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Abstract

We show that bounded families of global classical relativistic strings that
can be written as graphs are relatively compact in C0 topology, but their
accumulation points include many non relativistic strings. We also provide
an alternative formulation of these relativistic strings and characterize their
“semi-relativistic” completion.

1 Some relativistic strings and their non relativistic

limits

Let us consider a graph

(t, s) ∈ R × R → (t, s, X(t, s)) ∈ R2 × Rd,

defined by a sufficiently smooth (at least locally Lipschitz continuous) func-
tion X. According to string theory (see [Po], for instance), this graph defines
a global classical relativistic string if and only if, for all bounded open set
Ω ⊂ R2, X makes stationary, with respect to all perturbations, compactly
supported in Ω, the Nambu-Goto Action defined by

∫

Ω

√

(1 + ∂sX2)(1 − ∂tX2) + (∂tX · ∂sX)2 dtds

∗CNRS, Université de Nice, FR 2800, brenier@math.unice.fr

1



Non relativistic strings may be approximated by relativistic strings

which is nothing but the area (over Ω) of the graph, in the space R2 × Rd,
with respect to the Minkowski metric (−1, +1, · · ·, +1) (for which the speed
of light has unit value). Since we limit ourself to graphs, we automatically
exclude many kinds of relativistic strings, in particular loops are ruled out.
In this limited framework, the variational principle just means that X is a
solution to the following first order partial differential system (of hyperbolic
type):

∂t(B∂tX − C∂sX) − ∂s(C∂tX + D∂sX) = 0, (1)

where

B =
1 + ∂sX

2

A
, C =

∂tX · ∂sX

A
, D =

1 − ∂tX
2

A
,

A =
√

(1 + ∂sX2)(1 − ∂tX2) + (∂tX · ∂sX)2.

We say that such a string is global if X is a global solution, i.e. for the
full range −∞ < t < +∞, of (1). In the present paper, we exhibit some
compactness properties of these global relativistic strings and characterize
their limits.
In order to motivate this work, let us first consider, given some constant
0 < κ < 1, the non trivial family Fκ of global solutions to the relativistic
string equation (1), made of all X that satisfy, the linear wave equation:

∂ttX = κ2∂ssX, (t, s) ∈ R2, (2)

together with the nonlinear constraint:

κ∂tX · ∂sX = 0, ∂tX
2 + κ2∂sX

2 = 1 − κ2, (3)

at time t = 0. Any solution of the wave equation (2) which does not satisfy
(3) will be subsequently called a non relativistic string.
To check that, indeed, every X ∈ Fκ is a global solution to the relativistic
string equation (1), let us first notice that the wave equation (2) also reads:

(∂t+κ∂s)(∂tX+κ∂sX) = 0, (4)

which leads to the celebrated d’Alembert formula:

(∂tX+κ∂sX)(t, s) = (∂tX+κ∂sX)(0, s+κt). (5)
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Thus, condition (3), which can be written:

|∂tX+κ∂sX|2 = 1 − κ2, (6)

is propagated by the wave equation (2) and, therefore, holds true at all time
if it does at time 0. Finally, we get from (3), A = κ(1 + ∂sX

2), B = κ−1,
C = 0 and D = κ, so that equation (1) reduces to (2).
Let us now study Fκ from the viewpoint of compactness and completeness:

Theorem 1.1 The family Fκ of all X satisfying (2,3), with normalisation
X(0, 0) = 0, is a relatively compact subset of C0(R2; Rd). The closure of Fκ

is made of all functions functions X satisfying (2) and:

∂tX
2 + κ2∂sX

2 + 2κ|∂tX · ∂sX| ≤ 1 − κ2. (7)

The main point of this very easy result (see the proof below) is that there
are many non relativistic strings that can be uniformly approximated by rel-
ativistic strings. We will call them “subrelativistic” strings. In other words,
under completion, algebraic constraints generated by relativity requirements
can be relaxed as algebraic inequalities. As we will see below, the situation is
very different for minimal surfaces in Riemannian geometry. This difference
is, unsurprisingly, due to the hyperbolic character of the string equations,
in sharp contrast with the minimal surface equations, of elliptic nature, for
which elliptic regularity applies.
Before proving Theorem 1.1, let us provide an elementary example in the
case d = 3. For each integer n, we consider the unique solution X(n) to the
linear wave equation (2) with κ = 2−1/2, and initial conditions:

∂tX
(n)(0, s) = 0, X(n)(0, s) =

(cos s − 1,
sin(n + 1)s

2(n + 1)
+

sin(n − 1)s

2(n − 1)
,
cos(n + 1)s − 1

2(n + 1)
+

cos(n − 1)s − 1

2(n − 1)
),

This solution satisfies the relativistic constraints (3), since κ2 = 1/2 and

∂sX
(n)(0, s) = (− sin s, cos s cosns,− cos s sin ns), ∂tX

(n)(0, s) = 0.

