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Abstract. The dynamic stability of the spherical gravita-
tional evolution (collapse or expansion) for a homogeneous
polytropic gas with any exponent 7, i1s studied using the
lagrangian formalism. We obtain the analytical expression
for density perturbations at the first order.

In the case ¥ = 4/3, the Jeans’ criterion is easily genera-
lized to a self-similar expanding background. The collap-
sing case 1s found to be always unstable. The stability of
density modes obtained for v # 4/3 does not introduce
any conditions on the wavelength perturbation, but only
a criterion on the polytropic index. As a result, stability
is obtained for an expanding gas provided vy < 4/3, and
for a collapsing one, for v > 5/3.

Key words: gravitational instabilities—star formation

1. Introduction

Within the framework of high energy laser experiments,
the study of dynamic stability for a gas in a microtarget
under an external field becomes experimentally possible
(Kane et al. 1997a, 1997b; 1999; Remington et al. 1997).
The extrapolation of the results to large self-gravitating
masses (Ryutov et al. 1999) opens the way to the “labo-
ratory astrophysics”. In particular, instabilities in giant
molecular hydrogen clouds can be considered as initial
seeds to the gravitational collapse and, consequently, to
the birth of stars. Due to simple models, it is therefore
conceivable to find conditions on protostellar configura-
tions which do, or do not lead to their own gravitational
collapse. A first method for dealing with this process is
the analysis of non-linear equations by eulerian self-similar
techniques (Blottiau et al. 1988; Bouquet et al. 1985a; Shu
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1977; Yahil 1983). The lagrangian way, often prefered in
numerical studies, has also been used by Blottiau (1989).
However, whereas the numerical results seem to agree with
theoretical stability obtained from self-similarity analysis,
(Blottiau et al. 1988), analytical lagrangian approaches re-
main in discrepancy (Bonnor 1957; Buff & Gerola 1979).
In this study we use widely and intensively the analytical
lagrangian approach to check and to compare our results
with the ones previously found by eulerian self-similar
ways. The “predilection” model is still the one describing
the evolution of a homogeneous polytropic spherical mass.
The stability is discussed from the study of the time evo-
lution of density perturbations at the first order (Bonnor
1957; Bouquet 1999). From the simplicity of the assump-
tions, it 1s obvious that such treatment cannot describe
thoroughly stellar explosions or collapses. However, it can
provide relevant conditions and results for the starting
processes leading to the dynamic evolution. On the other
hand, laboratory experiments will allow us to delimit the
domain of validity of such “simple” models, but which are
almost the only ones fully computable analytically.

In Sect. 2, similar results of Blottiau et al. (1988) and
Bouquet (1999) are refered to and used to generalize the
Jeans’ criterion in the case of an expanding homogeneous
polytropic gas with v = 4/3.

Sect. 3 deals with the lagrangian description. The sys-
tem which consists in the hydrodynamical equations for
the density perturbations at first order has been solved
analytically. The stability criteria are obtained from the
study of the asymptotic behaviour of these solutions for
any value of 4. The analytical expression is obtained from
an infinite summation over eigenmodes satisfying the ap-
propriate boundary conditions. It turns out that the re-
sults confirm and extend those presented in Sect. 2. The
conclusion is given in Sect. 4.
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2. Eulérian collapse
2.1. Previous results

The study of self-gravitating configurations can be made
with the use of scaling transformations (Bouquet et al.
1985a; Blottiau et al. 1988; Chiéze et al. 1997; Hanawa &
Nakayama 1997; Saigo & Hanawa 1998; Nakamura et al.
1999; Hanawa et al. 1999). The equations governing the
evolution of the gravitational system, written in the new
space (rescaled space) of transformed physical quantities
(rescaled quantities) are often easier to solve and to under-
stand than in the physical one. In particular, the dynamic
stability problem may reduce to a static one. The Euler
self-similar approach of Blottiau et al. (1988) deals with a
homogeneous self-gravitating infinite mass which follows
a polytropic equation of state:

with an exponent v = 4/3 and where P and p are respec-
tively the pressure and the density of the medium. The
case v # 4/3 was also studied but only in a numerical
way. In the present paper, we first recall the Euler analyt-
ical study for v = 4/3, and we recast it into the lagrangian
frame. Second, we extend this approach, analytically, to
any value of the polytropic exponent ~.

