . . , vn
j , . . . , vn

2n be the enumeration of the elements of Cn in
the reverse order. Then for all integers n ≥ 0 and i, 1 ≤ i ≤ 2n, it holds that
vn

i = un
2n+1−i.

We define now the code of a tree t in T ω
Σ . Let A be a letter not in Σ. We

construct an ω-word over the alphabet (Σ ∪ {A}) which will code the tree t.
We enumerate all the labels of the nodes of a tree in the following manner:
firstly the label of the node of C0 which is t(u0

1),
followed by an A, followed by the labels of nodes of C1 in the lexicographic
order, i.e. t(u1

1)t(u
1
2), followed by an A, followed by the labels of the nodes of

C2 in the reverse lexicographic order, followed by an A, followed by the labels
of nodes of C3 in the lexicographic order, and so on . . .
For each integer n ≥ 0, the labels of the nodes of Cn are enumerated before
those of Cn+1 and these two sets of labels are separated by an A. Moreover the
labels of the nodes of C2n+1, for n ≥ 0, are enumerated in the lexicographic
order (for the nodes) and the labels of the nodes of C2n, for n ≥ 0, are
enumerated in the reverse lexicographic order (for the nodes).

Then for each tree t in T ω
Σ , we obtain an ω-word of Σ ∪ {A} which will be

denoted h(t). With the preceding notations it holds that:

h(t) = t(u0
1)At(u1

1)t(u
1
2)At(v2

1)t(v
2
2)t(v

2
3)t(v

2
4)At(u3

1)t(u
3
2)t(u

3
3)t(u

3
4)t(u

3
5)t(u

3
6)t(u

3
7)t(u

3
8)A . . .
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Let then h be the mapping from T ω
Σ into (Σ∪{A})ω such that for every labelled

binary infinite tree t of T ω
Σ , h(t) is the code of the tree as defined above. It

is easy to see, from the definition of h and of the order of the enumeration of
labels of nodes, that h is a continuous function from T ω

Σ into (Σ ∪ {A})ω.

Assume now that B is an ω-CFL accepted by a Büchi pushdown automa-
ton M = (K, Σ, Γ, δ, q0, Z0, F ) where M ′ = (K, Σ, Γ, δ, q0, Z0) is a pushdown
machine and F ⊆ K is the set of final states.

Now we are looking for another ω-CFL C such that for every tree t ∈ T ω
Σ ,

h(t) ∈ C if and only if t has a path in B. Then we shall have Path(B) =
h−1(C).

We shall give a first description of such an ω-CFL C by constructing from
M another Büchi pushdown automaton M̄ which accepts C.
The reader can also skip this description and read a second description of
the ω-CFL C which will be given below.

Describe first informally the behaviour of the new machine M̄ . When M̄ reads
a word in the form h(t), then using the non determinism it guesses a maximal
branch of the tree t and simulates on this branch the Büchi pushdown au-
tomaton M . Finally the acceptation of h(t) by M̄ is related to the acceptation
of the ω-word formed by the labels of this branch by M .

More formally M̄ = (K̄, Σ̄, Γ̄, δ̄, q̄0, Z̄0, F̄ ), where

K̄ = K∪{q1 | q ∈ K}∪{q2 | q ∈ K}∪{q3 | q ∈ K}∪{q4 | q ∈ K}∪{q5 | q ∈ K}∪{qr}

Σ̄ = Σ ∪ {A}

Γ̄ = Γ ∪ {E}

where E is a new letter not in Γ,

q̄0 = q0

Z̄0 = Z0

F̄ = F ∪ {q5 | q ∈ F}

and the transition relation δ̄ is defined by the following cases which will be
explained below:

(a) (q, ν) ∈ δ̄(q0, a, Z0) iff (q, ν) ∈ δ(q0, a, Z0), for each a ∈ Σ and ν ∈ Γ⋆.
(b) δ̄(q0, A, Z0) = (qr, Z0).
(c) δ̄(q, a, Z) = (q1, EZ), for each a ∈ Σ, Z ∈ Γ ∪ {E} and q ∈ K.
(d) δ̄(q1, a, E) = (q1, EE), for each a ∈ Σ, and q ∈ K.
(e) δ̄(q1, A, Z) = (q2, Z), for each Z ∈ Γ ∪ {E} and q ∈ K.
(f) δ̄(q, A, Z) = (q2, Z), for each Z ∈ Γ ∪ {E} and q ∈ K.
(g) δ̄(q2, a, E) = (q3, E), for each a ∈ Σ, and q ∈ K.
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(h) δ̄(q3, a, E) = (q2, λ), for each a ∈ Σ, and q ∈ K.
(i) δ̄(q2, A, E) = (qr, E), for each q ∈ K.
(j) δ̄(q3, A, E) = (qr, E), for each q ∈ K.
(k) δ̄(qr, a, Z) = (qr, Z), for each a ∈ (Σ ∪ {A}) and Z ∈ Γ ∪ {E}.
(l) δ̄(q2, a, Z) ∋ (q′, ν) iff δ(q, a, Z) ∋ (q′, ν), for each a ∈ Σ, q, q′ ∈ K, Z ∈ Γ,

and ν ∈ Γ⋆.
(m) δ̄(q2, λ, Z) ∋ (q′5, ν) iff δ(q, λ, Z) ∋ (q′, ν), for each q, q′ ∈ K, Z ∈ Γ, and

ν ∈ Γ⋆.
(n) δ̄(q5, λ, Z) ∋ (q′5, ν) iff δ(q, λ, Z) ∋ (q′, ν), for each q, q′ ∈ K, Z ∈ Γ, and

ν ∈ Γ⋆.
(o) δ̄(q5, a, Z) ∋ (q′, ν) iff δ(q, a, Z) ∋ (q′, ν), for each a ∈ Σ, q, q′ ∈ K, Z ∈ Γ,

and ν ∈ Γ⋆.
(p) δ̄(q5, a, Z) ∋ (q4, Z), for each a ∈ Σ, Z ∈ Γ and q ∈ K.
(q) δ̄(q2, a, Z) ∋ (q4, Z), for each a ∈ Σ, Z ∈ Γ and q ∈ K.
(r) δ̄(q4, a, Z) ∋ (q′, ν) iff δ(q, a, Z) ∋ (q′, ν), for each a ∈ Σ, q, q′ ∈ K, Z ∈ Γ,

and ν ∈ Γ⋆.
(s) δ̄(q4, A, Z) = (qr, Z), for each q ∈ K, Z ∈ Γ.

We describe now more precisely the behaviour of M̄ .
To the set K of states of M , we add sets of states K i = {qi | q ∈ K} for each
integer i ∈ [1, 5], and a state qr which will be a rejecting state.

We firstly consider only the reading by M̄ of words in the form h(t) where
t ∈ T ω

Σ . When M̄ simulates M on the branch it guesses, it enters in a state of
K, as indicated by (a), (l), (o), (r), or of K5 if it uses a λ-transition, i.e. if it
does not read any letter during this transition, as indicated by (m) − (n).

When M̄ reads the labels of the nodes of t, it reads successively the labels of
nodes of C0, C1, C2, . . . , Ci, . . .

Let B be the branch which is guessed by M̄ during a reading.

After the use of one transition rule of (a), (l), (o) or (r), reading the label of
a node u of B in Cn, n ≥ 0, M̄ enters in a state q1, keeping the memory of q,
and then continues the reading of the (labels of) nodes of Cn, pushing an E

on the top of the stack for every letter of Σ it reads (transition rules (c), (d))
until it reads an A. Then it enters in state q2, keeping again the memory of q,
(transition rules (e), (f)) and reading the labels of nodes of Cn+1, it begins to
pop an E from the top of the stack for two letters of Σ it reads, as indicated by
transition rules (g), (h) (here are used the two sets of states K2 and K3). Thus
when the letter at the top of the stack is again a letter of Γ (and not an E) the
machine M̄ reads the label of one successor of the node u (this is due to the
fact that the tree is binary and to the order of the enumeration of the nodes
we have chosen in the definition of h(t)). It may choose to simulate M on
this label, as indicated by the transition rules (l), (m), (n), (o), (perhaps after
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some λ-transitions). Otherwise it may choose to wait the next label, entering
in state q4, as indicated by the transition rules (p), (q), and then simulates M

as indicated by the transition rule (r).