Then, as n → +∞ , X(n)(t, s) uniformly converges toward a limit X(t, s),
still solution to the wave equation (2) with κ = 2−1/2, but with initial condi-
tions

∂tX(0, s) = 0, X(0, s) = (cos s − 1, 0, 0),

which makes (t, s) → (t, s, X(t, s)) a “subrelativistic” string, but not a rela-
tivistic one.
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Proof of Theorem 1.1

The proof is elementary. Notice first that (3) implies that Fκ is made of uni-
formly Lipschitz functions X. With normalization X(0, 0)=0, this is enough,
according to Ascoli’s theorem, to see that Fκ is relatively compact for the
uniform convergence on any compact subset of R2. Next, notice that, just
as condition (3), condition (7) can be written

|∂tX+κ∂sX|2 ≤ 1 − κ2. (8)

Thus, both conditions are preserved by the wave equation (4). Let us consider
a sequence Xn in Fκ. Up to extracting a subsequence, we may assume that
Xn(t, s) converges to some limit X(t, s) uniformly on any compact subset of
R2, meanwhile ∂tXn and ∂sXn respectively converge to ∂tX and ∂sX for the
weak-* topology of L∞(R2; Rd). Thus Y = ∂sX and W = −∂tX must take
their values in the closed convex hull of

S = {(Y, W ) ∈ Rd+d ; |W+κY |2 = 1 − κ2}, (9)

which exactly is

{(Y, W ) ∈ Rd+d ; |W+κY |2 ≤ 1 − κ2}. (10)

Conversely, let us consider a solution X to the wave equation (2) that satisfies
X(0, 0) = 0 and (8), which implies that (Y0, W0) = (∂sX,−∂tX)(t = 0, ·) is
valued in the closed convex hull of S. Then, at time 0, we may find a sequence
of (smooth) functions (Y 0

n , W 0
n) valued in S that converges to (Y0, W0) for

the weak-* topology of L∞(R; Rd). (This is a well known and very useful
property of weak topologies, see [Ta] for instance.) Let us consider, for each
n, the unique solution Xn to (2) such that

Xn(0, 0) = 0, (∂sXn,−∂tXn)(t = 0, ·) = (Y 0
n , W 0

n).

Then we observe that Xn converges to X uniformly on any compact subset
of R2 and satisfies condition (3). The proof of Theorem 1.1 is now complete.

Comparison with the Euclidean case

There is no result like Theorem 1.1 in the Riemannian case, with the Eu-
clidean metric (+1, · · ·, +1). In that case, the area of a graph

(t, s) ∈ Ω → (t, s, X(t, s)) ∈ R2 ×Rd,
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where Ω is a smooth, bounded, connected open subset of R2, is given by:

AΩ(X) =
∫

Ω

√

(1 + ∂sX2)(1 + ∂tX2) − (∂tX · ∂sX)2dsdt.

Then, the minimal surface equation is just:

∂t(B∂tX + C∂sX) + ∂s(C∂tX + D∂sX) = 0,

where

B =
1 + ∂sX

2

A
, A =

√

(1 + ∂sX2)(1 + ∂tX2) − (∂tX · ∂sX)2,

C =
∂tX · ∂sX

A
, D =

1 + ∂tX
2

A
.

Let us assume that X is harmonic:

∂ttX + ∂ssX = 0,

and a = ∂tX · ∂sX, b = ∂tX
2 − ∂sX

2 both vanish along ∂Ω. Since a and b
are also harmonic, they must vanish inside Ω. Thus B = D = 1, C = 0, and
X is also a solution to the minimal surface equation. Let us now consider
a sequence of such functions Xn and assume that the restriction of Xn to
the boundary ∂Ω converges to some limit X∂Ω, say in C0(∂Ω). Then X∂Ω

has a harmonic extension X and, due to elliptic regularity, Xn converges
to X in C∞(Ω). Thus, X must satisfy ∂tX · ∂sX = ∂tX

2 − ∂sX
2 = 0,

and, therefore, is still a solution to the minimal surface equation. So, in this
(over)simplified framework, there is no way to converge to a graph that is not
a minimal surface. Of course, this can be discussed in a much more general
framework, as in [Fe] (chapter 5.4), or, also, in terms of weak continuity
of determinants and polyconvexity (cf. [Ev], for instance). To conclude
the discussion between riemannian and lorentzian metrics, let us mention
reference [GiIs], where smooth transitions between riemannian and lorentzian
metrics are discussed for self-interesting branes in a Lorentzian space time.