The evolution of the system is governed by the Euler, Pois-
son and continuity equations which read respectively:

oo v _ 1op o
at " Vor T p Or g
10
r—zg(ﬂg) = —4npG (3)
Jp 10
a0 = e UY) (4)

where r, t, v(r,t) and g(r,t) are respectively the radial po-
sition, the time, the eulerian velocity field and the value of
the gravitational field at the event (r, ). A newtonian self-
similar solution for these equations is a parabolic homoge-
neous collapse, therefore without any velocity at infinity

(Blottiau et al. 1988; Henriksen & Wesson 1978):

ro(m,t) = rp(1+Qt)5 (5)
po(t) = po(l+Qt)~7 (6)
fo = ooz (®)

where r,(m,t) and p,(t) are, respectively, the position of
the shell whose interior mass is m and the uniform den-
sity, both of them being taken at time ¢. The quantities 7,
and g, represent, respectively, the position of the shell (la-
belled by m) and the uniform density at the initial time
t = 0. The parameter Q (Blottiau et al. 1988; Bouquet
et al. 1985a) is an integrating constant which reflects the

freedom in the choice of the time-origin. It is just propor-
tional to the initial Jeans frequency, €z, given by:

Q= \/47p, G 9)

and the relationship between Q and Q is just (Eq. (8)):

Q= 593 (10)
This parameter may seen redundant with the Jeans fre-
quency. However, we are going to explain how relevant
it can be. Usually, one works with the variable ¢ which
varies from —oo up to +oco. But, generally, a singularity
arises at ¢ = 0 which, in our opinion, is not so easy to be
managed. For instance, the spatial extension of the confi-
guration must be zero.

In opposition, the introduction of the parameter Q al-
lows us to leave ¢ = 0 as the initial time in any case.
In order to describe expansions, we take the positive so-
lution in Eq. (10), Q@ = +./3/2 Qs and t elapses from
0 up to +oo. In contrast, collapses will be obtained for
Q = —/3/2 Q; (negative solution in Eq. (10)) and the
final gravitational singularity will arise for 1+ Qt,;,4 = 0,
le., at t;ing = —1/Q (which, of course, is a positive value
since € is negative). It should be noted that this very sim-
ple remark provides, in a very straightforward and easy
way, the free fall-time for a homogeneous gravitational
system:

T
tep =4/ ——.
1=\ 6mp,G

In addition, and for any situation, ¢ remains positive and
its initial value 1s finite, always ¢ = 0. Moreover, since
at ¢ = 0 no singularity arises, the extension of the confi-
guration can be not (and is not) zero whereas removing
the parameter €2 could give rise to expansions beginning
at the singularity (r = 0 and ¢t = 0) which, in our mind,
does not make sense. Thanks to the parameter Q, we may
specify any spatial profile (for the density, for the veloc-
ity, etc.) at the initial time and study its influence on the
further evolution of the system. These properties are very
convenient from a physical viewpoint. This parameter is
not only useful in astrophysical studies but it can also be
used very fruitfully in evolution problems: plasma physics
(Bouquet et al. 1985b; Burgan et al. 1978, 1983), nonlinear
evolution equations and dynamic systems (Bouquet 1995;
Cairé & Feix 1998; Caird et al. 1999) and other interesting
domains.

We are going to see that by means of scaling transforma-
tions, the time dependence of the solutions (Eq. (5) and
Eq. (6)) can be removed. The dynamic problem of stabil-
ity reduces, therefore, to a static one. The new physical
quantities in this rescalled space are written with a hat
“"” and, according to Blottiau et al. (1988) and Bouquet
et al. (1985a), we have:

7= r(l4Qt)7? (11)
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i = éln(l—}—Qt) (12)
prt) = (1+Qt)%p(r,?) (13)
P(r,t) = (14 Qt)2 P(r,t) (14)
g(rit) = (L+Qt)3g(r,1) (15)

where we set ¥ = 4/3 in the following. From these equa-
tions, it is clear that at the initial time ¢ = # = 0, the quan-
tities with and without “~” coincide (the rescaled space
and the physical one are initially identical). Moreover, for
Q > 0 (t and ¢ go from 0 to 4+0o0), the transformation
describes an expansion, while for Q@ < 0, the configura-
tion collapses up to the central singularity in a finite time
given by ¢ = —1/€. It must be noted that for this case
(€ < 0), the times ¢ and t vary respectively, in the ranges
[0,—1/9Q[ and [0, 4+oo[. Tt can be easily shown (Blottiau
et al. 1988; Bouquet et al. 1985a; Bouquet 1999) that the
system formed by equations (2) to (4), becomes stationary
in the new space without any explicit dependence upon %.
Moreover, assuming that:

(P, 1) = po+5p(F, 1)
3p(F. ) = A(f)sin(kr)/(k7)

where k is the wave number in the rescaled space and
where:

(16)
(17)

A(t) = A, exp(wt). (18)

A, and w are two constants. The study of the evolution of
the perturbations for the various transformed quantities,
at the first order, provides a dispersion equation for the
density modes. This dispersion relationship is (Blottiau et

al. 1988):

Q
w? —|—3w+k2 -0% =0. (19)

where ¢ is the initial sound velocity given by:
vt (20)

and where Qj is related to Q from Eq. (10). Their phys-
1cal values at time ¢ are obtained from the inverse scale
transformation (Blottiau et al. 1988):

¢ =~Kp,

Qj(l + Qt)_l
é(1+Qt)"5.

Q(t) =
C(t) =
Coming back to Eq. (19), the eigenmodes are obtained by

the resolution of the dispersion equation, quadratic in w
with the discriminant:

A, = 2507 — 24k?¢?

6
According to the sign of A;, we obtain, therefore, the two
solutions for w:

(21)
(22)

(23)

VAL

2

PO Q
k < kirans = Wrt = _E =+ (24)

BNV (25)

k> kirans = Wit =

6 2 ?
. 25 Q)

With  kirans = i <l (26)
(64

The imaginary values, w;4, for w are obtained for k>
l%tmns. These solutions give rise to evanescent modes. This
is the stability criterion, in the rescaled space, found by
Blottiau et al. (1988). In the next section, we are going
to show that it is equivalent to the Jeans’ criterion in the
physical space.

2.2. Equivalence to the Jeans’ criterion

The time dependence of the density perturbations, in the

physical space, is deduced from Eq. (12), Eq. (17) and
Eq. (18). we obtain:
Alt) = A (1 + Q). (27)

Moreover, since p and dp rescale in the same way, we have,
at the first order:
dp _bép dp
P p po
The asymptotic time evolution of dp/p is, therefore, di-
rectly glven by the real part sign of the exponent w/Q

(28)

First, for k< ktr(ms, w 1s real but a critical value of k
Eerit, makes changing the sign of w4 /Q. With Eq. (24) it
comes:

Wry

if < ]Afcrit < ]Aftrans = 0 >0 (29)

ifcrit < ];7 < ];trans = % <0 (30)

where

R QO

kcri = - 31
b= (31)

We notice that l%c”'t corresponds to the value given by
Jeans (1961). In addition, keeping in mind the permanent
negative sign of w,_ /€, and since the solution is written as
the linear superposition of the two modes, the asymptotic
behaviour is given by the leading term. We get:

I . VQ > 0 limyeo 22 = 00

k kcri k rans . ’ 2
< Werit < It :>{VQ<Ohmt_>_%%p:oo (32)

. L VQ >0 limyye 22 =0

kcri k k rans . ’ 3:
¢SS Nerans = {\m<o lim,_,_; % = oc. (33)

Second, for k> ]}tmm, the imaginary part of w (given by
Eq. (25)) produces an oscillating contribution to A(t). In
contrast, the real part gives a time-power evolution with
a negative exponent —1/6. Consequently, one gets:

e — ¢
pép (34)

= 0.

VQ >0 limy e
VQ <0 lim, , .

