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Abstract

This paper deals with the job-shop scheduling problem with sequence-
dependent setup times. We propose a new method to solve the makespan
minimization problem to optimality. The method is based on iterative
solving via branch and bound decisional versions of the problem. At
each node of the branch and bound tree, constraint propagation algo-
rithms adapted to setup times are performed for domain filtering and
feasibility check. Relaxations based on the traveling salesman problem
with time windows are also solved to perform additional pruning. The
traveling salesman problem is formulated as an elementary shortest
path problem with resource constraints and solved through dynamic
programming. This method allows to close previously unsolved bench-
mark instances of the literature and also provides new lower and upper
bounds.

keywords: job-shop scheduling, sequence-dependent setup times, branch and
bound, constraint propagation, dynamic programming

1 Introduction

This work deals with the job-shop problem with sequence dependent setup
times (SDST-JSP). The job-shop problem considers the scheduling of a set
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of jobs on distinct machines. This problem is widely investigated in the lit-
erature and many efficient approaches exist for its resolution [10, 32, 25, 43].
The SDST-JSP is a variant problem where machines have to be reconfigured
between two consecutive operations. We address here the optimal solution
of the SDST-JSP with a makespan minimization criterion. The method is
based on the iterative resolution of decisional versions of the problem, via
branch and bound. Within branch and bound trees, constraint propagation
algorithms are performed for domain filtering and feasibility check. Relax-
ations based on the traveling salesman problem with time window (TSPTW)
are also solved to perform additional pruning. The traveling salesman prob-
lem is formulated as an elementary shortest path with resource constraints
[22] and solved through dynamic programming.

We present the considered problem in Section 2 and the traveling sales-
man problem with time windows relaxation in Section 3. The disjunctive
graph representation is recalled in Section 4. A review of the relevant liter-
ature is given in Section 5. The sketch of the branch and bound algorithm
is provided in Section 6 and its components are detailed in the subsequent
Sections. The heuristic used to compute feasible solutions is described in
Section 7. Feasibility checks and domain filtering algorithms based on con-
straint propagation are described in Section 8. Section 9 gives the formula-
tion of the TSPTW as an elementary shortest path problem with resource
constraints and presents the dynamic programming algorithm used to solve
it. In Section 10, the proposed branching scheme and the associated domi-
nance rule are described. In Section 11, the results of the branch and bound
method on the set of instances proposed by Brucker and Thiele [13] are
discussed. Concluding remarks are drawn in Section 12.

2 The job-shop problem with sequence dependent

setup times

The SDST-JSP considers a set of n ≥ 1 jobs J = {Ji}1≤i≤n and a set of
m ≥ 1 machines M = {Mk}1≤k≤m. Each job Ji ∈ J is defined as a set of
m operations Ji = {Oij}1≤j≤m. Each operation Oij has a non zero integer
duration pij ∈ N and requires a single machine mij ∈ M. The operations
of a same job all require distinct machines and are subject to precedence
constraints. Operation Oij precedes operation Oi,j+1 for all i = 1, . . . , n and
for all j = 1, . . . ,m− 1. The set of all operations is denoted O = ∪1≤i≤nJi

while Ok denotes the set of operations assigned to machine Mk.
A sequence dependent setup time, denoted sijk, is defined for each couple

2



of distinct jobs (Ji, Jj) and for each machine Mk. An initial setup time s0ik

is defined for each job Ji and for each machine Mk. It is assumed that the
triangular inequality holds: for each machine Mk and for each triplet of
distinct jobs (Ji, Jj , Jx), we have sixk ≤ sijk + sjxk; for each machine Mk

and for each couple of distinct jobs (Ji, Jj), we have s0jk ≤ s0ik + sijk.
A schedule is a mapping T of operations to time periods where T =

(tij)Oij∈O and tij ∈ N. In this paper we consider the makespan objective
for the SDST-JSP. This particular problem is denoted J |sij|Cmax in the
standard three-field scheduling notation and we will denote it (P ) in the
remaining of the paper.

(P ) min Cmax (1)

subject to

Cmax ≥ tij + pij ∀Oij ∈ O (2)

tij + pij ≤ ti,j+1 ∀Ji ∈ J ,∀j ∈ [1,m− 1] (3)

tij + pij + sixk ≤ txy or

txy + pxy + sxik ≤ tij ∀Oij , Oxy ∈ Ok, Oij 6= Oxy (4)

tij ≥ s0imij
∀Oij ∈ O (5)

The objective (1) is the minimization of the makespan Cmax, the maxi-
mum completion time of all jobs (2). Constraints (3) are the job precedence
constraints, stating that an operation Oi,j+1 cannot start before the end of
its preceding operation Oij in job Ji. It follows that the operations of a job
form a chain. Constraints (4) are the machine constraints which state that
two distinct operations Oij and Oxy sharing the same machine k cannot be
scheduled simultaneously and that the machine must be set up between two
consecutive operations. Hence either Oij cannot start before the end of Oxy

plus the necessary setup time sxik, or Oxy cannot start before the end of Oij

plus the necessary setup time sixk. Constraints (5) enforce the start time of
any operation to occur after the initial setup time on its assigned machine.

An alternative representation of the setup times lies in defining a set
F of f ≥ 1 families such that each operation Oij ∈ O is associated with
a family fij ∈ F . Now setup time sixk on machine Mk from an operation
Oij ∈ Ok of job Ji to an operation Oxy ∈ Ok of job Jx can be written sfijfxy

.
This representation can be interesting when the number of families is signif-
icantly smaller than the number of operations. Then, efficient preprocessing
techniques can be carried out (see Section 8.1).

The job-shop scheduling problem with sequence dependent setup times
is a NP-hard problem, as an extension of the standard job-shop scheduling
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problem, denoted J ||Cmax, where all setup times are equal to zero. In this
paper, the optimal solution of (P ) is searched by iteratively solving the
decisional version (FP ) defined as follows. Let T ≥ 0 be a tentative upper
bound of the makespan. We consider problem FP (T ) as the problem of
finding a schedule T such that Cmax ≤ T and constraints (2-5) are satisfied.
Let UB denote the makespan of any feasible schedule. Let LB denote a
lower bound of the optimal solution of (P ). Let C ∗

max denote the optimal
solution of (P ). We have:

C∗
max = min

LB≤T≤UB
{T |FP (T ) has a solution} (6)

3 The traveling salesman problem with time win-

dows relaxation

When m = 1, problem (P ) is denoted 1|sij |Cmax and is equivalent to the
traveling salesman problem (TSP) as stated by Conway et al [20]. Since
m = 1 we drop the machine and operation indices in the notations. We
can define a depot represented by node 0 and n cities represented by nodes
1, . . . , n. Then the distance matrix (lij)0≤i,j≤n is given by

l0i = s0i ∀i ∈ [1, n] (7)

lij = sij ∀i, j ∈ [1, n], i 6= j (8)

li0 = 0 ∀i ∈ [0, n] (9)

Since the sum of the operation processing times is a constant, problem
1|sij |Cmax and the above defined TSP are equivalent. It follows that when
m > 1, a lower bound LBTSP of the optimal solution of (P ) can be com-
puted as follows by using l∗(TSPOk

), the length of the optimal tour of the
traveling salesman relaxation considering only the operations on Mk.