Some other transition rules, (b), (i), (j), (k), (s), lead to the rejecting state qr

in which M̄ remains for the rest of the reading. But in fact these transition
rules are never used for the reading of ω-words in the form h(t) where t ∈ T ω

Σ .

Now we can see that when M̄ simulates M on the branch B, if M enters in a
state q ∈ K, then M̄ enters in the state q or in the state q5 (when a λ-transition
is used). Thus the choice of the set of accepting states F̄ = F ∪ {q5 | q ∈ F}
implies the property: for a tree t ∈ T ω

Σ , h(t) ∈ C if and only if t has a path in
B.

We are going now to give a second description of the ω-CFL C.

The ω-language C which we have constructed from the ω-language B can
easily be described by means of substitution of context free languages.
Let first D be the following finitary language over the alphabet (Σ ∪ {A}):

D = {u.A.v | u, v ∈ Σ⋆ and (|v| = 2|u|) or (|v| = 2|u| + 1) }

It is easy to see that D is a context free language.

Now an ω-word σ ∈ C may be considered as an ω-word σ′ ∈ B to which we
add, between two consecutive letters σ′(n) and σ′(n + 1) of σ′, a finite word
vn belonging to the context free finitary language D.

Recall now the definition of substitution in languages: A substitution f is
defined by a mapping Σ → P (Γ⋆), where Σ = {a1, . . . , an} and Γ are two
finite alphabets, f : ai → Li where ∀i ∈ [1; n], Li is a finitary language over
the alphabet Γ.
Now this mapping is extended in the usual manner to finite words:

f(x(1) . . . x(n)) = {u1 . . . un | ui ∈ f(x(i)), ∀i ∈ [1; n]}

where x(1), . . . , x(n) are letters in Σ, and to finitary languages L ⊆ Σ⋆:

f(L) = ∪x∈Lf(x)

The substitution f is called λ-free if ∀i ∈ [1; n] Li does not contain the empty
word. In that case the mapping f may be extended to ω-words:

f(x(1) . . . x(n) . . .) = {u1 . . . un . . . | ui ∈ f(x(i)), ∀i ≥ 1}

Let C be a family of languages, if ∀i ∈ [1; n] the language Li belongs to C the
substitution f is called a C-substitution.
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Let then g be the substitution Σ → P ((Σ∪{A})⋆) defined by: a → a.D where
D is the context free language defined above. Then g is a λ-free substitution
and g(B) = C holds. But the languages a.D are context free and CFLω is
closed under λ-free context free substitution [CG77]. Then B ∈ CFLω implies
that C ∈ CFLω.

Hence if B is a Borel set which is a Π0

2
-complete subset of Σω (or a set of

higher complexity in the Borel hierarchy), the language h−1(C) = Path(B) is
a Σ1

1
-complete subset of T ω

Σ . Then the ω-language C is at least Σ1

1
-complete

because h is a continuous function (note that here h is a continuous function:
T ω

Σ → (ΣA)ω and the preceding definition of Σ1

1
-complete set involves con-

tinuous reductions: Xω → Y ω; but the two topological spaces T ω
Σ and (ΣA)ω

have good similar properties which enable to extend the previous definition
to this new case [Mos80][Kec95]). And C is in fact a Σ1

1
-complete subset of

(Σ ∪ {A})ω because every ω-CFL is an analytic set by Theorem 4.3.
Then in that case C is not a Borel set because a Σ1

1
-complete set is not a

Borel set [Kur66][Mos80].
Indeed this gives infinitely many non Borel ω-CFL , because there exist in-
finitely many ω-CFL of borel rank > 2. ¤

Remark that in the above proof, whenever B is an ω-regular language accepted
by a Büchi automaton M , the resulting machine M̄ is just a one counter
machine, i.e. a pushdown machine having a stack alphabet Γ̄ = {Z0, E}, where
Z0 is the bottom symbol which always remains at the bottom of the pushdown
store and appears only there. Then at any moment of any computation the
word in the pushdown store is in the form EnZ0 where n is an integer ≥ 0.
Thus it holds that:

Corollary 4.6 There exist one counter ω-languages which are Σ1

1
-complete

hence non Borel sets.