2 The augmented relativistic string equations

Theorem 1.1 is just a motivation to study more comprehensively global so-
lutions X to the string equation (1). Do they have some compactness prop-
erties? What are their limits?
To achieve this goal, we first embed the string equation in a larger, augmented
system.

5
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Proposition 2.1 Let us consider a solution X to the relativistic string equa-
tion (1). Then, the following quantities

τ =
−L

1 + Y 2
, v =

Y · W

1 + Y 2
, η =

−L

1 + Y 2
Y, ζ = W −

Y · W

1 + Y 2
Y, (11)

where

Y = ∂sX, W = −∂tX, L = −
√

(1 + Y 2)(1 − W 2) + (Y · W )2,

are solutions to the “augmented system”:

∂tτ + v∂sτ = τ∂sv, ∂tv + v∂sv = τ∂sτ,

∂tη + v∂sη = −τ∂sζ, ∂tζ + v∂sζ = −τ∂sη. (12)

In addition, they satisfy the following constraints:

τ > 0, τ 2 + v2 + η2 + ζ2 = 1, τv = η · ζ. (13)

Next, we introduce

Definition 2.2 We call subrelativistic strings all solutions (τ, v, η, ζ) of the
augmented system (12) that satisfy the following algebraic inequalities:

τ ≥ 0, τ 2 + v2 + η2 + ζ2 + 2|τv − η · ζ | ≤ 1. (14)

We will say that a subrelativistic string (τ, v, η, ζ) is global whenever it is
a global solution to the augmented system, i.e. for −∞ < t < +∞. We will
see later that a necessary condition for (τ, v, η, ζ) to be a global subrelativistic
string is the existence of a real constant α such that

τ+(v − α) > 0

holds true at t = 0, meanwhile a sufficient condition is the further existence
of some constant δ > 0 such that:

δ ≤ τ+(v − α) ≤
1

δ
.

Our main result, which will be precisely stated as Theorem 4.1, asserts,
roughly speaking, that global subrelativistic strings form a natural comple-
tion for global relativistic strings. The main steps of the analysis will be:
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1) an almost explicit resolution of the augmented system for a large class of
initial data, thanks to d’Alembert formula,
2) a weak convergence argument, using that (14) defines the closed convex
hull of (13).
Let us finally mention, before proving Proposition 2.1, that it has been
known for a long time that relativistic string equations can be solved us-
ing d’Alembert’s formula. (Just like minimal surfaces can be reduced to
harmonic functions.) See [Po], for instance. It turns out that this is also true
for generalized strings described by the augmented system.

Proof of Proposition 2.1

Let
Y = ∂sX, W = −∂tX. (15)

Then the relativistic string equation may be equivalently obtained by varying
the Action

∫

L(Y, W )dtds where Y and W are subject to

∂tY + ∂sW = 0,

and the Lagrangian density L is given by

L(Y, W ) = −
√

(1 + Y 2)(1 − W 2) + (W · Y )2.

The resulting equations are

∂tY + ∂sW = 0, ∂tZ + ∂sV = 0,

where Z and V are defined by

Z =
∂L

∂W
(Y, W ) =

(1 + Y 2)W − (W · Y )Y

−L
.

V = −
∂L

∂Y
(Y, W ) =

(1 − W 2)Y − (W · Y )W

−L
.

In order to write W and V as functions of the evolution variables Y and
Z, we introduce the hamiltonian function h defined as the partial Legendre
transform

h(Y, Z) = sup
W∈Rd

Z · W − L(Y, W ) =
√

1 + Y 2 + Z2 + (Y · Z)2.
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Let us introduce
q = Y · Z. (16)

Thus
h =

√

1 + Y 2 + Z2 + q2, (17)

V =
∂h

∂Y
(Y, Z) =

Y + qZ

h
, W =

∂h

∂Z
(Y, Z) =

Z + qY

h
. (18)

The relativistic string equation now reads:

∂tY + ∂s(
Z + qY

h
) = 0, ∂tZ + ∂s(

Y + qZ

h
) = 0, (19)

where q and h are defined by (16,17).
Next, we follow an idea used in [Br] for the Born-Infeld system (for which

we also refer to [BDLL, Gi, Se, Se2, Se3]), by adding to system (19) two
additional conservation laws, for h and q, respectively:

∂th + ∂sq = 0, (20)

∂tq + ∂s(
q2 − 1

h
) = 0. (21)