LBTSP = max
Mk∈M

(l∗(TSPOk
) +

∑

Oij∈Ok

pij) (10)

This relaxation can be strengthened by computing time windows for all
operations given an upper bound UB of the optimal makespan. Let rij

denote the earliest start time of operation Oij . Let dij denote the latest
completion time of operation Oij . For a given upper bound UB we can
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compute the following valid values for the time windows:

ri1 = s0imi1
∀Ji ∈ J (11)

rij = max(s0imij
, ri(j−1) + pi(j−1)) ∀Ji ∈ J ,∀j ∈ [2,m] (12)

dim = UB ∀Ji ∈ J (13)

dij = di(j+1) − pi(j+1) ∀Ji ∈ J ,∀j ∈ [1,m− 1] (14)

Any solution of (P ) with a makespan not greater than UB must obviously
verify rij ≤ tij ≤ dij − pij for each operation Oij ∈ O. In Section 8,
we will present methods to compute tighter valid time windows. Let us
now consider the relaxation of (P ) considering only operations assigned to
machine k. We obtain a makespan minimization one machine problem with
time windows and sequence-dependent setup time denoted 1|ri, di, sij |Cmax,
the solution of which is a lower bound for (P ). When setup times are all
equal to 0, the problem is already NP-hard but it can be efficiently solved
by the well-known Carlier’s algorithm [16]. Otherwise this problem is a
travelling salesman problem with time windows (TSPTW) with depot 0,
cities 1, . . . , n, distance matrix (lij)0≤i,j≤n given by (7-9), service times pi

for 1 ≤ i ≤ n and time windows [ri, di − pi]. More precisely the problem
is a TSPTW variant where the objective function is the minimization of
total travel times plus total waiting time [24, 3, 8]. Let C ∗

max(TSPTWOk
)

denote the optimal solution of the TSPTW relaxation considering only the
operations on Mk. We obtain the lower bound LBTSPTW as follows.

LBTSPTW = max
Mk∈M

(C∗
max(TSPTWOk

)) (15)

Note that this lower bound depends on the upper bound UB and on the
way the time windows are computed.

Let us now consider the decisional version FP (T ) tackled in this paper.
Since we have a tentative upper bound T and a feasibility problem, the
subproblem reduces to the search feasible solutions for the above-defined
TSPTW. Finding a machine k such that the associated TSPTWOk

is in-
feasible would indeed mean than value T renders FP (T ) infeasible. This
problem (denoted F-TSPTW in what follows) is known to be NP hard [39].
In the next Section, we will see how comparable relaxations are tackled by
the previously proposed exact methods for the SDST-JSP and its variants.
In this paper, we propose to solve the TSPTW relaxation of problem FP (T )
exactly by a dynamic programming algorithm (see Section 9), the time win-
dows being sharpened by constraint propagation techniques (see Section 8).
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We use the solution of the relaxations to prune the search in the case un-
feasibility is proven or to derive a feasible solution to (P ) when a feasible
TSPTW solution is found.

4 The disjunctive-graph representation

A useful tool for the solution of scheduling problems is the so-called disjunc-
tive graph initially proposed for the standard job-shop problem [38]. This
graph provides an efficient representation of the decisions, while limiting the
solution space. It is defined as follows.

Let G = (X,U,E) be the disjunctive graph. The set of vertices X is
made up of the set of operations plus two dummy vertices representing the
beginning and the end of the schedule. Thus, X has n×m+2 vertices. A set
of arcs U and a set of edges E are defined. Arcs in U represent precedence
constraints between operations and are called conjunctive arcs. They are
weighted with the processing time of the origin vertex of the arc. Edges in
E represent disjunctive constraints between operations on a same machine
and are called disjunctive arcs. Actually, disjunctive arcs can be interpreted
as the union of two exclusive arcs with opposite directions.

By definition, a selection is a state of the disjunctive graph where a di-
rection is chosen for some disjunctive arcs. A selection is said to be complete
when every arc has a direction. A complete selection corresponds to a unique
semi-active schedule (in which no operation can be left-shifted of one time
unit) if the resulting graph is acyclic. Once they are directed, disjunctive
arcs are weighted with the sum of the processing time of the origin vertex of
the arc plus the setup time required between the origin and the destination
vertices. Minimizing the makespan then reduces to the search of the longest
path in the graph, the makespan being the length of such a path. Hence,
(P ) can be defined as the problem of finding a complete acyclic selection for
which the longest path is minimum. This standpoint relies on the property
that it is possible to consider only semi-active scheduling, (when disjunctive
and conjunctive constraints are satisfied), to find an optimal solution.

5 Literature review

Problem J |sij |Cmax received only little attention in the literature, albeit
being a natural extension of the job-shop problem with many applications
in manufacturing [2]. In this Section, we review the methods previously
proposed to solve this problem and its close variants or extensions that
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we classify into three categories: priority-rule based (dispatching) methods,
local search methods and exact methods.

5.1 Priority-rule based methods

The earliest proposed methods are based on simulation: each time a ma-
chine becomes available the dispatching rule selects a job already waiting
for this machine, i.e. which as no predecessor or whose predecessor is com-
pleted before the machine gets available. Wilbrecht and Prescott [45] were
to our knowledge the first to study under this framework the influence of
setup times on job shop performance. They propose a simple but efficient
priority rule which aims at selecting the job yielding the smallest setup time.
Kim and Bobrowski [26] extend the preceding work to various performance
measures and propose compound priority rules. Noivo and Ramalhinho-
Lourenço [31] propose also new prority-rules considering setup times and
compare them with classical priority-rules. Ovacik and Uzsoy [35] propose
a more sophisticated priority-rule based algorithm for problem J |sij |Lmax

with reentrant jobs (a job may use a machine more than once). Indeed the
set of candidate operations considered when a machine becomes available is
no more restricted to the already pending operations but extended to the
operations having their preceding operation in process. This is justified in-
tuitively because they may require a sufficiently large setup time to be taken
in consideration. Theoretical aspects of the interest of extending this candi-
date set is linked to dominance properties of active schedules (see Section 7
and Artigues et al [5]). Ovacik and Uzsoy were to the best of our knowledge
the first to use an exact solution of the TSPTW relaxation as a routine to
guide the search. Indeed, among the proposed priority-rules, one amounts
to select the first operation in the optimal sequence of the one-machine sub-
problem restricted to the set of candidate operations. This subproblem is
here denoted 1|ri, sij |Lmax and its decisional variant amounts to F-TSPTW.
This problem is possibly solved by a specific branch and bound method [36]
which has reasonable computational times only for less than 10 operations.

As a priority-rule heuristic embedded in their exact method that will be
discussed later, Brucker and Thiele [13] propose an extension of the Giffler-
Thompson algorithm which defines an active schedule generation scheme
in the standard job-shop problem. They propose a second heuristic based
on maximal matchings on bipartite graph. Brucker and Thiele [13] also
generated a set of 15 SDST-JSP instances which we use in Section 11 to
evaluate our method and compare our results with the state-of-the-art exact
methods.
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Artigues et al [5] propose several new priority-rule based methods, im-
proving the results obtained by Brucker and Thiele [13] on the 10 largest
BT instances. One of these methods being used in our exact procedure, we
will give more details in Section 7 and explain why it has better dominance
properties than all the previously-proposed priority-rule based methods.

5.2 Local search methods

Among local search methods, Choi and Korkmaz [18] propose a mixed-
integer programming formulation of the problem. They formally identify
the problem as a multi-traveling salesman problem with side constraints
(precedence constraints). They propose a heuristic based upon sequentially
identifying a pair of operations that provides a minimum lower bound on
the makespan of the associated two-job/m-machine problem with release
times. They show their heuristic outperform the one proposed by Zhou and
Egbelu [46]. Choi and Choi [19] propose a local search method based on the
iterative application of dispatching rules for a problem involving alternative
operations in conjunction with setup-times.

The other local search methods proposed so-far for the SDST-JSP are
generally based on the disjunctive graph representation. Based on this
model, Candido et al [15] propose a genetic algorithm for a job-shop problem
involving setup times among multiple practical characteristics such as mul-
tiresource operations, machine calendars and alternative routings. A simple
tabu search heuristic has been tested on the BT instances by Artigues and
Buscaylet [14]. This latter method has been applied by Artigues et al [4] to
improve the results on the 10 largest BT instances of the priority-rule based
methods proposed by Artigues et al [5].