Now we can deduce from the preceding proof the following undecidability
result:

Theorem 4.7 Let Σ be an alphabet containing at least two letters. It is unde-
cidable, for an effectively given ω-CFL B to determine whether B is a Borel
subset of Σω.

Proof. Remark first that h(T ω
Σ ) is the set of ω-words in (ΣA)ω which belong

to

Σ.A.Σ2.A.Σ4.A.Σ8.A . . . A.Σ2n

.AΣ2n+1

. . .

In other words this is the set of words in (ΣA)ω which contain infinitely many
occurrences of the letter A, and have 2n letters of Σ between the nth and the
(n+1)th occurrences of the letter A. We shall first state the following:
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Lemma 4.8 Let Σ be a finite alphabet. Then (ΣA)ω − h(T ω
Σ ) is an omega

context free language.

Proof. Let

A1 = (A ∪ Σ2 ∪ Σ.A.A ∪ Σ.A.Σ.A ∪ Σ.A.Σ3).(ΣA)ω

A1 is the set of words in (ΣA)ω which have not any word of Σ.A.Σ2.A as prefix.
A1 is clearly an ω-regular language hence it is also an ω-CFL.

Let now B1 be the set of finite words over the alphabet ΣA which are in the
form A.u.A.v.A where u, v ∈ Σ and |v| < 2|u|. And let B2 be the set of finite
words over the alphabet ΣA which are in the form A.u.A.v where u, v ∈ Σ and
|v| > 2|u|.

Then it is easy to see that B1 and B2 are context free finitary languages, thus
the ω-language

A2 = [(ΣA)⋆.B1.(ΣA)ω] ∪ [(ΣA)⋆.B2.(ΣA)ω]

is an an omega context free language by Theorem 2.8.
But (ΣA)ω − h(T ω

Σ ) = A1 ∪ A2 and the class of context free ω-languages is
closed under union [CG77] therefore (ΣA)ω − h(T ω

Σ ) is an omega context free
language. ¤

We recall now a result established in [Fin01a] in the course of the proof of the
above Theorem 4.2. We had seen that:

Lemma 4.9 There exists a family of (effectively given) context free ω-languages
(A∼

X,Y )d over the alphabet {a, b, c, և, d} such that (A∼
X,Y )d is either {a, b, c, և

, d}ω or an ω-language which is a Borel set but neither a Π0

2
-subset nor a

Σ0

2
-subset of {a, b, c, և, d}ω. But one cannot decide which case holds.

Consider now these languages. Denote B(X,Y ) = (A∼
X,Y )d and Σ = {a, b, c, և

, d}.
Then there are two cases.
In the first case B(X, Y ) = Σω.
In the second case B(X,Y ) is neither a Π0

2
-subset nor a Σ0

2
-subset of Σω.

Return now to the previous proof.
In the first case Path(B(X,Y )) = Path(Σω) = T ω

Σ .
In the second case Path(B(X, Y )) is a Σ1

1
-complete subset of T ω

Σ .

Construct now from B(X,Y ) another omega context free language C(X, Y )
over the alphabet ΣA in the same manner as we have constructed C from B
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in the above proof.

Let then D(X, Y ) = C(X, Y )∪ [(ΣA)ω−h(T ω
Σ )]. D(X,Y ) is an ω-CFL because

it is the union of two ω-CFL and the class of omega context free languages is
closed under union.

Then two cases may happen.
In the first case, Path(B(X, Y )) = T ω

Σ hence h(T ω
Σ ) ⊆ C(X,Y ) and D(X, Y ) =

(ΣA)ω. Therefore D(X, Y ) is a closed and open subset of (ΣA)ω.

In the second case h−1(D(X, Y )) = h−1(C(X,Y )) = Path(B(X,Y )) holds by
construction and then D(X,Y ) is a Σ1

1
-complete subset of (ΣA)ω, for the same

reason as C(X, Y ) is Σ1

1
-complete .

