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Abstract

I) Wadge defined a natural refinement of the Borel hierarchy, now called
the Wadge hierarchy WH. The fundamental properties of WH follow
from results of Kuratowski, Martin, Wadge and Louveau. We give
a transparent restatement and proof of Wadge’s main theorem. Our
method is new for it yields a wide and unexpected extension: from
Borel sets of reals to a class of natural but non Borel sets of infinite
sequences. Wadge’s theorem is quite uneffective and our generalization
clearly worse in this respect. Yet paradoxically our method is appro-
priate to effectivize this whole theory in the context discussed below.
IT) Wagner defined on Biichi automata (accepting words of length w) a
hierarchy and proved for it an effective analog of Wadge’s results. We
extend Wagner’s results to more general kinds of Automata: Counters,
Push Down Automata and Biichi Automata reading transfinite words.
The notions and methods developed in (I) are quite useful for this ex-
tension. And we start to use them in order to look for extensions of the
fundamental effective determinacy results of Biichi-Landweber, Rabin;
and of Courcelle-Walukiewicz.
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This is a survey trying to avoid technicalities; its main theme is the interplay
between the study of the Wadge Hierarchy —a set theoretic, non effective
subject - and some questions in Computer Science (abbreviated CS) - also
of theoretical nature but intimately related to practical aspects. The set
theoretic work we have to report on is in a rather definitive state while
on the side of CS our work is at its very beginning. For that reason §1
is devoted to the set theory, which in particular involves ordinals. But
the reader unfamiliar with such a topic should not worry: §2 belongs to
Theoretical Computer Science (abbreviated TCS) and relates the ordinals
with concrete objects such as Biichi and push down automata.

1 The Wadge hierarchy WH

We work on product spaces A¥ = infinite words of alphabet A, equipped
with the product topology: basic open sets are conditions on a word z in
A“ that depend only on a finite number of coordinates x;

Vi={xeAY: zn=s} n<w, s€ A"

Open sets are unions of such elementary open sets Vy; in other words U is
open if whenever x belongs to U there is n < w such that U contains all
words of A“ extending = [ n

The Borel sets of A“ are all sets which result from the open and the closed
sets by countable unions and intersections. And the Borel rank of such a set
is the ordinal which counts the number of nested unions and intersections
needed to obtain the set in this way. More precisely, open sets and closed sets
have rank 1; “Gs” sets (countable unions of closed sets) have rank at most
2 as well as their complements the F, sets. Etc up to the first uncountable
ordinal wy. This is the Borel hierarchy, of fundamental role in Analysis,
Statistical physics etc.

Definition 1 For A, B C v,
A <w B iff A has a continuous reduction to A: there is a continuous map



[ wY — w¥ such that “c € A” reduces to “f(x) € B”.
A<w B lﬁA <w B but not B <y A,’

WH is the class of Borel subsets of w*, equipped with <y and =y. WH
is a natural refinement of the Borel hierarchy. In fact the relation A <y B
is not only finer, but also more natural that the relation r(A) < r(B); so
WH is more natural than BH | However the Wadge hierarchy is terribly
refined compared to BH : see thm. 2 and rem.1(a) below. This has put
severe limitations on the use of WH in mathematical practice; which are also
limitations to the audience of the beautiful work on WH done by Martin,
Wadge, Louveau and others (see the bibliography). We tried to add to their
work a postscriptum - barely sketched below, but fully exposed in [D 94],
[D 96], [D 97]. Let us hope that it will help in making the subject more
accessible.

We end §1 by recalling the fundamental results about WH. The complement
w¥ ~ A of a set A € WH is demoted ~A.

Theorem 1 (Martin) Up to the complement and =y, WH is a well or-
dered hierarchy: there is an ordinal | WH| (called the length of the hierarchy)
and a map dyy, from WH onto | WH|, such that for all A,B € WH

diyA < dyB+«—— A<y B
diwyA=dyB+«— A=w B or A=y B

After thm. 1, a natural question is: determine the ordinal [WH|. The answer
to this question is Wadge’s main theorem:

Theorem 2 |WH] is the Veblen ordinal.

Remarks 1 (a) The Veblen ordinal is large beyond measure (fortunately
no other knowledge of this ordinal is needed by the reader here)... Thus
|W H | is so large that it was a “gageure” to conjecture Th.4, let alone to
prove it. Hence the 300 pages thesis of Wadge became famous among
Set theorists —even though the thesis was never published, and no
proof existed from any other source before [D 94][D 96][D 97] (which
also expose new results; one is presented in §5 ). We shall give the
main ideas of our proof: they make the structure of WH become more
transparent.



(b) The size beyond measure of |WH| also means that it is extremely
refined with respect to the Borel hierarchy. In Analysis and Set theory
this finesse has been so far more cumbersome than useful; but it is
exactly the finesse one needs for the effective study of Borel sets —
which plays an important role in Computer Science. This appears
in §2 which investigates a small effective portion of WH.

We end §1 with other results of Wadge.
Definition 2

(a) Given sets A C A4 and B C AY,, the Wadge game W (A, B) denotes
the following infinite game between two players, I and II.

(i) I chooses x € A4 and II chooses y € A%: at move p < w, I
chooses z, € AL. And II replies with y, € AL, or chooses to
skip, in which case y, is the empty sequence <>; after w moves,

the play is (z,y), where v = 20" x1" ... andy =yo" y1" . ...
(ii) II wins play (x,y) iff his play y is infinite and (x € A «—— y € B).
Lemma 1 (The Wadge Lemma)
A<w B iff II has a w.s. inW (A, B).

Definition 3 We say that A is selfdual iff A <y ~A.
For every set A of words, let *A denote the set 0.A U 1.7A.