A large number of local search methods are based on the shifting bot-
tleneck heuristic. This efficient heuristic has been proposed by Adams et al
[1] for the job shop problems. It has been successfully extended to tackle
practical characteristics of actual job shops. Focusing only on extension to
setup times, several variants of the shifting bottleneck heuristic have been
proposed [34, 40, 41, 30, 8]. The shifting bottleneck heuristic can be de-
fined as a large neighborhood search which solves at each iteration exactly
or approximately the one-machine relaxation of the problem. Hence, most
of these methods solve in a specific way the TSPTW relaxation and are
therefore of interest for our study. However because of the complexity of
the subproblem and because most of these works describe applications on
large-size industrial problems, the sub-problem is mostly solved by heuristics
[34, 40, 41, 30]. The subproblem considered by Balas et al [8] corresponds
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to the TSPTW subproblem which provides the LBTSPTW lower bound de-
scribed in Section 3. To solve this subproblem, the authors transform the
TSPTW in a TSP with precedence constraints having a special structure.
This special structure allows to solve the TSP in linear time by dynamic
programming [6, 7]. However the TSPTW subproblem does not have in
general the required restrictions and the methods is turned into an efficient
heuristic. The shifting bottleneck heuristic proposed by Balas et al [8] ob-
tains equivalent or better solutions than the multistart tabu search method
of Artigues et al [4] for all the BT instances.

5.3 Exact methods

To our knowledge, the only exact methods that have been developped so far
for the SDST-JSP are the ones of Brucker and Thiele [13], Focacci et al [23]
and Artigues et al [3].

Brucker and Thiele [13] propose a branch and bound method that ex-
tends the one proposed in Brucker et al [12] for the standard JSP. The
problem considered by Brucker and Thiele [13] is the general shop prob-
lem with sequence-dependent setup time which includes the SDST-JSP as a
special case. The method is based on the disjunctive graph representation
and a node of the branch and bound tree corresponds to a partial selection.
Lower bounds are computed at each node by applying several polynomially-
solvable extentions of the Jackson’s preemptive schedule relaxation [17] to
setup times. Branching is based on the analysis of blocks of operations on
the critical path of a feasible schedule issued from the current node. The
method was able to solve to optimality the 5 smallest BT instances and
provided lower and upper bounds for the 10 largest instances.

At each node, Brucker and Thiele [13] apply filtering algorithms to com-
pute the earliest start times rij of the operations, so-called heads, as well
as the tails qij which are linked to the latest start times by the relation
qij = UB−dij and also to deduce implied precedence constraints that enrich
the current selection. These filtering algorithms are based on the so-called
immediate selections and edge-finding techniques that have been shown to
be very efficient to solve the standard JSP [17, 11, 9]. These techniques can
be defined as constraint propagation algorithms for the one-machine prob-
lem. To extend efficiently these algorithms to the presence of setup times,
Brucker and Thiele propose several lower bound of the minimal setup time
necessary between operations sharing the same machine.

Viĺım and Barták [44] proposed another version of the one-machine con-
straint propagation algorithms, in the context of a batching and scheduling
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problem with sequence-dependent setup times. In Section 8.2, we describe
the simple version of the filtering algorithm we have implemented for the
branch and bound method proposed in this paper, adapting the algorithms
of Brucker and Thiele [13], Viĺım and Barták [44] and Nuijten [33] to the
SDST-JSP.

Focacci et al [23] propose a branch-and bound method in a constraint
programming framework for another variant of the SDST-JSP involving al-
ternative resources for the operations. They also consider total setup time
minimization in conjunction with makespan minimization. Their method
combines the standard (with no setup) one-machine constraint propagation
algorithms and reduced cost-based domain filtering techniques. The latter
is based on the relaxation of the TSPTW into an assignment problem solv-
able in polynomial time. Solving the relaxation provides a lower bound and
also a reduced cost matrix. Such reduced costs give information about the
additional increase of the lower bound when the corresponding variable as-
signement is performed. Whenever the increase exceeds the upper bound
then the value can be removed from the variable domain. It is worth to
note that the reduced cost-based constraint propagation methods have also
been sucessfully applied to solve TSPTW instances [24]. For the SDST-JSP,
Focacci et al [23] do not report results for the makespan minimization only.
However, when the objective is to minimize the makespan and the total
setup time in a lexicographic way, they found all the optimal makespans
of the 5 smallest BT instances. They also report upper bounds for 2 large
instances.

A preliminary version of the branch and bound procedure proposed in
this paper was presented by Artigues et al [3]. The main idea of the method
is to solve exactly the F-TSPTW relaxation of problem (FP ) to prune the
search instead of solving the Jackson’s preemptive schedule relaxation as in
[13] or the assignment problem relaxation as in [23]. (FP ) is formulated as
a one-machine scheduling problem and solved by means of the commercial
solver (ILOG scheduler). In addition, the TSPTW solutions found during
the search are stored in a dictionnary. Each time a TSPTW problem has to
be solved, the dictionnary is searched to avoid the subproblem resolution if
a feasible solution is encountered. This method solved all the smallest BT
instances to optimality and closed 2 open instances.
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6 The branch and bound method

The branch and bound method we propose is based on the disjunctive graph
representation. It aims at making further experiments in the direction ini-
tiated by Artigues et al [3]. As in the method of Brucker and Thiele [13],
a node of the branch and bound tree corresponds to a partial selection E
where E is a set of directed arcs obtained from a partial or complete ori-
entation of disjunctive edges E. A node is also defined by operation time
windows compatible with the current selection. Hence a node ν is denoted
by a triple (R,D, E) with R = (rij)Oij∈O and D = (dij)Oij∈O. The branch
and bound is given in Algorithm 1. It takes as input a tentative makespan
T and returns a failure or a success and in the latter case a feasible schedule
T . The time windows are initialized according to T and equations (11-14)
(step 1).The root node with an empty selection is created (step 2). A first
constraint propagation algorithm (Shaving) is applied to check the feasi-
bility of the root node and to strenghen the time windows and insert arcs
in the selection (step 3). The algorithm is described in Section 8.3. If no
unfeasibility is detected by Shaving, the branch and bound algorithm starts
and a node stack is initialized with the root node (step 6). Steps 8 to 19 are
repeated until the stack is empty or a maximal number of nodes is reached.
For each node ν, a second (faster) constraint propagation algorithm (Prop-
agate) is applied (step 9). This algorithm is detailed in Section 8.2. If
unfeasibility is not detected, Propagate has possibly tightened the time
windows and the selection of the current node, and a dynamic program-
ming method SolveTSPTW (described in Section 9) is used to solve the
F-TSPTW relaxation (step 10). If SolveTSPTW does not detect unfea-
sibility, a solution (represented by start time T ′) to the m TSPTW has
been found. A heuristic is then applied (step 11). This heuristic, which
searches a solution from the current node ν information and solution T ′ of
the TSPTW, is described in Section 7. If solution T found by the heuristic
has a makespan not greater than T , the problem is feasible and the branch
and bound stops. Otherwise, we have to update the node stack by branching
(step 16). The branching procedure is described in Section 10.

7 A priority-rule based serial heuristic

The function Heuristic returns a feasible schedule T taking as input the
current node ν = (R,D, E) and a TSPTW solution T ′ possibly computed.
Note that T ′ statisfies in any case the machine constraints but possibly

11



Algorithm 1 BranchAndBound(T, T ): returns failure or success

1: initialize R0 and D0 with (11-14) and UB = T
2: ν0 ← (R0,D0, ∅)
3: if Shaving(ν0) =failure then

4: Solution Found: unfeasible
5: else

6: BBQ← {ν0}
7: while BBQ is not empty do

8: ν ←pop(BBQ)
9: if Propagate(ν) 6=failure then

10: if SolveTSPTW(T ′)(ν) 6=failure then

11: T ←Heuristic(ν, T ′)
12: if Cmax(T ) ≤ T then

13: return success
14: else

15: BBQ←Branch(ν,BBQ)
16: end if

17: end if

18: end if

19: end while

20: return failure
21: end if
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violates one or more precededence constraints.
Heuristic first check whether setting T = R, T = D − p or T = T ′

yields a feasible schedule. In that case, this solution is returned. Otherwise
we apply a priority-rule based heuristic SerialSGS which returns a feasible
schedule taking a priority function π : O → R.