But one cannot decide which case holds hence one cannot decide whether the
context free ω-language is a Borel set.

To see that the result is also true for an alphabet containing two letters,
consider the morphism g : {a, b, c, և, d, A}⋆ → {a, b}⋆ defined by: a → bab,
b → ba2b, c → ba3b, (և) → ba4b, d → ba5b, A → ba6b.
This morphism is λ-free and may be extended to infinite words in an obvious
manner, giving a continuous function ḡ : {a, b, c, և, d, A}ω → {a, b}ω.

Let then F (X, Y ) = ḡ(D(X,Y )).
F (X, Y ) is an ω-CFL because D(X, Y ) is an ω-CFL and the class of context
free ω-languages is closed under λ-free morphism [CG77].
There are again two cases.
In the first case, D(X,Y ) = (ΣA)ω, hence D(X,Y ) is a compact set and,
the image of a compact set by a continuous function being a compact set,
F (X, Y ) = ḡ(D(X, Y )) is a compact subset of {a, b}ω, therefore it is a closed
subset of {a, b}ω.

In the second case, D(X,Y ) = ḡ−1(F (X, Y )) and D(X,Y ) is a Σ1

1
-complete

subset of T ω
Σ , thus F (X, Y ) is also at least a Σ1

1
-complete subset of {a, b}ω, and

in fact it is a Σ1

1
-complete subset because it is an analytic set as an ω-CFL.

¤

Remark that we have also extended Theorem 4.2 to all Borel classes:

Theorem 4.10 Let α be a countable ordinal ≥ 1. Then it is undecidable to
determine whether an effectively given ω-CFL is in the class Σ0

α ( respectively
Π0

α).

Proof. The result has been proved for every finite ordinal (integer) ≥ 1 in
[Fin01a]. Let then α be a countable infinite ordinal. The above defined ω-CFL
F (X, Y ) is either a Π0

1
-subset or a Σ1

1
-complete subset of {a, b}ω. In the first
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case it is in the class Σ0

α ( respectively Π0

α) and in the second case it is not a
Borel set. But one cannot decide which case holds. ¤

5 ω-powers of finitary languages

We study in this section ω-powers of finitary languages, i.e. ω-languages in
the form V ω where V is a finitary language. ω-powers of finitary languages
are always analytic sets because whenever V is finite, V ω is an ω-regular
language and then it is a boolean combination of Σ0

2
-sets and whenever V

is countably infinite, one can fix an enumeration of V and obtain V ω as a
continuous image of ωω (the set of infinite sequences of integers ≥ 0), [Sim92].

Niwinski asked in [Niw90] for an example of finitary language W such that
W ω is an analytic but non Borel set.
From the results of preceding section, we can easily find an example of a
context free language W such that W ω is not a Borel set.

Consider the construction of the ω-language C from the ω-language B ⊆ Σω

in the proof of Theorem 4.5. As stated above, if g is the substitution Σ →
P ((Σ ∪ {A})⋆) defined by a → a.D where

D = {u.A.v | u, v ∈ Σ⋆ and (|v| = 2|u|) or (|v| = 2|u| + 1) }

then D is a context free language over the alphabet (Σ ∪ {A}) and g(B) = C

holds.

Assume now that B is an ω-power in the form V ω. Then g(B) = (g(V ))ω is
also an ω-power.

Let then Σ = {0, 1} be an alphabet containing two letters 0 and 1 and W =
0⋆.1. Then W ω = (0⋆.1)ω is the set of ω-words over the alphabet Σ which
contain infinitely many occcurrences of the letter 1. It is a well known example
of an ω-regular language which is a Π0

2
-complete subset of Σω.

Thus the language g(W ) is a finitary context free language such that (g(W ))ω

is an analytic but non Borel set.
This language g(W ) is in fact a one counter language.

This gives an answer to Niwinski’s question and additional answer to questions
of Simonnet who asked in [Sim92] for the topological complexity of the ω-
powers of context free languages.
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6 Arithmetical properties

We are going to deduce from the previous proofs some new results about
ω-context free languages and the Arithmetical hierarchy. We recall first the
definition of the Arithmetical hierarchy of ω-languages, [Sta97a].