System (20,21) is known under many different names, such as the Chaplygin
gas equation, the (one-dimensional) Born-Infeld equations or the Eulerian
version of the linear wave equation. [BDLL], [Se], [Se2]. As we will see in
the next section, this system can be easily integrated by using d’Alembert’s
formula. Let us now establish equations (20,21) from the string equation
written in form (16,17,18,19). We first get

∂th =
∂h

∂Y
· ∂tY +

∂h

∂Z
· ∂tZ

= −V · ∂sW − W · ∂sV = −∂s(W · V )

where

W · V =
(Z + (Y · Z)Y )(Y + (Y · Z)Z)

h2
= Z · Y,

which leads to (20). Next, we have

−∂tq = Z · ∂sW + Y · ∂sV = Z · ∂s(
Z + (Y · Z)Y

h
) + Y · ∂s(

Y + (Y · Z)Z

h
).

8
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= Z · ∂s(
(Y · Z)Y

h
) + Y · ∂s(

(Y · Z)Z

h
) + h∂s

Z2 + Y 2

2h2
.

Observe that

∂s
q2

h
= ∂s

(Y · Z)2

h
= Z · ∂s

Y (Y · Z)

h
+ ∂sZ ·

Y (Y · Z)

h

= Z · ∂s
Y (Y · Z)

h
+ Y · ∂s

Z(Y · Z)

h
− Y · Z∂s

Y · Z

h

= Z · ∂s
Y (Y · Z)

h
+ Y · ∂s

Z(Y · Z)

h
− h∂s

(Y · Z)2

2h2
.

Thus

∂tq + ∂s
q2

h
= −h∂s

Z2 + Y 2 + (Y · Z)2

2h2
= −h∂s

h2 − 1

2h2
= ∂s

1

h
,

which is just (21).
Let us finally introduce the rescaled variables:

τ =
1

h
, v =

q

h
, η =

Y

h
, ζ =

Z

h
. (22)

Because of (16,17), they must satisfy

τ > 0, τ 2 + v2 + η2 + ζ2 = 1, τv = η · ζ,

which exactly is (13).
After straightforward calculations, the “augmented” system (19,20,21) can
be written in terms of τ, v, η, ζ :

∂tτ + v∂sτ = τ∂sv, ∂tv + v∂sv = τ∂sτ,

∂tη + v∂sη = −τ∂sζ, ∂tζ + v∂sζ = −τ∂sη,

which is nothing but (12). Thus, the proof of Proposition 2.1 is now complete.

Comments on the augmented system

The augmented system (12) makes sense for all U = (τ, v, η, ζ) ∈ R1+1+d+d,
even if (13) is not satisfied. (Notice that τ may even change sign!) As a
matter of fact system (12) can be written as

∂tU + A(U)∂sU = 0,

9
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where A(U) is a symmetric matrix. Therefore, this system is a symmetric
hyperbolic system of first order PDEs. As a consequence, the Cauchy prob-
lem, with initial data at time t = 0, is solvable in a neighborhood of t = 0,
for all smooth initial data s ∈ R → U0(s) ∈ R1+1+d+d, with appropriate
behaviour near s = +∞.
Surprisingly enough, the augmented system (12) is Galilean invariant, under
the following transform:

(t, s) → (t, s + ut), (τ, v, η, ζ) → (τ, v + u, η, ζ), (23)

where u ∈ R is a fixed velocity. Observe that this transform, which is
certainly ruled out by the relativistic constraint (13), is compatible with the
“subrelativistic” condition (14), provided |u| is not too large.

Comment on relativistic and non-relativistic strings

As shown in Proposition 2.1, we can attach a solution U = (τ, v, η, ζ) of the
augmented system (12) to each graph (t, s) → (t, s, X(t, s)) corresponding
to a relativistic string, through (11). Of course, by construction of the aug-
mented system, such solutions automatically satisfy constraint (13). Con-
versely, given a smooth solution U = (τ, v, η, ζ) to the augmented system
(12), such that τ > 0, we may define X(t, s) (up to a normalization such as
X(0, 0) = 0) by

∂sX =
η

τ
, ∂tX = −ζ − v

η

τ
.

Then, if U satisfies (13), we can check from (12) that, indeed, X solves the
relativistic string equation (1).