SerialSGS is applied 3 times by setting successively π = R, π = D−p,
π = T ′ and the schedule with the lower makespan returned. We explain
herafter the principles and the interest of SerialSGS.

None of the other priority-rule based heuristics described in Section 5.1
was explicitely designed for having the ability to generate (all) schedules in
the classical active, semi-active and non-delay schedule sets. However, it is
well-known that active and semi-active schedules are dominant for makespan
generation. Artigues et al [5] propose several schedule generation schemes
aiming at generating semi-active, active and non-delay schedules and study
the dominance properties of the reachable schedules. This analysis reveals
that most of the priority-rule based heuristics proposed so far generate sets
of schedules possibly excluding all optimal solutions. For instance, the ex-
tension of the Giffler and Thompson algorithm proposed by Brucker and
Thiele [13] does not generate dominant schedules. In this paper we use the
serial schedule generation scheme (SGS) which generates only active sched-
ules and for which the dominance property holds [5]. This algorithm is a is an
adaptation for the SDST-JSP of the serial SGS widely used for the resource-
constrained project scheduling problem [27]. Algorithm 2 implements the
serial schedule generation scheme with an O(nm2) time complexity.

8 Feasibility tests and adjustments based on con-

straint propagation

8.1 Setup preprocessing

The feasibility tests we have implemented make use of extensions to setup
times of well-known one-machine constraint propagation algorithms, such as
immediate selections and edge-finding [17, 11, 9]. Such extensions have been
proposed by Brucker and Thiele [13] and Viĺım and Barták [44]. Immediate
selections aim at detecting new precedence constraints among operations
assigned to the same machine, and consequently enrich the current selection
by new conjunctive arcs. To perform these deductions the constraint prop-
agation algorithms make use of the minimal duration without idle times of
subsets of operations Ω ⊆ Ok, for each machine Mk ∈ M. When there are
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Algorithm 2 SerialSGS(π): returns a feasible schedule T

1: Q← {Oi1|i = 1, . . . , n}
2: Sk ← ∅, ∀k ∈M
3: while Q is not empty do

4: select Oi∗j∗ ← arg minOij∈Q π(Oij) and let k = mi∗j∗.
5: t← s0i∗k

6: for each operations Oxy ∈ Sk do

7: if t + pi∗j∗ + si∗xk ≤ txy then

8: insert Oi∗j∗ before Oxy in Sk

9: break

10: else

11: t← max(t, txy + pxy + sxi∗k)
12: end if

13: end for

14: if Oi∗j∗ 6∈ Sk then

15: append Oi∗j∗ to Sk

16: end if

17: ti∗j∗ ← t
18: Q← Q \ {Oi∗j∗}
19: if j∗ < m then

20: Q← Q ∪ {Oi∗(j∗+1)}
21: end if

22: end while

23: returnT = (tij)Oij∈O
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no setup times, the minimal duration of a set Ω is denoted pΩ and is trivially
equal to pΩ =

∑
Oij∈Ω pij.

When there are setup times, the minimal duration of Ω ⊆ Ok, is equal
to pΩ + sΩ where sΩ is the solution of a modified TSPΩ where the distance
from the depot to each node is null. Hence, given a set Ω, computing sΩ is
NP-hard.

When the setup times are computed with operations families, operations
of a same family can be gathered together and sequenced consecutively.
Hence, the TSP might equivalently be solved with a single operation of each
family f ∈ FΩ = ∪Oij∈Ω{fij}. If |FΩ| is sufficiently lower than |Ω| then the
computational time of the corresponding TSP may become tractable. In the
following we note equivalently sFΩ

and sΩ.
The filtering algorithm needs more precisely, for each family subset F ′ ⊆

FOk
and for each family f ∈ F ′, the values denoted sf→F ′ and sF ′→f . These

values correspond to the minimal setup times to schedule a set of operations
yielding family set F ′ if f is the family of the first (last) operation of the
set, respectively. Note that we have sF ′ = minf∈F ′ sf→F ′ = minf∈F ′ sF ′→f .

Brucker and Thiele [13] use several TSP lower bounds to estimate sf→F ′

and sF ′→f and use also the optimal value obtained by complete enumeration,
with an O(|F ′|!) time complexity.

In this paper we follow the method of Viĺım and Barták [44] who pro-
pose to precompute values sf→F ′ and sF ′→f once before starting the search.
Each famility set F ′ is coded by a binary representation of the correspond-
ing permutation so that sf→F ′ and sF ′→f are obtainable in O(1) once the
precomputation is made. Values sf→F ′ for each subset F ′ ⊆ FOk

and each

family f ∈ F ′ can be computed in O(|FOk
|22|FOk

|) by the following recur-
sion:

sf→{f} = 0 ∀Ff ⊆ FOk
(16)

sf→F ′∪{f} = min
g∈F ′
{sfg + sg→F ′} ∀F ′ ⊆ FOk

,∀f ∈ FOk
\ F ′ (17)

Values sF ′→f for each subset F ′ ⊆ FOk
and each family f ∈ F ′ can be

computed in a symetric fashion.
We also introduce the following notation linked to a set of operations Ω

useful in what follows.

rΩ = min
Oij∈Ω

rij (18)

dΩ = max
Oij∈Ω

dij (19)
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8.2 Local constraint propagation

The function Propagate(R,D, E) of our branch and bound procedure aims
at computing adjustments on earliest start times R and on latest completion
times D compatible with the current selection E , returning a failure when
unfeasibility is detected.

It calls iteratively functions updateEarliestStart, updateLatest-
Completion, immediateSelection and EdgeFinding, each performing
specific deductions. The sequence of calls is repeated until a failure occurs or
no more adjustments are performed. Algorithms updateEarliestStart
and updateLatestCompletion are adapted from Brucker and Thiele [13].
They update rij and dij for all operations Oij ∈ O considering only the
precedence relations given by the job precedence constraints and current
selection E . The earliest start times can be updated with the following rules
:

rij ≥ s0imij
∀Oij ∈ O (20)

rij ≥ ri(j−1) + pi(j−1) ∀Oij ∈ O, j > 1 (21)

rij ≥ rΩ + pΩ + sFΩ∪{fij}
→fij

∀Oij ∈ O,

∀Ω ⊆ {Oxy|(Oxy , Oij) ∈ E} (22)

The latest completion times can be updated with the following symetric
rules :

dij ≤ T (23)

dij ≤ di(j+1) − pi(j+1) ∀Oij ∈ O, j < m (24)

dij ≤ dΩ − pΩ − sfij→FΩ∪{fij}
∀Oij ∈ O,

∀Ω ⊆ {Oxy|(Oxy, Oij) ∈ E} (25)

Algorithm 3 describes updateEarliestStart. Its time complexity is
O(n2m log n). Brucker and Thiele [13] prove that the algorithm provides
the largest adjustment according to rule (22) provided that the triangular
inequality is verified for setup times. Note that the complexity of our al-
gorithm is lower than the one obtained by Brucker and Thiele [13] thanks
to the setup preprocessing. Since the procedures are applied iteratively the
consistency check perfomed in step 12 detects any cycle in G(E) = (X,U∪E).
Algorithm updateLatestCompletion is symetric.

Algorithm immediateSelection is a simple constraint propagation al-
gorithm for the disjunctive resource constraints whose objective is to detect
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Algorithm 3 updateEarliestStart(R,D, E): returns failure or success

1: for Oij ∈ O do

2: rij ← max(rij , s0imij
)

3: if j > 1 then

4: rij ← max(rij , ri(j−1) + pi(j−1))
5: end if

6: Ω← {Oxy|(Oxy, Oij) ∈ E}
7: sort operations of Ω according to increasing earliest start times
8: for Oxy ∈ Ω do

9: rij ← max(rij , pΩ + sFΩ∪{fij}→fij
)

10: Ω← Ω \ {Oxy}
11: end for

12: if rij + pij > dij then

13: return failure
14: end if

15: end for

16: return success

new precedence constraints between two operations assigned to the same
machine. It is based on the rules: ∀Mk ∈M,∀Oij , Ox,y ∈ Ok, Oij 6= Ox,y:

rij + pij + pxy + sixk > dxy =⇒ (Oxy, Oij) ∈ E (26)

(Oxy, Oij) ∈ E =⇒ rij ≥ rxy + pxy + sxik and dxy ≤ dij − pij − sxik (27)

It is implemented trivially in O(n2m). immediateSelection returns a
failure whenever any update on the time window of an operation Oij yields
rij + pij > dij .