Let X be a finite alphabet. An ω-language L ⊆ Xω belongs to the class Σn

if and only if there exists a recursive relation RL ⊆ (N)n−1 × X⋆ such that

L = {σ ∈ Xω | ∃a1 . . . Qnan (a1, . . . , an−1, σ[an + 1]) ∈ RL}

where Qi is one of the quantifiers ∀ or ∃ (not necessarily in an alternating
order). An ω-language L ⊆ Xω belongs to the class Πn if and only if its
complement Xω − L belongs to the class Σn.
The inclusion relations that hold between the classes Σn and Πn are the same
as for the corresponding classes of the Borel hierarchy.

Proposition 6.1 ([Sta97a]) a) Σn ∪ Πn ( Σn+1 ∩ Πn+1, for each integer
n ≥ 1.

b) A set W ⊆ Xω is in the class Σn if and only if its complement W− is in
the class Πn.

c) Σn − Πn 6= ∅ and Πn − Σn 6= ∅ hold for each integer n ≥ 1.

The classes Σn and Πn are strictly included in the respective classes Σ0

n
and

Σ0

n
of the Borel hierarchy:

Theorem 6.2 ([Sta97a]) For each integer n ≥ 1, Σn ( Σ0

n
and Πn ( Π0

n
.

Recall now preceding results of [Fin01a]:

Theorem 6.3 Let n be an integer ≥ 1. Then it is undecidable whether an
effectively given ω-CFL is in the class Σn ( respectively Πn).

As in the case of the Borel hierarchy, projections of arithmetical sets (of the
second Π-class) lead beyond the Arithmetical hierarchy, to the Analytical
hierarchy of ω-languages. The first class of this hierarchy is the class Σ1

1.
An ω-language L ⊆ Xω belongs to the class Σ1

1 if and only if there exists a
recursive relation RL ⊆ (N) × {0, 1}⋆ × X⋆ such that:

L = {σ ∈ Xω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ[m]) ∈ RL))}

Then an ω-language L ⊆ Xω is in the class Σ1
1 iff it is the projection of

an ω-language over the alphabet X × {0, 1} which is in the class Π2 of the
arithmetical hierarchy.
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It turned out that an ω-language L ⊆ Xω is in the class Σ1
1 iff it is accepted

by a non deterministic Turing machine (reading ω-words) with a Muller ac-
ceptance condition [Sta97a]. This class is denoted NT (inf, =) (where (inf, =)
indicates the Muller condition) in [Sta97a] and also called the class of recursive
ω-languages REKω. 1

With the above definitions, one can state the following:

Theorem 6.4 ([Sta97a]) The class CFLω is strictly included into the class
REKω of recursive ω-languages.

A natural question arises: are there ω-CFL which are in the class Σ1
1 but in

not any class of the arithmetical hierarchy? The answer can be easily derived
from the preceding corresponding results about the Borel Hierarchy.

Theorem 6.5 There exist some context free ω-languages in Σ1
1 −

⋃
n≥1 Σn.

Proof. It follows from Theorems 4.5 and 6.2. ¤

We now obtain a recursive analogue to Theorem 4.7:

Theorem 6.6 Let Σ be an alphabet containing at least two letters. It is un-
decidable, for an effectively given context free ω-language B to determine
whether B is in Σ1

1 −
⋃

n≥1 Σn.

Proof. Recall that we had found (see proof of Theorem 4.7) a family of context
free ω-languages D(X, Y ) over the alphabet Γ = {a, b, c, և, d, A} such that
D(X, Y ) is either a Σ1

1
-complete subset of Γω, or equal to Γω.

Whenever D(X, Y ) is Σ1

1
-complete, it is not in

⋃
n≥1 Σn because each arith-

metical class Σn (respectively Πn) is included in the Borel class Σ0

n
(respec-

tively Π0

n
).

Whenever D(X,Y ) is equal to Γω, D(X, Y ) is in the class Σ1 because of the
characterization of ω-languages in Σ1 [Sta97a]: an ω-language L ⊆ Xω

belongs to the class Σ1 if and only if there exists a recursive finitary language
W ⊆ X⋆ such that L = W.Xω.