Examples 1 {z : £(0) = 0} is selfdual, while {z : z(n) = 0 for some n}
is not. Clearly TA is selfdual for every A: it is reduced to its complement
by an application f such that f(0.x) = 1.z, f(l.x) = 0.z and f(y) = some
fixed suitable element g if y is not of the form 0.z or 1.z . Also it is clear
that if A already was selfdual then A =y T A.

The next proposition is just as easy but its sequel is a deeper result due to
Wadge.

Proposition 1 For every A in WH, if A is non selfdual then A <y TA.
In fact T A is the upper bound for the relation <y of A and ~A.

Theorem 3 For every set B in WH with a finite alphabet, B is self dual
iff B=w A for some non selfdual A in WH.



(The general form of Wadge’s result includes the case of a countable alpha-
bet, see §3)

Put together, the above two results make it simple to deduce the full struc-
ture of WH from its restriction to non selfdual sets. So henceforth by abuse
we let WH denote the Wadge hierarchy restricted to non selfdual sets.

2 Effective Borel sets and CS

Let us first recall the fundamental work on automata reading infinite words,
and its significance for CS (this work is due to Biichi-Landweber, Rabin,
Harrington-Gurevich and still others. For a good introduction see [T 90]).

e A Biichi automaton A is an automaton reading infinite words x €
“, and having an acceptance condition which tells whether or not A
accepts ¢ —in a way that only depends on the set of states which are
visited infinitely often by A while reading x.
We denote BA the class of these automata. For A in BA we denote also
A the set of infinite words accepted by the automaton A. And we play
on both terminologies, speaking of the set A and of the automaton A.
The set A is Borel; in fact it is a boolean combination of G sets.

Moreover every A in BA is effective, in the sense that one can decide
whether A accepts at least one infinite word: one uses

Biichi’s lemma A Biichi automaton A is non empty iff it accepts an
ultimately periodic word.

e A transducer is an automaton 0 which while it reads x € A%“’ writes

a word CGkx € Aéw on an input tape (henceforth all alphabets are fi-
nite).

e Given any set Z C A% the infinite game G (Z) lets two players
choose z € A% (at move p < w, I chooses z(2p) and II replies with
z(2p+1)). The winner of this play z is I iff z € Z. A strategy for a
player is a function which applied to the sequence of previous moves
of his enemy produces the next move of the player. It is a winning
strategy (written w.s.) if the player always wins when applying it.

Theorem 4 (effective determinacy)



For every A in BA, the winner of G (A) has a w.s. which is a
transducer

(in other words: every infinite game refereed by an automaton is won by
some automaton...)

This last result is of great practical and effective content. For present days
industry raises a large number of problems of the form: design a processor
working in real time interaction with its environment, which satisfies for a
certain specification. The above theorem is the theoretical background of a
successful modelization of this problem.

(a) One imagines an infinite game in which player I is the environment:
its possible moves are all stimuli which the environment might send
at once to the processor. Player I is the processor: its possible moves
are all the reactions which the processor might have to make at once.
The plays are all infinite sequences of alternate moves of I and II -
each move coded by a letter of a suitable alphabet A .

(b) The specification is then represented by the set A of all plays z € A¥
such that the moves of Il are a satisfactory response to the moves of
I, according to the specification; thus our problem becomes: find a
transducer 0 which is a w.s. for I in the game G (A).

(c) If A happens to be accepted by a Biichi automaton, then by the effec-
tive determinacy theorem one of the players has a w.s. 0 for G (A)
which is a transducer. If this player is II, then O is the desired pro-
cessor; and if it is I, then no processor of any kind can satisfy the
specification. Moreover by Biichi’s lemma we can effectively deter-
mine which player has the w.s. — and find out the transducer which
realizes it.

The infinite length of G (A) is an imaginary feature; but when a real world
real time processor has a short looping time (which is usually the case), if a
w.s. for G (A) is performed by such a processor then it is quickly effective.
So that the above model of processor design is accurate in a very large class
of applications - for instance, in the design of processors used in modern
planes. Which is an extraordinary fate for theoretical results about infinite
games...

Remark - a) For the development of computers and data bases, the prob-
lem of designing a processor meeting a given specification must be extended



to the case of processors working in polynomial time, satisfying specifica-
tions which are Borel but not just boolean combinations of Gy sets. So one
would like to extend the above work in the way appropriate to this extended
problem. b) This gives one motivation for extending effective determinacy
beyond the above case. But there is another motivation provided by Rabin’s
work: in addition to proving effective determinacy, he obtains it under the
form of a quantifier elimination result in Monadic Second Order Arithmetic
with two successors. Once second order quantifiers have been (partially)
eliminated this way from a sentence, he is able to decide its truth by use
of an extension of Biichi’s lemma. He thus obtains the decidability of MSA
with 2 successors, a result widely applied in CS. So if one succeeds to extend
effective determinacy one may also extend such results.

To the two perspectives of the above remark belongs the work of Cour-
celles [C 95][C 96], Walukiewicz [W 96]: every game refereed by a DPDA
(= deterministic pushdown automaton) has a w.s. which is also a DPDA;
and one can decide which player is the winner. Clearly this is a significant
progress; yet in terms of the Borel hierarchy the progress is invisible. For
DPDA’s have same Borel rank as BA’s. In contrast we are going to see that
the Wadge Hierarchy precisely captures the difference in power between
BA’s and stronger “automata”. To that end we study below the restriction
of WH successively: to the “Wadge closure” [BA] of BA (that is to the class
of all sets which are <y to some element of BA); to BA; to DPDA; and to
“blind” counters (denoted BC, and BC(k) when restricted to k counters).

Remarks 2 Together with the Wadge lemma, the effective determinacy
theorem implies that if A and B are BA’s then A <y B iff A can be
reduced to B by a transducer 7 : a word z is in A iff 7z (the word
written by 7 once he read z) belongs to B. In other words, B simulates A
via composition with the transducer 7. So WH[BA is an effective, decidable
hierarchy. ( We conjecture that the the same applies with DPDA acceptors
and transducers, although a Wadge game between two DPDA’s does not
always have his winning set accepted by a single DPDA). WH[BA is called
the Wagner hierarchy because Wagner [W 79] provided a particularly
effective and thorough description of its structure.