Last, algorithm edgeFinding aims at performing additional immediate
selections and time windows adjustments considering an operation Oij as-
signed to a machine Mk and a set Ω ⊆ Ok \{Oij}. More precisely it is based
on the following so-called primal and dual rules. The primal rule states that
∀Mk ∈M, ∀Oij ∈ Ok, ∀Ω ⊆ Ok \ {Oij}:

rΩ∪{Oij} + pΩ∪{Oij} + sFΩ∪{Oij}
> dΩ =⇒

∀Oxy ∈ Ω, (Oxy, Oij) ∈ E (28)

The dual rule states that ∀Mk ∈M, ∀Oij ∈ Ok, ∀Ω ⊆ Ok \ {Oij}

dΩ∪{Oij} − pΩ∪{Oij} − sFΩ∪{Oij}
< rΩ =⇒

∀Oxy ∈ Ω, (Oij , Oxy) ∈ E (29)
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Roughly both primal and dual rules detect that operation Oij is not in-
sertable inside set Ω. The primal rule detects in addition that Oij has to be
scheduled after all the operations of Ω on machine Mk whereas the dual rule
detects that Oij has to be scheduled before all the operations of Ω. Rules
(22) and (25) can be combined with the primal and dual rules, respectively,
to perform the time windows adjustments brought by the new arcs added
in E .

The combination of the primal and dual rule gives the following feasib-
lity check, also called consistency rule. It generates a failure whenever the
following condition holds. ∀Mk ∈M, ∀Ω ⊆ Ok

rΩ + pΩ + sFΩ
> dΩ (30)

Viĺım and Barták [44] propose a O(|F|n2) algorithm to perfom all edge
finding deductions and an other O(n log n) algorithm to perform all deduc-
tions of the consistency rule. In this paper we propose an extension of
Nuijten’s edge finding algoritm [33] for which all consistency checks and ad-
justments are performed jointly. This extension, which runs in O(|F|n2), is
detailed in Algorithm 4 for the primal part.

We recall the principles of Nuijten’s algorithm and explain the changes
we have made to take account of setup times, in the spirit of the method
proposed by Viĺım and Barták [44].

The main loop enumerate all possible operation families f . The second
level loop makes all the updates relative to all relevant sets Ω such that dΩ =
dij . The first third-level loop (steps 6-17), plays too different roles. Through
the update of C, it performs the consistency checks (30). Since setup times
verify the triangular inequality, set Ω(Oxy, Oij) = {Ovw ∈ Ok|dΩ ≤ dij , rΩ ≥
rxy} is dominant for rule (30) over any other set Ω′ such that rΩ′ = rxy and
rΩ′ = dij . The set of sets Ω generated at step 9 includes all sets Ω(Oxy, Oij).
Hence C provides the largest possible left side value of inequality (30). The
second role is to prepare, through the computation of D, the updates of the
earliest start times of family f operations due to rules (28) and (22). Hence
at step 16, cxy is the largest earliest start time update of an operation Oxy

if Oxy has to be scheduled after all previously generated relevant sets Ω,
such that rΩ ≥ rxy. Note that this update is only valid here if fxy = f .
The second third-level loop (steps 6-17) makes the adjustements detected
by rules (28) and (22). The same relevant sets Ω are generated in the reverse
order, starting from the last generated one. At step 21, H corresponds to
the largest earliest completion time of the all previously generated sets Ω
such that rΩ ≤ rxy provided that a type f operation will be inserted in
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Algorithm 4 primalEdgeFinding(k,R,D): returns failure or success

1: for f ∈ FOk
do

2: for Oij ∈ Ok according to increasing earliest start times do

3: P ← 0
4: C ← 0
5: Ω← ∅
6: for Oxy ∈ Ok according to decreasing earliest start times do

7: if dxy ≤ dij then

8: P ← P + pxy

9: Ω← Ω ∪ {Oxy}
10: C ← max(C, rxy + P + sFΩ

)
11: D ← max(D, rxy + P + sFΩ∪{f}→f )
12: if C > dij then

13: return failure
14: end if

15: end if

16: cxy ← D
17: end for

18: H ← 0
19: for Oxy ∈ Ok according to increasing earliest start times do

20: if dxy ≤ dij then

21: H ← max(H, rxy + P + sFΩ∪{f})
22: P ← P − pxy

23: Ω← Ω \ {Oxy}
24: else if fxy = f then

25: if rxy + P + pxy + sFΩ∪{f} > dij then

26: rxy ← max(rxy, cxy)
27: end if

28: if H + pxy > dij then

29: rxy ← max(rxy, D)
30: end if

31: end if

32: end for

33: end for

34: end for

35: return success
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the set, considering only the setup time of this operation (the left side of
the inequality of rule (28) minus the operation duration which is here still
unknown). Any operation Oxy such that dxy > dij is candidate for being
updated by rule (28). Step 25 performs the test of rule (28) for such an
operation Oxy and current set Ω, verifying rΩ ≥ rxy. Note that the current
set is stronger than all the sets that remains to be generated for operation
Oxy and rule (28), since the setup times verify the triangular inequality and
P = pΩ is maximal. Step 26 updates the earliest start time if the test is
positive using value cxy (see definition above). Step 28 performs the test
of rule (28) for operation Oxy and the strongest set previously generated,
and verifying rΩ ≤ rxy (see computation of H above). Step 29 performs
the update of the earliest start time using value D (see definition above),
the largest earliest completion time among all sets Ω such that dΩ = dij ,
(because no operation of any of these sets can start after Oxy).

8.3 Global constraint propagation

At the root node of the branch and bound tree, we perform a global con-
straint propagation algorithm, so-called Shaving, which can be seen as a
one level breadth first search from the root node where the possible start
times of all operations inside their time windows are tried, yielding possibly∑

Oij∈O
(dij − pij − rij) tries. More precisely for each oeration Oij, a tenta-

tive to reduce its time window to [rij , rij ] is done and function Propagate
is called. If a failure occurs then rij is set to rij + 1 and the process iter-
ates until a global failure occurs (the time window becomes empty) or there
are no more adjustments. If no global failure occurs, another operation is
considered. The same process is carried out for the latest start time. At
the end of the Shaving process, either a global failure is detected, or the
time windows are “shaved”. We refer to [37, 29, 42, 21] for more efficient
implementations and other variants of the shaving technique.

9 Feasibility tests based on TSPTW solutions

The TSPTW can be defined as a particular elementary shortest path prob-
lem with resource constraints (ESPPRC) [22]. The ESPPRC considers a
network, a origin node, a destination node and arcs valuated by a cost cuv

and consuming resources. The number of resources is denoted Q. Traversing
an arc (u, v) consumes an amount lquv of each resource q, with 1 ≤ q ≤ Q.
Values lquv are assumed to satisfy the triangle inequality for each resource.
Each node u of the network is associated with an interval [aq

u, bq
u] such that
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the consumption of a resource q along a path from the origin node to u is
contrained to belong to the interval. More precisely, if the elementary path
uses arc (u, v), the consumption W q

v of resource q between the origin node
and v has to satisty W q

v ≥ max(aq
v,W

q
u + lquv) and W q

v ≤ bq
v. The objective is

to find an elementary path of minimal cost from the origin to the destination
node while satisfying these resource constraints.