But we had proved that one cannot decide which of these two cases holds,
hence the result is proved for the alphabet Γ. (And we can use similar methods
as in the proof of Theorem 4.7 to obtain the result for an alphabet of cardinal
≥ 2). ¤

Considering Turing machines, we get the following:

1 In another presentation, as in [Rog67], the recursive ω-languages are those which
are in the intersection Σ1 ∩ Π1, see also [LT94].
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Theorem 6.7 It is undecidable to determine whether the complement of an
effectively given ω-CFL is accepted by a non deterministic Turing machine
with Büchi (respectively Muller) acceptance condition.

Proof. As in the preceding proof consider the family of context free ω-
languages D(X, Y ) over the alphabet Γ = {a, b, c, և, d, A} such that D(X, Y )
is either a Σ1

1
-complete subset of Γω, or equal to Γω.

Whenever D(X,Y ) is Σ1

1
-complete, its complement is Π1

1
-complete thus it is

not a Σ1

1
set (because a set which is both Σ1

1
and Π1

1
is a Borel set) and

therefore it is not a Σ1
1-set (because the class Σ1

1 is included in the class Σ1

1
)

then it is not accepted by any Turing machine with Büchi (respectively Muller)
acceptance condition.

In the other case D(X, Y ) is equal to Γω, then its complement is the empty-
set and it is accepted by a Turing machine with Büchi (respectively Muller)
acceptance condition.

But we had proved that one cannot decide which of these two cases holds,
hence the result is proved for the alphabet Γ. (And we can use similar methods
as in the proof of Theorem 4.7 to obtain the result for an alphabet of cardinal
≥ 2). ¤

In fact this result can be extended to other deterministic machines. Consider
X-automata as defined in [EH93] which are automata equipped with a storage
type X.

Theorem 6.8 Let X be a storage type as defined in [EH93]. Then it is unde-
cidable to determine whether the complement of an effectively given ω-CFL is
accepted by a non deterministic X-automaton with Büchi (respectively Muller)
acceptance condition.

Proof. It is similar to the previous one because every X-automaton is less
expressive than a Turing machine hence it cannot accept any Π1

1
-complete

set. And conversely Γω is accepted by every X-automaton. ¤

7 Context free languages of infinite trees

The theory of automata reading infinite words have been extended to au-
tomata reading infinite binary trees labelled in a finite alphabet, i.e. trees in
a space T ω

Σ where Σ is a finite alphabet (and one may also consider infinite
k-ary trees labelled in Σ but we shall restrict ourselves here to binary trees),
see [Tho90][Tho96][LT94][Sim92] for many results and references.
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It is known that regular languages of infinite binary trees exhaust the hierarchy
of Borel sets of finite rank as shown by Skurczynski [Sku93]. Niwinski proved
that there exist some regular set of trees which are non Borel sets, [Niw85].

Some regular sets of trees are Σ1

1
-complete, as Path(B) where B is any Π0

2
-

complete regular subset of Σω. Path(B) (defined in the proof of Theorem 4.5)
is accepted by a non deterministic tree automaton which guesses a branch of
a tree (using the non determinism) and then simulates a finite automaton on
the path associated with this branch.
One can also define, for each ω-language B ⊆ Σω, the following sets of trees.
Let

∀ − Path(B)

be the set of trees t in T ω
Σ such that every path of t is in B, and let

Left − Path(B)

be the set of trees t in T ω
Σ such that the leftmost path of t is in B (the nodes

of the leftmost branch are the words of {l, r}⋆ which are in the form ln for an
integer n ≥ 0).

It is then well-known that whenever B ⊆ Σω is an ω-regular language , the
sets ∀ − Path(B) and Left − Path(B) are regular sets of trees. Then if B is
a Π0

2
-complete subset of Σω it holds that:

∀ − Path(B−) = T ω
Σ − (Path(B))

hence ∀ − Path(B−) is a Π1

1
-complete subset of T ω

Σ .

The Theorem of complementation of Rabin implies that every regular set of
trees is in Σ1

2
∩Π1

2
, and it has been shown that there exist regular sets of trees

which are not in Σ1

1
∪Π1

1
, see [LT94] for a view of a hierarchy of regular sets

of trees.