T r

];7 > ]Aftrans = {
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Equations (32) to (34) emphasize that the asymptotic be-
haviour of the density perturbations depends strongly on
the value of the wave number l;:, which is connected to the
value of k in the physical space by the inverse transforma-
tion of Eq. (11) (Blottiau et al. 1988):

k=k(1+Qt)75. (35)

As a result, for explosions (€2 > 0), the density perturba-
tions are unstable as soon as the instantaneous wave num-
ber, k(t), satisfies k(t) < kerit(t) with kepie (1) = Qs(2)/c(2)
is the instantaneous Jeans wave number. However, since k
and k.5 have the same time-dependence, if the criteria is
satisfied at ¢ = 0, it 1s satisfied for any time. Consequently,
the result obtained by Jeans (1961) for a static background
is also valid for an expanding one provided v = 4/3. This
is closely akin to Bonnor’s results (1957). On the other
hand, in the implosion case (© < 0), we always have in-
stabilities: every density perturbation is amplified during
the collapse. Finally, note that the value l}tmm 1s not rel-
evant to stability, but indicates only changes in behaviour
with wave number: beyond this value, the perturbation
oscillates and increases, and below, it explodes as a time-
power dependence.

2.3. Conclusion

The stability criterion for an eulerian self-similar evolu-
tion does not agree with the one given by Buff & Gerola
(1979). Instead of Eq. (31), they find a Jeans wave number
equal to \/3/2 kerit. As a matter of fact, their dispersion
equation, derived in the physical space, for a fixed mass
collapse is:

z_ ;Q% + k%c? = 0.
Buff & Gerola (1979) have chosen a density perturba-
tion, at first order, under the form A(t)sin(kr)/(kr) with
A(t) = Ao exp(wt). In our opinion, this ansatz is not pos-
sible. The reason for this is that, in opposition to our ap-
proach in which we obtain a second order automous differ-
ential equation for the density perturbations, they get a
linearized equation with time-varying coefficients. But, in
that case, it is well known that the exponential solution,
exp(wt), is no longer valid. Consequently, the meaning of
Eq. (36) is not clear and one would have to assume that
w be an explicit function of time. However, under this as-
sumption, additional terms proportional to dw/dt should
appear and Eq. (36) would be modified. In the next sec-
tion, an analytical lagrangian calculation is performed. It
is shown that obtaining a dispersion relation is not neces-
sary and we are going to recover and to extend the results

found by Blottiau et al. (1988) and by Bonnor (1957).

(36)

3. Lagrangian collapse

Let M be the mass of a spherical homogeneous configu-

ration with initial radius R submitted to its own grav-

itational field and initially at rest. In the following, the
physical quantities will be expressed, either as a function
of the lagrangian variable m (where m is the internal mass
of a shell), or in terms of #, (with 7, being the initial ra-
dius of the shell labelled by m), plus the time, ¢, in both
cases. The stability i1s again studied via the time-evolution
of density perturbations at the first order, dp. All param-
eters with the subscript “o” are associated with the non-
perturbated solution. Finally, it must be pointed out that
this study is performed analytically for any arbitrary value
of the polytropic exponent.

3.1. Equation of evolution

The evolution of the non-perturbed system obeys the hy-
drodynamical equations (1) to (4) with the solution given
by (5) and (6). The perturbation is then written in the
form:

(37)
(38)

polt) + 3p(m, 1
ro(m,t) + dr(m,t).

p(m,t) =
r(m,t) =

The solution will no longer be homogeneous and we have
to keep the pressure gradient term in the Euler equation
(2). This gradient is expressed as a function of the density
according to the polytropic equation of state (1). After
elimination of the zero order terms from equations (5) and
(6), the Euler equation reads:

d%*r ity 23 p
oz om
The time-dependent sound velocity, ¢, is written at the
zero order:

+ — Gpoér (39)

P
) ~ A(t) = 1= = 6,2(1+ Q)20 (40)
p
where
¢t = yKp,"h (41)

In addition, the conservation of mass from the non-
perturbed to the perturbed configuration provides the sec-
ond equation:

dm = 4rr? pdr = dnrip,dr, (42)
which becomes, after some straight calculation:
2 09 1 )
(3m)F 2 + 2(3m) " 3or = ——L (43)
om (4mp)?