F-TSPTW relaxation of (FP ) can be represented as an ESPPRC. Let
us consider a machine k and the set of operations Ok. A node is introduced
for each operation of Ok. An arc (u, v) is introduced between each pair
of operations (u = Oij , v = Oxy), with a cost cuv = −M , where M is
an arbitrary large constant. A single resource (Q = 1) is defined, with
l1uv = sixk + pxy. The resource window for node u = Oij is set as [a1

u, b1
u] =

[rij + pij, dij ]. Two additional nodes are introduced for the origin and the
destination. An arc with a resource consumption s0ik is added between
the origin and every operation node u = Oij , while an arc with a resource
consumption 0 is added between every operation node and the destination.
Note that the triangular inequality is respected since we have sijk ≤ sizk +
szjk =⇒ sijk+pj ≤ sizk+pz+szjk+pj, for all distinct i ∈ [0, n], j, z ∈ [1, n].
Costs are defined such that the optimal ESPPRC solution visits all nodes
if possible. Solving the ESPPRC thus permits to solve the F-TSPTW, as
expected.

We solve the problem by using the dynamic algorithm proposed by Feil-
let et al [22] This algorithm follows the classical Bellman’s algorithm. The
principle is to associate a label with each possible partial path and to extend
these labels checking the resource constraint, until the best feasible paths
are obtained. Dummy resources (indicating the reachability of nodes) are
introduced to preserve path elementarity. Dominance rules are used to com-
pare labels and remove some of them. The algorithm is adapted to avoid
extending a label for which a non-visited node is unreachable.

To speed up the resolution process, we use a lower bound computation
for each generated label. Let t denote the time associated to a label cor-
responding to a partial path from the origin node to a node v = Oij , i.e.
t = W q

v for this label. Let Ok ⊂ Ok denote the set of operations on ma-
chine k still unvisited by the partial path. We can use consistency rule (30)
adapted to set Ω ∪ {Oij}. Then, it is not useful to extend the current label
whenever ∃Ω ⊆ Ok, t + pij + pΩ + sfij→Ω∪{fij} > dΩ. Since the number
of generated labels can be very large we keep the complexity of the lower
bound linear by considering only Ω = Ok.
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10 Branching scheme and dominance rule

Several branching schemes have been proposed for the standard job-shop
problem [25]. For the SDST-JSP, Brucker and Thiele [13] consider blocks
of operations on the critical path of a feasible schedule issued from the
current node. Branching is based on the property that to improve the current
feasible solution, at least one operation has to be scheduled either before all
the other ones in its block (if it it not already the first one) or after all
the other ones (if it it not already the last one in its block). Hence from a
current selection, the child nodes are generated by numerating these different
possibilities and by making the induced selection updates. Focacci et al
[23] use a sequence-based branching scheme by memorizing which operation
has been scheduled last on each machine. The branching scheme consist
in selecting an unscheduled operation and perfom a binary branching for
this operation. For the left branch, the operation is scheduled next in the
sequence of its machine. For the right branch the operation is scheduled as
a successor but not next of the last sequenced operation.

In this paper we use a mixed chronological/active branching scheme
based on the current partial selection. Let Eij ⊆ E denote the set of undi-
rected disjunctive edges connected to Oij at the current node ν = (R,D, E).
When the selection E is complete, we have Eij = ∅, for each operation
Oij ∈ O.

Let Oi∗j∗ denote the operation such that Ei∗j∗ 6= ∅ and

ri∗j∗ = min
Oij∈O,Eij 6=∅

rij (31)

Let C denote the set of operations “conflicting” with Oi∗j∗, i.e. such
that:

C = {Oij ∈ O|Eij 6= ∅,mij = mi∗j∗, rij < ri∗j∗ + pi∗j∗ + si∗imij
} (32)

The branching scheme we propose aims generates |C| nodes {νij}Oij∈C from
the current node ν where νij = (R,D, E ∪ {(Oij , Oxy)}Oxy∈C\Oij

).
It has to be underlined that such a conflict set definition may result

in non active schedules since the conflict set is defined only with necessary
conditions. Indeed, there may be some operations in C whose earliest start
time is not fixed and may increase in the descendence of the current node.
This cannot be the case for operation Oi∗j∗ because it has the smallest
earliest start time among operations linked to undirected disjunctive edges.
However considering an operation Oij 6= Oi∗j∗ of set C then a child node
of νij for which rij becomes greater than or equal to ri∗j∗ + pi∗j∗ + si∗imij
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can be erased. This can be simply achieved by setting dij = ri∗j∗ + pi∗j∗ +
si∗imij

+ pij − 1.

11 Computational Results

In this Section, we present computational experiments conducted to evalu-
ate the quality of our approach. For this purpose, we use the benchmark
instances from Brucker and Thiele [13]. These instances are issued from the
classical Lawrence instances [28] devoted to the Job Shop Problem, intro-
ducing setup times. Each instance is characterized by a number of machines,
a number of jobs to be scheduled and a number of setup types for the oper-
ations. These three parameters define a triplet with the format (machines
× jobs × types). There are 15 instances with sequence dependent setup
times (named t2-ps01 to t2-ps15). Instances t2-ps01 to t2-ps05 are of type
5×10×5 (small instances). Instances t2-ps06 to t2-ps10 are of type 5×15×5
(medium instances). Instances t2-ps11 to t2-ps15 are of type 5 × 20 × 10
instances (large instances). Brucker and Thiele [13] remarked that the cor-
responding Lawrence instances without setup times (LA01 to LA15) were
all easily solved by their branch and bound method. On the opposite, only
the small sequence-dependent setup time instances (t2-ps01 to t2-ps05) were
solved to optimality.

Since the branch and bound method is designed to solve problem FP (T )
we apply it different times to find the optimal solution of (P ) according to
principle (6). Due to the succesive runs, we set a limit NBB to the number
of nodes of the branch and bound described in Section 6 and we also apply
the following refinements:

(i) To keep the time spent at each branch and bound node reasonable,
we set a limit NDP on the number of iterations (label extensions)
of the dynamic programming algorithm used to solve the TSPTW
relaxations (see Section 9). When this limit is reached, nothing can
be deduced from SolveTSPTW and branching is necessary.

(ii) For diversification purposes, we also use a randomized version of the
heuristic SerialSGS described in Section 7. This randomized version
selects at step 4 an operation different than the one with the minimal
priority according to a random factor. At each node, SerialSGS is
called 6 times with the priority values given in Section 7 but for both
the deterministic and randomized versions.
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(iii) The heuristic keeps track of the best found solution, even if its makespan
is greater than the current threshold T . Furthermore, each time the
heuristic improves the best solution found so far, the randomized ver-
sion of SerialSGS is called NH times with the current priority value,
for intensification purposes.

Then the following strategies have been implemented to solve (P ):
strategy 1: A binary search is performed between an initial trivial lower
bound (set to the longest job duration) and an initial upper bound set of
one call of the serial SGS with the earliest start priority rule. Parameters
are NBB = 500000, NDP = 1500 and NH = 50000 .
strategy 2: An increasing linear search is performed, starting from the same
initial trivial lower bound as for strategy 1 with parameters NBB = 20×106,
NDP = 3000, NH = 50000.

The algorithms are coded in C++ and the tests are carried out on a PC
with AMD64 architecture under Linux. In Table 1, we give the results of
strategy 1. For each instance, we give the best found lower (LB1) and upper
(UB1) bounds, the total number of branch and bound nodes (#nodes), the
total CPU time in seconds (CPU), the initial lower bound value (LB0), the
initial upperbound value (UB0), the number of calls of BranchAndBound
by the binary search (IT) and the number of times a TSPTW relaxation
could not be solved because the iteration limit NDP has been reached (TO).

As seen in Table 1, Strategy 1 solves to optimality 8 problems out of
15: all the 5 small instances, 3 out of 5 medium instances and none of the
large instances. The previously unsolved problem t2-ps06 is closed with an
optimal value of 1009, in 6157 seconds. The large CPU time values for the
medium and large instances are due to the very large initial gap (since we
did not take the best known lower and upper bound as initial bounds, but
rather trivial ones) and to the maximal number of nodes which is reached
for all values between the best found lower and upper bounds. All the best
known lower bounds (see also Table 4) of the previously unsolved instances
are improved. Two best known upper bounds are improved for instances
t2-ps06 and t2-ps14 (see also Table 5).