Theorem 5

(a) There are natural Borel operations on sets A, B (of infinite words):
A+B, Ao, Al (where o is any countable ordinal) such that:

&y (AFB) = dy (A)+dy (B); &5y (Aroo) = dy (A).wi; diy (Aa) = doy (A).a.



(b) Up to complement and =y, WH|[BA] is the closure of {O} under +,
T00, ta (o < wy).

(¢) Up to complement and =y, WH|BA is the closure of {©} under just
+ and “co. And WHIDPDA is the closure of {O} under the same

operations plus ‘w.

Put simply, the theorem says that the difference between BA and DPDA
lies in the operation ‘w, which is defined on DPDA but not on BA. Similarly,
the difference between DPDA and [BA] lies in ‘o for w® < a < wy.

Let us first define A+B and Bloo.

Definition 4

(a) Assume Ay = ApU{es,e_} (disjoint union); then Bloo = (A% .e;)*.BU
(A%.e_)t."B. And A+B = BUA%5.e;. AUANg.e_."A.

Nota Bene 1

(i) This defines Bloo in all cases and A+B in a special case. But
we can always assume this special case to hold, by renaming the
variables of A4 U Ap and adding dummy variables.

(ii) It is rather clear that BA, BC(k) and DPDA are closed under
these two operations; to illustrate this let us give examples, when
the graph of an automaton is represented with the following con-
ventions:

e a state which has a trivial loop in the graph is represented
by © if the loop is rejecting and by @ otherwise. Thus © is
the graph of the automaton which accepts the empty set of
words (it is also our notation for this empty set)

e an arrow is labeled with — if every loop of the graph including
it is rejecting.

With these conventions consider A = B = ©; then A+B and B.co
have the pictures:



(b)
(c)

(d)

N
B B

e_

And this is extended to all DPDA’s A and B by substituting to ® and
O the whole machines B, A and ~A in the above pictures.

Next we define Ao for finite a: A’1 = A, and by induction on n:
Al(n+1) = AntA.

Since BA’s are closed under + as we just saw, they are closed under
A'n. And DPDA’s are closed as well. In addition the definition of A'n
can be simplified for certain A’s: for instance O.n can be simplified to
the automaton with picture

O—®— ...... — ®—0 —®lra.....,.

n

(alternating n times © and @).

Next we give an abstract, non effective definition of A« in case « is
infinite: the successor case is as in the finite case

A(B+1) = (AB)+A

and for o limit ordinal, Ala = stipg.,A°B. Where sup is the following
operation.

For all sets A;, 1 € I, set sup;ciA; = UlAZ
iel

Nota Bene 2 (a) In defining sipA; we assume that this family is infinite

and has no maximal element for <y ; for the other case is pointless.
But this infinite case makes sup A; be a selfdual set whereas we took
the convention that WH is restricted to non selfdual sets. So by con-
vention sipA; denotes a non selfdual set which in the order <y comes
immediately after: Ud*.i.Ai where d is any additional letter.
i€l

In case selfdual sets with countable alphabets are included in WH,
theorem 3 has the following extension:



A =y B for some non sefdual set B
or
A=y Ud*.i.Ai for some family of non selfdual sets A;.
el

A is selfdual iff

We next discuss all the above set theoretic operations from the Wadge game
point of view: this will help to understand the last ones. We start with Aco
; consider a player in charge of this set (player I in W (A’oo, B) or II in
W (B, A’0)). Then it looks as if

(a) the player starts to play in charge of A

(b) but at any time before the end of the play he may erase his former
moves and decide to be in charge of A or of ~A for the rest of the play

(c) he may repeat (b) even an infinite number of times: in such a case his
play is considered to be in the complement of the set he is in charge
of.

For in practice (a) holds as long as the player plays only letters from Ay;
(b) becomes true if he plays the letter ey or e_, and only letters from Ay
afterwards; and (c) is true since every word in A’oco has a finite number of
occurrences of the letters “e”. Properties ((a)+(b)+(c)) are what we call
the playful characterization of A’oco: they define this set only up to Wadge
equivalence but in this way they tell the essence of this operation. It is
easy to convince oneself that the other above operations have the following
playful characterization:

e the player in charge of A4 B starts every play in charge of B; but at
any time during each play he may decide to be in charge of A for the
rest of the play, or in charge of “A. Then his former moves are erased
(but not those of his enemy).

e The player in charge of sup;c;A; chooses at the start of each play
which one of the sets A; he will be in charge of (for the whole play).
Indeed, in the selfdual version his very first move chooses A;; and in
the non selfdual version, by playing the letter d (for “delay”) he may
wait before choosing A;. He may wait for ever by playing d* then his
play is not in his set.

e The player in charge of Ala is a player in charge of Aloco (as redefined
by ((a)+(b)+(c))) but subject in addition to the following requirement:
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at the beginning of the play he is given the ordinal a, and he must
decrease this ordinal at each move where he applies (b). (Thus during
any play he can apply (b) only a finite number of times: as long as he
did not reach 0 this way).

When A is any DPDA, let us turn Aw to a DPDA, using this playful
characterization (and forgetting about the former set theoretic definition).
This DPDA involves the DPDA A, and works like it at the start (so the
player starts in charge of A). But in addition it involves a one turn counter
C' : the content of C is an integer which can increase to any value n < w
but can only stay or decrease once it started to decrease. And the player
can choose letters that increase C to n; then whenever he decreases n to a
value n — 4, the DPDA starts functioning anew, like “A if ¢ is odd and like
A if i is even.