Other solutions to the augmented system (12) may describe graphs (t, s) →
(t, s, X(t, s)) that are not necessarily relativistic strings. For instance, con-
sider a non relativistic string, for which X solves the wave equation (2) but
not necessarily equation (1). Then, assuming v = 0, τ = κ, in system (12),
we get

∂tη + κ∂sζ = ∂tζ + κ∂sη = 0,

and, by setting:
η = κ∂sX, ζ = −∂tX,

we recover the wave equation (2). Such a string is relativistic only if (13) is
satisfied, which means

κ2 + η2 + ζ2 = 1, η · ζ = 0,

10
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or, in other words,

κ2|∂sX|2 + |∂tX|2 = 1 − κ2, κ∂sX · ∂tX = 0,

which exactly is condition (3).

3 Integration of the augmented system

The augmented system (12) can also be written in “diagonal” form:

Dǫ
t(v − ǫτ) = 0, Dǫ

t(η + ǫζ) = 0, (24)

where ǫ ∈ {−1, +1} and

Dǫ
t = ∂t + (v + ǫτ)∂s. (25)

It follows that, ǫ being fixed in {−1, +1}, for any real function f and any
constant r, the level set

{U = (τ, b, η, ζ); f(v − ǫτ, η + ǫζ) = r},

is an invariant set for system (24). As a consequence, the following sets are
also invariant:

Gα,δ = {U = (τ, v, η, ζ) ∈ R1+1+d+d; δ ≤ τ+(v − α) ≤
1

δ
}, (26)

for any constants α ∈ R and 0 < δ < 1. Observe that Gα,δ is included in

{U = (τ, v, η, ζ); δ ≤ τ ≤
1

δ
}.

Other invariant sets are:

Mǫ = {(τ, v, η, ζ) ∈ R1+1+d+d ; (v + ǫτ)2 + |η − ǫζ |2 = 1}

for ǫ = −1, +1, as well as their intersection:

M = {(τ, v, η, ζ) ∈ R1+1+d+d; τv = η · ζ, τ 2 + v2 + η2 + ζ2 = 1}, (27)

which precisely corresponds to the relativistic string constraint (13).
It is now easy to integrate system (24) for solutions valued in Gα,δ.

11
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Proposition 3.1 Let α ∈ R, δ > 0 be fixed constants. All solutions U =
(τ, v, η, ζ) to the augmented system (12) valued in the invariant set Gα,δ (26)
are global and implicitly defined by:

(v+τ)(t, ξ(t, y)) = (v+τ)(0, ξ(0, y+t))), ∀(t, y) ∈ R2

(η+ζ)(t, ξ(t, y)) = (η+ζ)(0, ξ(0, y+t)), (28)

where, for each t, y → ξ(t, y) is a bi-Lipschitz homeomorphism of the real
line, with

∂yξ(t, y) = τ(t, ξ(t, y)), (29)

valued in [δ, 1
δ
]. In addition, ξ is completely determined by ξ(0, 0) = 0 and:

(∂tξ+∂sξ)(t, y) = v(0, ξ(0, y+t))+τ(0, ξ(0, y+t)). (30)

Proof

Since 0 < δ ≤ τ ≤ δ−1, we can define ξ(t, y) for all (t, y) ∈ R2 by (29) in
such a way that, in addition,

∂tξ(t, y) = v(t, ξ(t, y)), ∂ttξ = ∂yyξ,

hold true. This is possible, due to the two first equations of the augmented
system (12). Of course, we can normalize ξ(0, 0) = 0. Next,

(∂t+∂s)(∂tξ+∂sξ)

follows, and we deduce (30) from d’Alembert’s formula. Notice that (30) and
ξ(0, 0) = 0 entirely determine ξ, given τ and v at time t = 0.
Then, using (24), we get:

∂t[(v+τ)(t, ξ(t, y+t))] = 0, ∂t[(η+ζ)(t, ξ(t, y+t))] = 0,

which leads to formula (28) and completes the proof.

Generalized solutions

Just as d’Alembert’s formula does for the linear wave equation, formulae
(30,28) provide a natural notion of (global) generalized solutions for the

12
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augmented system (12), globally and uniquely defined for each Lebesgue
measurable initial condition valued in Gα,δ, which means

δ ≤ τ(0, ·)+(v(0, ·) − α) ≤
1

δ
, (31)

for some constants α ∈ R, 0 < δ < 1. Of course, for each smooth initial
condition, the corresponding generalized solution automatically is a classical,
global, smooth solution to the augmented system (12). As a matter of fact,
condition (31) is nearly a necessary condition to define a global solution
(τ, v, η, ζ) to system (12) with τ > 0. Indeed, because of (29), ∂yξ(t, y) must
stay positive for all (t, y) ∈ R2. Because of d’Alembert formula (30), this is
possible only if

v(0, s) − τ(0, s) < v(0, s′) + τ(0, s′), ∀s, s′ ∈ R,

which exactly means τ(0, ·)+(v(0, ·) − α) > 0, for some constant α ∈ R. In
the rest of the paper, we will consider only generalized solutions valued in
one of the Gα,δ.