In Table 2, we give the results of strategy 2 giving the same information
as for strategy 1, but omitting the number of iterations and the number
of time outs for the dynamic programming method. Note the number of
iterations is obtained here by substracting the initial lower bound from the
obtained lower bound. For the computation of lower bounds, strategy 2
obtains better results than strategy 1 (see also Table 4). Indeed, strategy
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2 solves all the small instances and 4 out of 5 medium instances. The pre-
viously unsolved problem t2-ps08 is closed with an optimal value of 963 in
349923 seconds. None of the large instances can be solved to optimality
but all lower bounds are significantly improved, at the expense of very large
computational times. Except for instance t2-ps08, the upper bounds found
by strategy 2 are not as good as the ones obtained by strategy 1 (see also
Table 5). This is not surprising since the linear search is performed increas-
ingly from the lower bound. Consequently, the heuristics are never guided
by a feasible makespan value, except for the optimal one.

Besides the results shown in Tables 1 and 2, we notice that solving
the TSPTW problems at each node appears crucial for the efficiency of
the method. To take a single example, removing the TSPTW resolution
(i.e. only the constraint propagation algorithms are applied) for the t2-ps05
instance increases the number of nodes up to 389992 nodes and the CPU
time to 346.71 whereas the problem is solved in 3345 nodes and 16.2 seconds
if the TSPTW relaxation is used. Martin and Shmoys [29] notice that for
the standard job-shop problem, solving exactly the one-machine problem
at each node with the Carlier’s algorithms brings only a little improvement
compared to using edge finding and immediate selections. This seems to be
no more the case when sequence-dependent setup times are introduced.

Table 3 provides the results of the stragegy 1-based exact method on
the corresponding job-shop instances without setup times [28]. All of these
instances are easily solved by our method, which confirms the difficulty of
the setup times constraints, as stated by Brucker and Thiele [13].

Table 4 gives the result of several lower bounds on the 15 SDST-JSP
instances, to evaluate the different components of our method and to make
comparisons with other lower bounds. Column LB0 recalls the value of the
trivial lower bound based on longest path computations in the precedence
graph. Column Shaving gives the lower bound obtained if only the shav-
ing process is applied, i.e. the greatest value for which shaving can prove
infeasibility. The lower bound value and the CPU times are given. Column
TSPTW gives the lower bound obtained by applying only shaving followed
by the resolution of the TSPTW relaxation. This is done by setting the
branch and bound node limit to 1 and by setting no limit to the number of
label extensions of the dynamic programming algorithm. The lower bound
value and the maximal experienced number of iterations of the dynamic pro-
gramming algorithm are provided. Column LB1 and LB2 recall the results
of the best lower bounds by the two strategies we have implemented. We
provide the results obtained by the root node lower bound of the branch
and bound method proposed by Brucker and Thiele [13] (BT96), the root
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node and the best lower bound of the branch and bound method proposed in
Artigues et al [3] (ABF04). The root node lower bound of Artigues et al [3]
corresponds to the resolution of the TSPTW relaxation without tightening
the time window by the shaving process. The best lower bound of [3] was
obtained by branch and bound.

The following ranking can be expected and is verified:
LB(BT96) < LB root(ABF04), LB(Shaving) < LB(TSPTW) < LB1 <
LB2. Note, however, that since there is a number of dynamic programming
iterations limited to 1500 in our implementation of strategy 1, the TSPTW
bound is not obtained without branching in our methods. One can observe
that truncating the dynamic programming was necessary, due to an impor-
tant number of iterations (label extensions) for the medium instances. The
TSPTW bound could not even be obtained in a reasonable amount of time
for the large instances. The shaving based-bound is tight 2 times and is gen-
erally better than the TSPTW bound without shaving (LB root ABF04) and
than the Brucker and Thiele [13] bound (LB root BT96), which indicates
the good results of the constraint propagation algorithms and confirms the
power of the shaving technique already experienced for the standard job-
shop problem [37, 29]. The computational time of the shaving algorithm is
rather high but one could considerably accelerate it by performing a bisec-
tion search on the time window as described by Martin and Shmoys [29]. As
a main result of our approach, strategy 2 obtains all the best known lower
bounds on all instances, outperforming all other methods.

Table 5 gives the results of the state-of-the-art method in terms of the
best obtained feasible solutions. BT96, FNL00, ALA05, ABF04, ABF05,
BSV05 stand for the solutions found by [13, 23, 5, 3, 4, 8], respectively. The
results show that the heuristic solutions found by our algorithm are not so
far from the best known solutions mostly obtained by the shifting bottleneck
heuristic of Balas et al [8] with reasonable computational requirements. We
improve upon the results of Balas et al [8] for small instance t2-ps05, for
3 medium instances out of 5 (t2-ps06, t2-ps07 and t2-ps08) and for 1 large
instance out of 5 (t2-ps14). The results of Balas et al [8] are better than ours
for instance t2-ps09 and for all large instances except t2-ps14. As already
underlined, the solutions found by strategy 1 on large instances are better
than the one obtanied by strategy 2. Note the initial heuristic (UB0), which
carries out a single run of the serial SGS with the earliest-start priority-
rule, obtains better results than the truncated branch-and-bound methods
of Brucker and Thiele [13] and Focacci et al [23] on 1 medium instance and
on 3 large instances. It follows, as already mentionned by Artigues et al
[5], that the latter methods could be highly strengthened by integrating the

26



serial SGS in the set of heuristics they use.
Last, Table 6 gives the evolution the gap between the best known lower

and upper bound accross all concerned studies since the paper of Brucker and
Thiele [13] as well as the number of improved lower bounds, upper bounds
and closed instances obtained by each previous work. The results show that
the present study has significantly reduced the gap on all unsolved instances.
The gap is reduced to less than 1% on the unsolved medium instance and
to less that 8% on all the large instances. Solving all the medium sized
instances will be probably achieved in a near future. However the large
instances remain challenging.

12 Concluding remarks

We have proposed a new exact method to solve the job-shop problem with
sequence-dependent setup times which significantly reduces all gaps for the
unsolved problem instances proposed by Brucker and Thiele [13]. The re-
sults are obtained thanks to a cooperation between constraint propagation
techniques extended to setup times and a truncated dynamic programming-
based resolution of TSPTW relaxations. The feasible solutions are obtained
by a serial schedule generation scheme with a priority-rule based on the
solutions of the TSPTW relaxations.

The cooperation between constraint progagation and TSPTW relax-
ations could be further increased, for instance by solving smaller TSPTW
corresponding to special subsets of operations sequenced on the same ma-
chine or conversely by designing time windows update methods based on the
analysis of the TSPTW. The feasible solutions of the TSPTW could also be
maintained by local search algorithms adapting to the branching decisions.
In the near future, we will focus on improvements that can be brought to
speed up the resolution process of the dynamic programmming algorithm.
A better resolution of the TSPTW could be the key to solve larger instances.
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[44] P. Viĺım and R. Barták. Filtering algorithms for batch processing with
sequence dependent setup times. In Ghallab, Hertzberg, and Traverso,
editors, Proceedings of The Sixth International Conference on Artifi-
cial Intelligence Planning and Scheduling (AIPS 2002), pages 312–320.
AAAI Press, 2002.

[45] J.K. Wilbrecht and W.B. Prescott. The influence of setup time on job
shop performance. Management Science, 16(4):B274–B280, 1969.

[46] C. Zhou and P.G. Egbelu. Scheduling in manufacturing shop with
sequence-dependent setups. Robotics and Computer Integrated Manu-
facturing, 5:73–81, 1989.