Remarks 3 e We did not specify the way by which the counter C may
be increased or decreased. But clearly there are many precise ways
which allow for the playful characterization of the DPDA A’w to be
satisfied. Any such DPDA version of Alw satisfies theorem 2 as re-
quired. And DPDA becomes closed under the operation Aw.

e The closure of DPDA under Alw and A+B easily implies its closure
under Ala for every a < w®”.

Now we see concretely the content of theorem 5(b); but we can be much
more precise than this theorem, by completely telling the structure of WH
restricted to : [BA], BA, BC(k) and DPDA. To that end we restate Th.5(a);
let < w{ > denote the structure of the ordinals < w{’, equipped with its
“arithmetical” notions: <, +, 1, and all multiplications .« where o < wy.
And let <WH> denote the structure

<W-Ha <w, —T_u @) (?a)a<w1 or 04:00>

then the theorem says that the two structures < w¢ > and <WH>[ bc(Gs)
are isomorphic via the map dy,;, . Now any ordinal o < w{ has a Cantor
Normal Form which is a canonical term

CNF(a) =w®.vy+ ... + wi* .y

(with 0 <n; € INand 1 < v; < wy), denoting « inside the structure < w{ >.
Let us evaluate this term CNF(«) in the isomorphic structure < WH > :

w) =1 gets evaluated to O;

11



w?.v to ((Ghoc).00) v, ete.

Thus the evaluation of CNF(«) in < WH > produces a set of [BA] which
we denote Q(ar). To say that dy, is an isomorphism of the structures is to
say that dj,Q(a) is just «; and by definition of dy},, whenever dy,(A4) = «
then A or its complement is =y to Q(«). In this way theorem 5(a) gets
refined to theorem 6(a) below.

Theorem 6 (theorem 5 refined)
(a) Up to complement and =y, [BA] consists of the sets Q(a), a < wY

(b) Up to complement and =y, BA consists of Q(«) where the parameters
v; of CNF(a) = wl".i; are finite. BC(k) is the case v; < w**1; and
DPDA the case v; < w®”.

In case of BA, 6(b) follows from Wagner’s theorem [Wal; but the cases con-
cerning BC(k) and DPDA are new: see [D 98] and [F 99(a)][F 99(b)]. Note
the analogy between this theorem and Cantor’s Normal Form theorem: Can-
tor’s theorem provides a canonical and unique way to obtain each a < w®
as a term CN F(«); this theorem provides Q(«) as the normal form of BA's,
BC’s and DPDA’s...

Nota Bene: BC(k) is not closed under ‘w, for otherwise it would also be
closed under ‘w**! contradicting the theorem.

2.1 Conclusions

e While the Borel Hierarchy does not see any difference between BA,
BC(k), DPDA and [BA], the canonical operations of WH pinpoint the
differences between these classes...

e This is nice but not too important, because we already know the effec-
tive determinacy of BA and DPDA. But the phenomenon that canon-
ical operations of WH are precisely relevant for capturing main classes
of Borel sets occuring in TCS, continues beyond DPDA. This may help
to extend effective determinacy : add one more canonical operation
of WH, oo to the ones which generate WHIDPDA: and take the clo-
sure of DPDA under these operations. The resulting class is a part
of NPDA (non deterministic PDA) which may lead to new effective
determinacy results. (This cannot happen with NPDA as a whole: see

theorem 7 below). Thus in §3 we study WH in order to introduce co?.

12



Theorem 7

(a) NPDA contains Borel sets of every finite rank [F 98 |].

(b) Alas, one cannot decide which player is the winner of a game
G (A), when A is NPDA [F 98 ]. Also one cannot decide the
Wadge class of an NPDA [F' 98 |[F 99(a)].

e So much for the interest of WH in CS; what about the converse ?
The above description of WH | [A] (by canonical generators Q(«)
resulting from the normal form of ordinals) and its proof (seen in
§3), were first developed just for the Wagner hierarchy WH | BA and
were suggested by this initial case. And this first success of the method
provided the crucial idea to understand the structure of WH and prove
Wadge’s theorem: consider the canonical operations on ordinals which
generate Veblen’s ordinal =|W H|, providing a Veblen Normal Form
for each ordinal < [WH|. And find isomorphic operations on WH.

3 The conciliatory hierarchy

Definition 5

(a) We call Sets (with capital S) all sets A of finite or infinite strings:
AC Afl“’, where A, is any set - called the alphabet of A.

(b) Given Sets A and B, C(A,B) denotes the following infinite game
between two players, I and II.

(i) T chooses x € A5 and II chooses y € A5Y: at move p < w,
I chooses x, € AL, or chooses to skip, in which case Tp 18
the empty sequence <>. And Il replies with y, € AL U {<>);

after w moves, the play is (z,y), where v = xo" 1" ... and
Yy = yoﬁylf\ e
(ii) II wins play (z,y) iff (r € A——y € B).

(This is the Wadge game except that both players may skip as
much as they want to, so that the plays x,y may be finite).

(c) We set:

A<.B <= 1 has a winning strategy (w.s.) in C (A, B)
A<.B <= A <. B but not conversely
A=.B < A<.B</ A

13



The conciliatory hierarchy CH is the class of all Sets A C Ai“} with count-
able alphabet and such that AN A“ is Borel. CH is equipped with <. and

—=c-

(a) Our definition of C (A, B) of course derives from W (A, B): it is
W (A, B) made symmetric w.r. to the players, so that it has no
importance which player starts the first move.

(b) The complement of a Set A, denoted ~A, is A%“’ ~\ A. Using (a) it
is immediate that A =. A, never holds; so the hierarchy CH has no
“self dual” Sets.