As finite automata have been extended to (top-down) automata on infinite
trees, pushdown automata have been extended to (top-down) pushdown au-
tomata on infinite trees by Saoudi [Sao92]. Denote, as in [Sao92], CF3 the
family of languages of infinite (binary) trees accepted by (top-down) push-
down automata with Muller acceptance condition.

It is easy to see from the definition of these automata that, as in the case of
tree automata, if B is an ω-CFL, then the sets of trees Path(B) and Left −
Path(B) are accepted by tree pushdown automata. Then we can extend our
preceding undecidability results of Theorems 4.7 and 4.10.

Theorem 7.1 (a) Let α be a countable ordinal ≥ 1. Then it is undecidable
to determine whether an effectively given language in CF3 is in the Borel
class Σ0

α ( respectively Π0

α).
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(b) It is undecidable to determine whether an effectively given language in
CF3 is a Borel set.

(c) It is undecidable to determine whether an effectively given language in
CF3 is in the class Π1

1
.

(d) It is undecidable to determine whether an effectively given language in
CF3 is a Σ1

1
but non Borel set.

Proof. The proofs are easily derived from the proof of Theorem 4.7. Recall we
had got a family of omega context free languages D(X, Y ) over the alphabet
ΣA such that: either D(X,Y ) = (ΣA)ω, or D(X,Y ) is a Σ1

1
-complete subset

of (ΣA)ω. But one cannot decide which case holds.
It is easy to see that Left − Path(D(X,Y )) has the same topological com-
plexity as the ω-language D(X,Y ).
Indeed let f be the function: (ΣA)ω → T ω

ΣA
defined by f(σ) = tσ where

tσ is the tree in T ω
ΣA

with σ as leftmost path and the letter A labelling
the other nodes. Then f is continuous and f−1(Left − Path(D(X,Y ))) =
D(X, Y ). Assume first that D(X, Y ) is a Σ1

1
-complete subset of (ΣA)ω, then

Left − Path(D(X, Y )) is also at least Σ1

1
-complete and not a Borel set.

Now let j be the function T ω
ΣA

→ (ΣA)ω defined by: j(t) is the leftmost
path of the tree t. Then j is a continuous function and j−1(D(X,Y )) =
Left−Path(D(X, Y )). Hence when D(X, Y ) is a Σ1

1
-complete subset of (ΣA)ω,

Left−Path(D(X,Y )) is a Σ1

1
-set because the class Σ1

1
is closed under inverse

of continuous functions. Thus Left−Path(D(X, Y )) is a Σ1

1
-complete subset

of T ω
ΣA

and not a Π1

1
-set.

In the other case D(X, Y ) = (ΣA)ω and Left − Path(D(X, Y )) = T ω
ΣA

then
Left − Path(D(X, Y )) is in every Borel class and also in the class Π1

1
. But

one cannot decide which case holds. This proves (a), (b), (c) and (d). ¤

8 Concluding remarks and further work

We have proved in [Fin01a] that the class of ω-CFL exhausts the finite ranks
of the Borel hierarchy and in this paper (Theorem 4.5) that there exist some
analytic but non Borel ω-CFL.
The question to know whether there exist some ω-CFL which are Borel sets
of infinite rank is still open.

There exists a refinement of the Borel hierarchy which is called the Wadge
hierarchy of Borel sets. We proved in [Fin01b] that the length of the Wadge
hierarchy of ω-CFL is an ordinal greater than or equal to the Cantor ordinal
ε0. And it remains to find the exact length of the Wadge hierarchy of Borel
ω-CFL.

Mention that on the other side, the Wadge hierarchy of deterministic ω-CFL
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has been determined. its length is the ordinal ω(ω2). It has been recently studied
in [DFR01] [Dup99] [Fin99].

Acknowledgments. We have previously proved the existence of analytic but
non Borel sets in another class of ω-languages, the class of locally finite ω-
languages [Fin01c]. We are indebted to Jean-Pierre Ressayre who suggested
the way to adapt the original proof to the context free case.
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