32



Table 1: Best lower and upper bounds obtained by strategy 1

Problem LB1 UB1 #nodes CPU LB0 UB0 #IT #TO

t2-ps01 798∗ 798∗ 173697 400.6 433 844 8 747
t2-ps02 784∗ 784∗ 24380 105.1 434 992 7 2810
t2-ps03 749∗ 749∗ 150885 352.6 359 946 9 8323
t2-ps04 730∗ 730∗ 2414 16.3 399 921 7 215
t2-ps05 691∗ 691∗ 3345 16.2 390 733 5 182

t2-ps06 1009∗ 1009∗ 1143776 6156.2 433 1120 8 150768
t2-ps07 970∗ 970∗ 1533045 10012.6 416 1129 10 336768
t2-ps08 946 982 2583663 22716.5 399 1066 10 507641
t2-ps09 1049 1061 2210868 26754.5 412 1174 9 490508
t2-ps10 1018∗ 1047 1499685 6391.1 463 1187 9 20895

t2-ps11 1373 1494 4512218 39489.9 483 1719 13 671506
t2-ps12 1219 1381 3072119 26678.8 498 1425 10 411984
t2-ps13 1317 1457 5414824 50336.8 462 1531 14 864255
t2-ps14 1429 1483 3583123 37236.1 463 1549 10 509888
t2-ps15 1392 1661 4342505 46590 431 1749 13 696812

Value in bold: best known result on the instance is reached.
Value underlined: previously best known result on the instance is

improved.
∗tight bound
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Table 2: Best lower and upper bounds obtained by strategy 2

Problem LB2 UB2 #nodes CPU LB0 UB0

t2-ps01 798∗ 798∗ 1 56.7 433 844
t2-ps02 784∗ 784∗ 9498 242.3 434 992
t2-ps03 749∗ 749∗ 181090 699.3 359 946
t2-ps04 730∗ 730∗ 3594 251.6 399 921
t2-ps05 691∗ 691∗ 2918 58.2 390 733

t2-ps06 1009∗ 1009∗ 256520 1797.6 433 1120
t2-ps07 970∗ 970∗ 71106 781.8 416 1129
t2-ps08 963∗ 963∗ 33491952 349923 399 1066
t2-ps09 1051 1061 20105686 169582 412 1174
t2-ps10 1018∗ 1018∗ 227 35.1 463 1187

t2-ps11 1395 1617 57981046 916833 483 1719
t2-ps12 1242 1424 69387629 914086 498 1425
t2-ps13 1342 1457 58651163 895059 462 1531
t2-ps14 1432 1499 19999854 306899 463 1549
t2-ps15 1406 1671 52337255 792196 431 1749
Value in bold: best known result on the instance is reached.

Value underlined: previously best known result on the instance is
improved.

∗tight bound
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Table 3: Results of strategy 1 on the instances with no setuptimes

Problem Opt #nodes CPU #IT #TO

LA01 (t2-ps01) 666∗ 1 7.5 7 1
LA02 (t2-ps02) 655∗ 22150 70.1 8 752
LA03 (t2-ps03) 597∗ 2 8.5 8 1
LA04 (t2-ps04) 590∗ 42 13 8 8
LA05 (t2-ps05) 593∗ 1 2.2 8 1

LA06 (t2-ps06) 926∗ 1 4.6 6 1
LA07 (t2-ps07) 890∗ 107 17.2 7 74
LA08 (t2-ps08) 863∗ 1 27.42 8 1
LA09 (t2-ps09) 951∗ 1 39.4 9 1
LA10 (t2-ps10) 958∗ 1 32.2 8 1

LA11 (t2-ps11) 1222∗ 1 14.6 9 1
LA12 (t2-ps12) 1039∗ 15 112.6 9 15
LA13 (t2-ps13) 1150∗ 19 29.33 8 19
LA14 (t2-ps14) 1292∗ 1 207.1 8 1
LA15 (t2-ps15) 1207∗ 1080 92.3 10 366
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Table 4: Lower bound comparison

Problem LB0 Shaving TSPTW LB1 LB2 LB root LB root LB
LB (CPU) LB (DPIT) BT96 ABF04 ABF04

t2-ps01 433 781 (9.5) 796 (10847) 798∗ 798∗ 756 796 798∗

t2-ps02 434 745 (7.3) 745 (13667) 784∗ 784∗ 705 715 784∗

t2-ps03 359 710 (6.7) 710 (9079) 749∗ 749∗ 658 678 749∗

t2-ps04 399 707 (9.7) 707 (10945) 730∗ 730∗ 627 647 730∗

t2-ps05 390 687 (4.2) 690 (9049) 691∗ 691∗ 653 671 691∗

t2-ps06 433 1006 (52.2) 1006 (239221) 1009∗ 1009∗ 986 996 996
t2-ps07 416 970∗ (20.0 970∗ (927515) 970∗ 970∗ 940 927 970∗

t2-ps08 399 923 (14.7) 930 (1130061) 946 963∗ 913 923 923
t2-ps09 412 1011 (16.1) 1012 (858939) 1049 1051 1001 1012 1037
t2-ps10 463 1018∗ (19.3) 1018∗ (788711) 1018∗ 1018∗ 1008 1018∗ 1018∗

t2-ps11 483 1360 (83.5) — — 1373 1395 1322 NA NA
t2-ps12 498 1175 (145.8) — — 1219 1242 1139 1159 1159
t2-ps13 462 1280 (68.6) — — 1317 1342 1250 1250 1250
t2-ps14 463 1412 (181.8) — — 1429 1432 1402 NA NA
t2-ps15 431 1357 (182.4) — — 1392 1406 1307 NA NA

Value in bold: best known result on the instance is reached.
Value underlined: previously best known result on the instance is

improved.
∗tight bound
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Table 5: Upper bound comparison

Problem UB0 BT96 FNL00 ALA05 ABF04 ABF05 BSV05 UB1 UB2

t2-ps01 844 798∗ 798∗ 818 798∗ 798∗ 798∗ 798∗ 798∗

t2-ps02 992 784∗ 784∗ 829 784∗ 784∗ 784∗ 784∗ 784∗

t2-ps03 946 749∗ 749∗ 782 749∗ 771 749∗ 749∗ 749∗

t2-ps04 921 730∗ 730∗ 745 730∗ 743 730∗ 730∗ 730∗

t2-ps05 733 691∗ 691∗ 704 691∗ 693 693 691∗ 691∗

t2-ps06 1120 1056 NA 1026 1026 1026 1018 1009∗ 1009∗

t2-ps07 1129 1087 NA 1033 970∗ 1022 1003 970∗ 970∗

t2-ps08 1066 1096 NA 1002 1002 994 975 982 963∗

t2-ps09 1174 1119 NA 1060 1060 1060 1060 1061 1061
t2-ps10 1187 1058 NA 1036 1018∗ 1018∗ 1018∗ 1047 1018∗

t2-ps11 1719 1658 NA 1478 NA 1509 1470 1494 1617
t2-ps12 1425 1528 1448 1319 1319 1305 1305 1381 1424
t2-ps13 1531 1549 1658 1439 1439 1439 1439 1457 1457
t2-ps14 1549 1592 NA 1492 NA 1492 1485 1483 1499
t2-ps15 1749 1744 NA 1559 NA 1556 1527 1661 1671

Value in bold: best known result on the instance is reached.
Value underlined: previously best known result on the instance is

improved.
∗tight bound
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Table 6: Chronological Evolution of the gap (1 − LB/UB) × 100 for the
SDST-JSP instances

Problem BT96 FNL00 ALA05 ABF04 ABF05 BSV05 Our results

t2-ps01 0
t2-ps02 0
t2-ps03 0
t2-ps04 0
t2-ps05 0
t2-ps07 13.52 — 9.00 0
t2-ps10 4.73 — 2.70 0
t2-ps06 6.62 — 3.90 2.92 — 2.16 0
t2-ps08 16.70 — 8.88 7.88 7.14 5.33 0
t2-ps09 10.54 — 5.56 2.17 — — 0.85
t2-ps11 20.27 — 10.55 — — 10.06 5.10
t2-ps12 25.46 21.33 13.64 12.13 11.18 — 4.83
t2-ps13 19.30 — 13.13 — — — 6.74
t2-ps14 11.93 — 6.03 — — 5.59 3.44
t2-ps15 25.05 — 16.16 — 16.00 14.40 7.92

LB impr 15 0 0 6 0 0 8
UB impr 15 1 10 2 3 5 3
closed 5 0 0 2 0 0 2
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