Suppose we modify the outlook of C(A,B) by deciding that whenever a player
wants to skip, he chooses a special letter b (for “blank”) not in the alphabets
of Sets - instead of choosing <>. Thus every play in the game becomes an
infinite sequence, and C(A,B) is turned to a Wadge game W (Ab, Bb) with
A = {z € (AAUb)¥ : 2’ € A} where 2/ denotes the sequence z in which
every occurrence of “b” has been removed. Clearly this change is purely
formal: a player wins C (4, B) iff he wins W (A4°, B?). Thus A <. B iff
AP <y BY : we constructed a trivial and canonical embedding of CH into
WH. In the opposite sense there is an embedding which is almost the identity,
too: it chooses for every set B a set s(B) of finite sequences from Ap (hence
BUs(B) becomes a Set) so that the map : B —— BUs(B) is an embedding
of WH into CH, in fact it is equivalent for a player:

e to be in charge of B and be applied the rules of the Wadge game, and

e to be in charge of BUs(B) and be applied the rules of the conciliatory
game.

[The choice of s(B) is not obvious : for B in BA or B in be(Gy) it is easy
to define, but we don’t know how to prove the general case without proving
along that |C' H|=Veblen’s ordinal=|W H|...]

We summarize the above two ways-correspondence between CH and WH by

Theorem 8 CH and WH are isomorphic.
Thus we prove Wadge’s theorem by
e proving its analog for CH (theorem 9 below): |C'H| = Veblen’s ordinal

e and then proving theorem 8.

14



[This detour through CH allows an essential simplification of the proof. For
it is CH and not WH which has really simple operations generating it from

ol

Theorem 9 There is a map d; from Borel Sets onto the Veblen ordinal
such that:
A=.B iff d.(A)<d.(B)

As a warmup to the proof of theorem 9, we prove its restriction to [BA]
(which here denotes all Sets which are <.A for some A in BA):

Theorem 10
|CH | [BA]| = wY

O thm. 10 - - Step 1 - We define a Set Q(«a) for each o < w§ and prove:
a < fiff Q(a) <. Q((F).

To that end we extend to CH the operations of +,.a, 00: the definition is
unchanged, only it is applied to Sets, which involve finite words as well. 100J

Lemma 2
(a) A<.A implies A+ B<.A' + B; B <. B’ implies A+ B<.A+ B’
(b) A <. A.c0, for any ordinal «

O lem. 2(a) - : by assumption II has a w.s. against I in C(A,A)
and C (B, B’), but not in C(B’, B). Using these strategies and the play-
ful characterization of A4+ B it is easy to devise a w.s. for player II in
C (A—T—B, A%A—B’): namely II applies his w.s. in B’ as long as [ is remaining
in charge of B. And if I decides to become in charge say of A, II decides the
same thing and wins by playing the same letters as I later on.

And a similar playful argument applied to I's play shows that II cannot have
aws. in C(A"+ B,A+ B) or in C (A+B’, A+B): it would induce a w.s.
for him in C (B’, B). 20J
O lem. 2(b) - : obvious from the playful characterizations.

We define the Set Q(a) from CNF(«) just as in §2, but using the conciliatory
extension of the operations. Then Step 1 follows easily from the Lemma by
induction on a. 20]
Step 2: “separation lemma”:

Lemma 3 for every Set A, if
A< Qa)and A <, Qa) = A <. Q) or A<, QB), for some f < «
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0 lem. 3 - By induction on a: a =1 is trivial, so we assume o > 1 and
that the lemma holds for every § < a.

Case 1: Q(a) is of the form B+C. The complement of B+C is B+ C
(because of the symmetry between B and ~B in the definition); thus
the assumption on A is that I is given w.s. 04 and S (Z) gma_ in
the games C (A, B—T—C) and C (A, B—T—‘C). Recall that by the playful
definition of B+C, strategies 0 and S (Z) gma_ may ask to become
in charge of B or B during any play; but let F denote the set of all
infinite words x in A4 such that if I in charge of A plays x, then
neither 04 nor S (Z) gma_ make use of this right. Thus 0 shows
that ANF <. C and 0_ shows that A <. ~C. By definition of
Q(a) = B+C, there is v < a such that C is (). So by the induction
hypothesis, AN F <. “Q(y) where ¢ = 4+ or —. Let 8 = a + 7, so
Q(B) = B+ Q7). Then II has a w.s. T in charge of Q(f3), against
in charge of A: as long as I'’s play did not go out of F, 7 plays so as to
remain in “Q2(y) and win against AN F. And if I chooses to go in B,
T does the same and starts repeating every move of I. Thus 7 wins
in any case, and the induction is done.

Case 2: Q(a) is of the form Bloo. Similar to case 1: the assumption pro-
vides II with two strategies 04 and S (Z) gma_ against I in charge

of A. Since 04 is in charge of B'oco and S (Z) gma_ in charge of
its complement, it never happens that both strategies will play an
infinite number of letters “e;” or “e_”. For they both would have
their play rejected so one of them would win and the other lose. Then
from o4 and S (Z) gma_ one can manufacture a w.s. 7 for II in
charge of B’oco which never plays an infinite number of “e’s”: roughly
speaking at each move T chooses between mimicking 0 and dually
mimicking S (Z) gma,jn addition 7 makes this choice so as to avoid
playing “e” except when both options require it. Thus 7 is a w.s.
not only when II is in charge of B oo, but also when it is in charge of
B.oo restricted so as to never play an infinite number of “€”. One
can show for every strategy 7 with this property that there is an ordi-
nal v (depending on 7) such that T actually wins against B’y. Thus
A <. By, and this completes the induction in Case 2.

Case 3: Q(a) is of the form sip,.(B;)i<o. This case is simple.
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Step 3 :
Lemma 4
a Set A isin [BA] iff A <.Q(«) for some a.

O lem. 4 -: [BA] is closed under the operations building Q(«); this proves
the “if” direction.

Opposite direction: A <. Q(w™) for some n; this can be proved first when
A is an automaton. Then it applies to all A’s just by transitivity of <.. 4[]

Step 4 : final step.
Lemma 5 Let A be any Set in [BA],

A or its complement is =, to Q(«) for some a.