Weak form

For each generalized solution valued in Gα,δ, y → ξ(t, y) is a bi-Lipschitz
homeomorphism of R, for each t ∈ R, since 0 < δ ≤ ∂yξ ≤ δ−1 < +∞. The
inverse of ξ(t, ·) is denoted by ξ−1(t, ·). This allows us to write (29) in the
following “weak” form:

∫ +∞

−∞

g(s)

τ(t, s)
ds =

∫ +∞

−∞

g(ξ(t, y))dy, (32)

for all functions g ∈ L1(R). Similarly, (30,28) reads:

∫ +∞

−∞

(∂tξ+∂sξ)(t, y)g(y)dy =
∫ +∞

−∞

v+τ

τ
(0, s)g(ξ−1(0, s)+t)ds, (33)

∫ +∞

−∞

v+τ

τ
(t, s)g(s)ds =

∫ +∞

−∞

v+τ

τ
(0, s)g(ξ(t, ξ−1(0, s)+t))ds,

∫ +∞

−∞

η+ζ

τ
(t, s)g(s)ds =

∫ +∞

−∞

η+ζ

τ
(0, s)g(ξ(t, ξ−1(0, s)+t))ds, (34)

13
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for all functions g ∈ L1(R). Using the original variables (h, q, Y, Z) instead
of (τ, v, η, ζ), we respectively get:

∫ +∞

−∞

g(s)h(t, s)ds =
∫ +∞

−∞

g(ξ(t, y))dy, (35)

∫ +∞

−∞

(∂tξ+∂sξ)(t, y)g(y)dy =
∫ +∞

−∞

(q(0, s)+1)g(ξ−1(0, s)+t)ds, (36)

∫ +∞

−∞

(q(t, s)+1)g(s)ds =
∫ +∞

−∞

(q(0, s)+1)g(ξ(t, ξ−1(0, s)+t))ds,

∫ +∞

−∞

(Y +Z)(t, s)g(s)ds =
∫ +∞

−∞

(Y +Z)(0, s)g(ξ(t, ξ−1(0, s)+t))ds, (37)

for all functions g ∈ L1(R).

4 Weak completion of global relativistic strings

In this last section, we study the subset of all global generalized solutions to
the augmented system (12) valued in the invariant subset Gα,δ (defined by
(26) for some fixed constants α ∈ R, 0 < δ < 1, which, in addition, satisfy
the relativistic constraint (13), or, in other words, are valued in the invariant
region M defined by (27), and, therefore, correspond to global relativistic
strings.

We call Σα,δ the set of all such solutions. We also denote:

Mα,δ = M ∩ Gα,δ,

i.e.

Mα,δ = {U = (τ, v, η, ζ); δ ≤ τ+(v − α) ≤
1

δ
;

τv = η · ζ, τ 2 + v2 + η2 + ζ2 = 1}. (38)

An equivalent definition is:

Mα,δ = {δ ≤ τ+(v − α) ≤
1

δ
, (v+τ)2 + |η+ζ |2 = 1 } . (39)

From the topological point of view, we confer to Σα,δ the topology induced
by the space C0(R; L∞

weak∗(R;R1+1+d+d)) through the one-to-one transform

T : U = (τ, v, η, ζ) → u = (h, q, Y, Z) =
1

τ
(1, v, η, ζ), (40)

14
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defined on R+ × R1+d+d. More precisely, we say that Un = (τn, vn, ηn, ζn)
converges to U = (τ, v, η, ζ) if and only if TUn converges to TU in

C0(R; L∞

weak∗(R;R1+1+d+d)),

i.e.
∫ +∞

−∞

(hn − h, qn − q, Yn − Y, Zn − Z)(s)g(s)ds → 0 (41)

uniformly in t on any compact subset of R, for all functions g ∈ L1(R), or,
equivalently

∫ +∞

−∞

{
(1, vn, ηn, ζn)

τn

−
(1, v, η, ζ)

τ
}(s)g(s)ds → 0. (42)

Notice that T and its inverse

T−1 : u = (h, q, Y, Z) → U = (τ, v, η, ζ) =
1

h
(h, q, Y, Z)

(which was already used for definition (22)), both preserve straight lines and
convexity on R+ ×R1+d+d.