[0 lem. 5 - Let a be the smallest ordinal such that A or its complement
is <. Q(a). Only one of the two inequalities holds; for the above separa-
tion lemma says that otherwise o would not be smallest possible. So for
instance II wins C (4, (a)) but not C(7A,Q(ca)). But the latter game is
determined: if I has no w.s. then it is I who has a w.s., say 0(This
holds because "A and Q(«) are boolean combinations of Gj sets; and for
such games determinacy is a consequence -for instance- of the Gurevich-
Harrington proof of effective determinacy. But more generally Martin has
proved the determinacy of all Borel games) Now the perfect symmetry be-
tween the two players in a conciliatory game implies that if 0 is a w.s. for 1
in C (A4, Q(«)) then it is also a w.s. for I in C (Q2(a), A). Thus we showed
A =, Q(a) and the proof is done. 500

We remark it is now easy to prove theorem 8 for [BAJ; then as corollaries of
the theorem just proved we obtain theorem 5, and the restriction to [BA] of
theorem 5(a).

4 WH and CH on sets of finite Borel rank

A

In order to go beyond [BA] a new operation on Sets co” is needed; we

introduce it in the playful way.

Lemma 6

(a) P=.0
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(b) 04O =, (00?200

(c) ocosuPn<wdn =_ sup, (0o )00
This lemma is a corollary of theorem 11 to come. However its proof is left
to the reader because it is an instructive exercise. It starts making the new
operation 0o resemble ordinal exponentiation, which we now recall.
For all ordinals v and «, v® is defined by induction on a : y' = ~; 42+ =
7@y and Y5%Pi% = sup;v*i. The resemblance between oo” and exponentia-

tion of base wy is an isomorphism except for a (small) imperfection ¢ :

Theorem 11

do(00?) = w(lic(AHs where e is — 1, 0 or +1

(depending on the value of d.(A)).

The preceding lemma (a) shows the result in the initial case where d.(A) = 1.
So inductively assume it true for d.(A) < some ordinal 7. Then the lemma
proves it when v is a + 1 and when v is suppa,. The remaining case is
more delicate: full proof of theorem 9 is needed to obtain it in general. The
case where A is of finite rank is a corollary to the next theorem.

Let £o(7y) denote sup,, vn, where v1 = v, Y41 = 7. Thus go(w) is Cantor’s
ordinal €p, and e¢(w1) is the first ordinal closed under exponentiation of base
w1.

Remark - Suppose o < £(w1); « has a Cantor Normal Form just as in the
former case o < wY, except that the additional operation w{ is used at some
stages. This allows to extend the definition of {2(«), simply by additional
clauses

Q) = 00f2(B)
or (depending on the value of ¢, in theorem11 applied to A = Q(0))

Q(supp<wor,) = sip Q(ay,).

n<w

Theorem 12
Set A is of finite Borel rank iff A or A=, Q(«) for some o < e(wy).
Then d.(A) = a iff A or A =, Q(«).
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O thm. 12 - We make the same proof in 4 steps as for [BA], except that

we take care in addition of the operation co?.

Step 1:

a < B iff Q(a) <. Q(F). This step was an easy consequence of lemma2.
Here we only need to extend this lemma to the new operation:
A <. B implies 0o <, 0oB.

This is easy.

Step 2 - Separation Lemma:

if A and "A <. Q(«), then there is # < a such that A or “A <. Q(f).

Proof - We only have to consider the case where Q(«) is of the new form
oo®, because the other cases are handled by the former proof.

Case 1: B is not itself of the form co®’. Thus B is for instance of the
form C+D; and a player in charge of co® is in charge of C+D (...with an
additional right to erase). If we forget the remark in parenthesis, we are
thus proving the separation lemma in one of the cases handled by the for-
mer proof. Then it is possible to imitate that proof so as to transfer it from

C4+D to C+D = B...

Not case 1 : even in that case, there is B’ not of the form ooBN, such that
B results from B’ by the operation co? iterated a finite number of times.
Then the idea of case 1 can be applied, using B in place of B...

Step 3: Set A is of finite rank iff A or A <. Q(«a) for some a < e(wy).
Proof - The operations used to build £(«) all are Borel, and they increase
the Borel rank at most by 1. So Q(«) is Borel; and its rank is finite by easy
induction on a. Let €, denote the result of co” applied n times to ©.2; one
can show that A is of rank< n exactly when A or “A <. ,. Hence the
result, since ,, is of the form Q(«) for some a.

19



Step 4: one takes the smallest o such that A or “A <. Q(«) and shows that
Aor "A=. Q).
Proof of step 4 is exactly the former one.

1201

Remark - As corollaries one can obtain the case of finite rank of theorems
12, 8, 9 and of Wadge’s main theorem.

5 The Set theoretic logarithm

The operation co? acts like exponentiation on Sets; it can be inverted: for
every Set A we define a Set AF such that roughly (co?)¥" =. A. Remember-
ing that a player in charge of co” is in charge of A but has an extra right to
change the past of his play, we see that a player in charge of A" should be
in charge of A but have an extra duty: the duty to inform in advance about
his future moves. To that end one carefully chooses a countable family F
of closed subsets of the space A%; the player in charge of AF is the usual
player in charge of A with the additional duty to inform already at move
n whether or not his final play will eventually belong to the n** set of the
family F'.

A case where A% is easy to understand is when A = 0o?; then we take for
F all sets of the form {z € A4 : z(i) =a} (i <w and a € Ag). A player in
charge of (0o?)¥ is forced during the play to decide all these sets; eventually
he is thus forced to eventually decide the value of each of his moves. But
after he has done it for a move, he can no longer erase it. So taking co®
gave him the right to erase, but then applying “F” gradually suppresses
this right! Tt is then easy to see that (co®)f =. B: the operation acted
as a kind of logarithm...This is a powerful tool reducing questions about
a Set of the form 0o to questions about B. Remember that the idea to
prove the Separation lemma is to deduce it from his former version by such
a reduction. The new “logarithm” A" offers the best way to realize this
idea precisely.
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6 Effective Borel Sets

In §3 we saw that ‘w is a basic notion for WH; and in §2 we had seen that
it also is the right notion in some effective studies. What about other basic
notions about WH: oo, A”, CH; are they useful in the same effective way?
This question is recent so we only have preliminary remarks and results
about it.

a) In §3 we used CH to prove results about WH because CH is much simpler.
This is good news here, for the conciliatory framework seems more natural
in connection to TCS: it certainly is more realistic to allow words and plays
to be finite!

b) Remember that infinite games modelize interacting processors. And that
the operation oot not only allows but even forces players to erase. For if a
player in charge of oo does not erase then he is only in charge of A which is
much weaker. May be this could be used to modelize processors interacting
in a memory saving way: if their specification can be expressed in a
way that involves Sets of the form oo in a suitable way, then a processor
satisfying the specification will be a fanatical eraser!

c) Alas, in CS if Set B arises in a model for a specification, in practice it will
not present itself under the form oo for some A. But it may be possible to
use the “logarithm”, putting B in the form 00B"). For it seems that if B is
effective in some sense, then in a similar sense B is effective too.

Thus the notions we have come to in the non effective theory may have
applications in the effective domain. But there are several ways for a Borel
set to be effective, and to pursue the discussion we need to specify the one
we consider.

6.1 (non deterministic) PDA’s

Proposition 2

(a) PDA N co-PDA is closed under the operations +, “w, "o, ood; and the
same holds for NAPDA (that is non ambiguous PDA’s) N co-NAPDA.

(b) Let DA™ denote the closure of DPDA under the above operations; the
ordinal length of CH | DA™ is Cantor’s eg. And provided CH |
DPDA is decidable with w.s. performed by DPDA transducers (some-
thing we expect to be proved soon) then the same holds for CH | DA™ .
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(¢) In addition for every game G (A) with A in DA™ one can decide which
player has a w.s.; and DPDA transducers suffice to win.

This sounds very nice, since DA™ contains Sets of every finite Borel rank:
it looks as if DA™ is the extension of DPDA one is looking for, beyond
the results of Courcelles-Walukiewicz! The trouble is that the proof of the
proposition is too easy, reflecting the fact that DA™ is not rich enough:
its Sets modelize rather limited kinds of specifications. Thus in reality one
needs to extend the proposition to some richer class DA. But it is plausible
that this can be done relying on existing ideas: the case of DA™ is so un-
challenging that there is room for strengthenings...So let DA denote the set
of all PDA’s that are <. to some element of DA™ via a rational transducer;
does every game G(A) with A in DA have an effective w.s. 7

The undecidability results of theorem 7 suggest that one has to restrict
NAPDA in some explicit way if one is to obtain effective determinacy results.
It is not easy and clear how to make this restriction; and the method based
on co? we used to define DA™, is the only way which we see...Thus the
operation oot seems particularly useful to study NAPDA. On the other
hands its inverse A quickly leads outside of PDA. This is one of the many

reasons to consider the notion of effective Set we will introduce in §4.C.

6.2 Transfinite BA’s

By slightly generalizing the acceptance condition of BA’s one enables them
to read transfinite words x in A% for o > w; the case o = w™ is the main one:
we then speak of an w™ — BA. At first this seems too far from the real world
to ever have applications. But this impression is due to a misunderstanding:
when A in w"™ — BA is considered, people think that the associated game
G (A) takes place in w™ moves —a pure fantasy. But actually the associated
game takes w steps as before, producing a word z’ of length w. It is the
referee of the game which in order to determine the winner decodes x’ into
a word x of length w™, and takes this number of steps to read x —just as for
accepting words of length [ many processors make computations of a longer
length [". Put this way, w™ — BA’s are natural. And in fact they define
some of the most basic and natural effective Borel sets of rank up to 2n + 1.
Prop - The hierarchy CH | w* — BA is of length at least p(w®) = &o.

We expect that this bound will turn out to be the exact length, that the
hierarchy is decidable and that every reduction between two w* — BA’s can
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be done by an effective transducer (some partial results in this direction are
obtained). This is not using oo which leads to an undecidable extension
of CH | w* — BA. But w” — BA is closed under a variant of oo denoted
(IT, A), which has a quite similar theory.

6.3 Local Sets

A local sentence is a universal first order sentence ¢ such that in all models
of ¢ , the set of all terms reduces to a fixed finite set T of terms. This is
possible in the following way: for each term ¢(z1...zx) having all its proper
subterms in T, we can write a finite disjunction Dy of equations which asserts
that the value of ¢(z;...xz)) equals the value of some term s of T applied to
some of the variables x1...x;. Let ¢ include the universal closure of the
disjunctions Dy : then clearly, in any model of ¢, every term s in which
parameters from the model are substituted to all variables reduces to a
term s’ of T (s’ depends on the model and on the parameters, not only on s
itself). In other words, as soon as the rest of the sentence ¢ is universal, ¢
will be local. Clearly every model M of a local sentence ¢ is locally finite
in the sense that any finite part X of M generates a finite substructure A
(in fact the cardinal of A is bounded by a polynomial of card X). This is the
origin of the terminology “local”.

A class C of words is local if for some local sentence ¢ it is of the form :

{z € A¥ : the structure x can be extended to a model of ¢}

(when the word x is considered as a structure in the usual way).