Theorem 4.1 The set Σα,δ is relatively compact for the toplogy of

C0(R; L∞

weak∗(R;R1+1+d+d)),

induced by T (defined by (40,41)). Its closure is the set of all generalized
solutions to the augmented system (12), in the sense of (30,28), valued in
CM ∩ Gα,δ, where

CM = {U = (τ, v, η, ζ) ∈ R1+1+d+d; τ 2+v2+η2+ζ2+2|τv−η·ζ | ≤ 1}. (43)

Comment on Theorem 1.1

Theorem (4.1) has Theorem (1.1) as a corollary. Indeed, let us consider a
solution X to the wave equation (2), with 0 < κ < 1. Assume that X satisfies
(7) and define τ = κ, v = 0,

η = κ∂sX, ζ = −∂tX.

15
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Then U = (τ, v, η, ζ) is valued in CM ∩Gα,δ, for α = 0 and δ = κ > 0. Thus,
U can be approximated by a sequence Un valued in M ∩ Gα,δ, which means
that there is a sequence of relativistic strings (t, s) → Xn(t, s), such that

(1, vn, ηn, ζn)

τn
→

(1, v, η, ζ)

τ

in C0(R; L∞

weak∗(R;R1+1+d+d)), which, in particular, implies that Xn(t, s)
converges to X(t, s) uniformly on all compact subset of R2.

Proof

Our proof is elementary and based on closed formulae (35,37). Alternative
proofs, based on the Murat-Tartar “div-curl” lemma [Ta], are possible, fol-
lowing Serre’s analysis of the one-dimensional Born-Infeld equation [Se].
Let us consider a sequence Un = (τn, vn, ηn, ζn) in Σα,δ and the corresponding
variables TUn = (hn, qn, Yn, Zn). Using definitions (26,27) and formulae (28),
we have:

δ ≤ τn+(vn − α) ≤
1

δ
;

τ 2
n + v2

n + η2
n + ζ2

n = 1, δ ≤ τn ≤ 1,

(vnn+τn)(t, ξn(t, y+t)) = (vn+τn)(0, ξn(0, y))),

(η+ζn)(t, ξn(t, y+t)) = (η+ζn)(0, ξn(0, y)),

where
∂sξn(t, y) = τn(t, ξn(t, y)), ∂tξn(t, y) = vn(t, ξn(t, y)),

with normalization ξn(0, 0) = 0. So, we immediately get:

(∂tξn)2 + (∂sξn)
2 ≤ 1, ∂sξn ≥ δ.

and deduce, using Ascoli’s theorem, that ξn is relatively compact in C0(R2).
Thus, up to the extraction of a subsequence, ξn(t, y) uniformly converges to
a limit ξ(t, y) on any compact subset of R2. Since δ ≤ ∂yξn ≤ δ−1, we also
have ξ−1

n (t, s) → ξ−1(t, s) uniformly in (t, s), on any compact subset of R2.
Let us now consider the initial values Un(0, ·). Because of constraint (13),
these functions are bounded in sup norm. Thus, the sequence TUn(0, ·),
where T is defined by (40), is bounded in the space L∞(R;R1+1+d+d). So,
up to the extraction of a further subsequence, we may assume that they

16
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converge (in the weak-* sense) to some limit uin = (hin, qin, Yin, Zin). Since
T and T−1 preserve convexity, Uin = T−1uin is valued in the closed convex
hull of Mα,δ, that we denote by CMα,δ. Since Gα,δ is a closed, convex subset
of R1+1+d+d and contains Mα,δ, according to definitions (26,38), it certainly
contains CMα,δ. Thus Uin is valued in CMα,δ and Gα,δ.
Let us go back to TUn = (hn, qn, Yn, Zn). Because of (36), we have

∫ +∞

−∞

(∂tξn+∂sξn)(t, y)g(y)dy =
∫ +∞

−∞

(qn(0, s)+1)g(ξ−1
n (0, s)+t)ds,

for all functions g ∈ L1(R) and t ∈ R. We deduce, after letting n → ∞,

∫ +∞

−∞

(∂tξ+∂sξ)(t, y)g(y)dy =
∫ +∞

−∞

(qin(s)+1)g(ξ−1(0, s)+t)ds.

Next, we use that TUn satisfies (35,37):

∫ +∞

−∞

g(s)hn(t, s)ds =
∫ +∞

−∞

g(ξn(t, y))dy,

∫ +∞

−∞

(qn+1)(t, s)g(s)ds =
∫ +∞

−∞

(qn+1)(0, s)g(ξn(t, ξ
−1
n (0, s)+t))ds,

∫ +∞

−∞

(Yn+Zn)(t, s)g(s)ds =
∫ +∞

−∞

(Yn+Zn)(0, s)g(ξn(t, ξ
−1
n (0, s)+t))ds,

for all functions g ∈ L1(R) and t ∈ R. As n → +∞, each right-hand side of
these equations has a well defined limit in terms of ξ and (hin, qin, Yin, Zin).
This implies that each left-hand side is convergent, uniformly in t on any
compact subset of R. Thus, (hn, qn, Yn, Zn) has a limit (h, q, Y, Z) in the
space C0(R; L∞

weak∗(R;R1+1+d+d)). This limit satisfies

∫ +∞

−∞

g(s)h(t, s)ds =
∫ +∞

−∞

g(ξ(t, y))dy,

∫ +∞

−∞

(q+1)(t, s)g(s)ds =
∫ +∞

−∞

(qin+1)(s)g(ξ(t, ξ−1(0, s)+t))ds,

∫ +∞

−∞

(Y +Z)(t, s)g(s)ds =
∫ +∞

−∞

(Yin+Zin)(s)g(ξ(t, ξ−1(0, s)+t))ds,

for all functions g ∈ L1(R).
Since u = (h, q, Y, Z) belongs to C0(R; L∞

weak∗(R;R1+1+d+d)), we deduce from
the previous equations, taken at t = 0, that the initial value u(t = 0, ·) must

17
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be equal to uin = (hin, qin, Yin, Zin). Thus, u = (h, q, Y, Z) is a generalized
solution to the augmented system (12) in the sense of (35,36,37).
We have proven so far that, up to a sequence, any sequence Un in Σα,δ

converges (in the sense of (41)) to a generalized solution U = T−1u. This
solution is valued in CMα,δ, the closed convex hull of Mα,δ. This shows that
Σα,δ is relatively compact and its closure is contained in the set of generalized
solutions valued in CMα,δ.
Conversely, let us show that all generalized solutions U valued in the closed
convex hull of Mα,δ belong to the closure of Σα,δ. Because T preserves convex-
ity, u = TU is valued in the closed convex hull of T (Mα,δ). Thus, according
to a well known property of weak convergence (see [Ta], for instance), the
initial value uin = u(t = 0, ·) can be approached, in the L∞ weak-* sense,
by a sequence uin,n valued in the manifold T (Mα,δ). Then, we see that the
unique generalized solution Un with initial condition T−1uin,n must converge
to U (in the sense of (41)).
At this point, we have shown that the closure of Σα,δ is exactly equal to
the set of all generalized solutions valued in the closed convex hull CMα,δ of
Mα,δ.
So, the proof of Theorem 4.1 will be complete when we are able to show that
CMα,δ = CM ∩ Gα,δ. More concretely, we have to prove that

{U ; v − τ ≤ α − δ < α + δ ≤ v + τ, τ 2 + v2 + η2 + ζ2 + 2|τv − η · ζ | ≤ 1}

indeed is the closed convex hull of

{U ; δ ≤ τ+(v − α) ≤
1

δ
; τv = η · ζ, τ 2 + v2 + η2 + ζ2 = 1}.

We first observe that these sets are equivalently defined by

{U ; δ ≤ τ+(v − α) ≤
1

δ
; (v+τ)2 + |η+ζ |2 ≤ 1}

and

{U ; δ ≤ τ+(v − α) ≤
1

δ
; (v+τ)2 + |η+ζ |2 = 1},

respectively. So, the first set, which is compact and convex, certainly contains
the closed convex hull of the second one. Thus, it is now enough to show
that any extremal point U of the first subset is indeed a point of the second
one. For such a point, for either ǫ = 1 or ǫ = −1, we must have

(v + ǫτ)2 + |η − ǫζ |2 = 1.
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Assume ǫ = 1 for simplicity, so that

(v + τ)2 + |η − ζ |2 = 1

If (v − τ)2 + |η + ζ |2 = 1 , then U belongs to the second set, as expected.
Otherwise, we have (v − τ)2 + |η + ζ |2 < 1.
Let us introduce

U ′ = (τ ′, v′, η′, ζ ′) = (0, 0, e,−e),

where e ∈ Rd, different from zero, is fixed. we see that for λ ∈ R near zero,
the first set still contains U + λU ′, which contradicts the assumption that U
is one of its extremal point. Indeed, for small λ, we keep

(v + λv′ − τ − λτ ′)2 + |(η + λη′ + (ζ + λζ ′)|2 < 1,

while we conserve

(v + λv′ + τ + λτ ′)2 + |(η + λη′ − (ζ − λζ ′)|2 = 1,

as well as

δ ≤ (τ + λτ ′)+(v + λv′ − α) ≤
1

δ
.

The proof of Theorem 4.1 is now complete.
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