One can show the existence of local Sets in this sense which are Borel of
infinite rank or even analytic. Still all local Sets are effective in the sense
that there is an algorithm to decide whether they contain at least one infi-
nite word. This analog of Biichi’s lemma is proved in [R 88] and [R F 96]
also shows that any weaker combinatorial principle than the infinite Ramsey
theorem does not suffice to justify the algorithm. This is in sharp contrast
with Biichi’s lemma, which rests on a particularly weak combinatorial prin-
ciple -namely: the form of the pigeon hole principle asserting that there is
no injection from an infinite set into a finite one! The contrast suggests
that local Sets form a particularly rich class of effective Sets. It is an open
question whether they include all PDA’s; but any concrete and usable ex-
ample of PDA which we know of is easily seen to be local. In addition every
w" — BA is local [F 99(d)]. Local Sets are closed under union but not under
complement [F 94]; but Sets local and co-local are closed under the oper-
ations +, A'w, A'co, 00, Work has started to show that the class of local
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Sets of finite Borel rank is in addition closed under the operation A¥, and
that it is close to the class of w* — BA. This would be nice because local
sentences are a much more flexible way to define Sets than w”™ — BA’s. On
the other hand, w™ — BA’s have good decidability properties, so one would
have both advantages. Finkel has started to show that the ordinal length of
CH [(local and co-local Sets) is much larger than gy ; so that this notion of
effective Set is a story at its very beginning.

6.4 CONCLUSION

So much about using the non effective theory of WH to help the investigation
of effective determinacy (both of G(A) and W(A,B) games). What about
the converse -using CS to help the Set Theory of WH 7 Our initial goal was
to study the effective part WH [ w*-BA rather than WH itself. This study
lead to the operation (II, A) (used in the study of transfinite BA’s) and to
the “conciliatory” framework, which lead to co?, which lead to A¥. The
latter concepts were up to the challenge of giving full proof and extension
of Wadge’s main theorem. This lead the first author to concentrate on the
non effective aspects of WH until the challenge was won. Consequently the
effective investigations we have told in this section only started recently:
there still is a wealth of ideas to be developed.

7 Climbing to the top of WH

One reaches the Veblen ordinal by a clever iteration of ordinal exponen-
tiation of base wi. The cleverness is used to monstrously prolongate this
iteration without loosing control of the process. So that the Veblen ordinal
thus reached and defined is very large, yet has a “Veblen Normal form” for
all its predecessors, as £(w;) has a Cantor Normal form. The isomorphism
between CH and the Veblen ordinal is then constructed by using the Veblen
Normal form and converting it to a normal form Q(«) of every Borel Set, in
4 steps as before. The additional work needed w.r. to §3 consists:

i) in iterating the operation co” in a way clever enough to make these iter-
ations correspond to Veblen’s iterations of ordinal exponentiation

ii) and in iterating the operation A" so that it provides the inverse of the
iterated oo?.

This is hard work but in some sense all the ideas are to be found in §3 except
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for the Veblen construction, to be found in [V 08]. Thus |CH| = Veblen or-
dinal gets proved (theorem 9). There remains to prove WH isomorphic to
CH (theorem 8). This is done by induction on all ordinals < |C'H|, using
the knowledge of CH provided by the proof of theorem 9.

8 WH extended to uncountable alphabets

So far the alphabet A of any set of words was of cardinal < w; and the Veblen
ordinal was the one we now denote V(w), which uses exponentiation of base
w1. But the proof of |[IWH| = V(w) can be extended to the case where A
has cardinal < K (K any infinite cardinal); and where V(w) is replaced by
V(K) (defined as V(w), but when exponentiation of base K is used). And
the extended proof determines |W H| when K replaces w. There is however
a significant difference in the result one obtains, whenever K is uncountable
: namely |WH| is much smaller than V(K).

Since not many people are aware of WH even in the countable case, one
may wonder if it makes sense to consider this uncountable case, still less
effective. Here are two reasons to do so.

Reason 1: a missing part of WH

The fact that |IW H| becomes strictly less than the Veblen ordinal V' (K)
raises the question: is there a hierarchy WH(x) which coincide with
WH in the countable case but is larger in the uncountable case, so
that |WH (k)| = V (k) becomes true for all values of x ? This problem
of the “missing part” WH (k) ~ WH has been solved by J. Duparc
(feb. 1998): the length of WH and CH does jump precisely to V (k)
if the hierarchy is extended to all analyticNco-analytic— sets; where
a set A included in A% is analytic if it is the projection of some closed
subset of A“ x w¥. (If A is countable, by Suslin’s celebrated theorem
these analyticNco-analytic sets reduce to the Borel ones. It is only if
A is uncountable that they contain substantially more than the Borel
sets —providing for the “missing part” of WH).

Reason 2: the extension of WH goes in the direction of more effectivity
I' For Girard-Vauzeille [G V 84] extended the Veblen hierarchy to a
Veblen functor V of ordinals, which is effective in the following
sense: the restriction of this functor to finite objects (integers and
morphisms between them) is primitive recursive and this restriction
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uniquely determines all of Veblen’ functor, in an utterly direct way.
Now once WH is extended to W H (x) we have turned WH to a function
of the cardinals k which is partially isomorphic to this Veblen functor.
It is then easy to define more generally W H («) for every ordinal «
so that the function: o —— |WH ()| coincides with the function:
a — V(a). We intent to enrich the function: o — WH(«) to
a functor, so that the above isomorphism of functions becomes an
isomorphism of functors: one that preserves their categorical structure
and not only the order. Our proof of Wadge‘s main result proceeded
by turning the equality |[C H| = V(w) to be proved, into a isomorphism
between < CH > (Sets with their natural structure), and < V(w) >
(= ordinals with their natural structure); this projected extension is
the analog when functors over the ordinals (called dilators) replace
ordinals. Its goal is to apply to effective determinacy the beautiful
ideas of Girard - see [G V 84] - connecting dilators with large cardinals
and determinacy. This is a long term program; there is a plenty to do
in the meantime...
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