The differential system formed by (39) and (43) can be
solved by direct integration with the physical assumption
that there is no perturbation at the center of the configu-
ration (0r << 7, at 7, = 0 gives dr|, =g = 0), which is a
zero mass point. The solution of Eq. (43) is, therefore:

dr(m,t) = ———— / dp(p,t)d (44)
(36mpim?)3
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Plugging this solution into Eq. (39), the evolution equa-
tion for the density perturbation writes:

4_62(5p 4 laép
m?3 3 — =

om? gm om

_ 1 335 19|, /8xGp, 85 p N
= m [ aﬁp + 85/ Tpa_tp +247er0()p] (45)

As expected, Eq. (45) is linear but with a partial differen-
tiation with respect to the independant variables m and
t. The eigenmodes may be found by the technique of sep-
aration of variables. Then, the general solution will be the
superposition of all modes with the constraint that the
boundary conditions must be satisfied.

3.2. Density eigenmodes

Introducing the separation of variables for dp(m,t) under
the form:

dp =0T (t)6R(m) (46)
the equation for the mass dependence becomes:

d’6R  2d6R 9

where the independant variable, [, is given by:

1 =m'/3. (48)

In Eq. (47), we have decided to write the separation con-
stant as en? with n; > 0 which has the dimension [M]~1/3.
The parameter € = +1 has been introduced for choosing
the sign. From 5y, let us introduce, now, the wave number,
k, labelling each density eigenmode, and a dimensionless
number, lets say Ni, which will help to separate the vari-
ous stability regimes:

ko= (36m)% 6,k (49)
ke,

N, = °. (50)
2]

The quantity n is equivalent to a “massic pulsation” since
we have:

(51)
On the other hand, it comes from Eq. (45) that the time
differential equation, for v # 4/3, is:

d?*sS désS
2 2 2 _

3 —|—z¥—(6z +n%)dS =0
where the new variable, z, and function, §5(z), are given

by:

3pems = kr,.

(52)

CONL(1+ Q)
: M (53)
ST(t) = N, ™ (14 Q1) %455(z) (54)
po= %—7 (55)
n= - (56)

6p|

The special case v = 4/3 gives, from Eq. (45), the follow-
ing second order differential equation:

d*6T  13déT 5

— + ———+ (4 —eN;)oT =

with the new independant variable:

Yy = ln(l + Qt) (58)

It turns out that equations (47) and (52) are the so-called
classical and modified Bessel equations according to the
value of €. On the other hand, for v = 4/3, Eq. (57) is
a linear homogeneous differential equation with constant
coefficients. It is therefore readily integrable in terms of
the exponential functions. This separation naturally leads
us to distinguish between the eigenmodes for v = 4/3 from

the ones for v # 4/3 (see Sect. 3.2.2).

3.2.1. Mass dependence of the solution

The requirement of a finite value for the density pertur-
bation at the center of the configuration restricts the so-
lutions of Eq. (47) to be:

sin(3ngm?)

JRE__;(m) : (59)
377km3

SRE_ (m) o M (60)
3ngms

Note that the hyperbolic sine appears in the case ¢ = 1.

3.2.2. Time dependence of the solution

Case v = 4/3. The roots, s (k), of the characteristic
equation associated with Eq. (57) are:

1LV

Y= 61
St 6 B (61)
where the discriminant is:
A = 254 36eN; _ 2507 + ?4ek2502 . (62)
9 907
Then, for the hyperbolic modes (g = 1), it becomes:
STE (1) = Bi(1 + Q1) TF) 4y (1 4 Q1) T ®) (63)

where f; and 7 are two arbitrary real constants and
where the superscript sign in the exponents is just the
sign of the parameter ¢.
The trigonometric modes (with e = —1) introduce roots
with imaginary part provided Ny < 5/6, ie., k <
\/25/24 Q;/é,. We have, therefore, two kinds of solution:
k<[22
24 ¢,

= 6TF(t) = Br(1+Qt)*+H) 4

+ 6 (1 + Qt)*-*) (64)
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25Q
k __
~\ 21 to

= 6T*(t) = ap(1 4+ Q)™ % x

/1AL | In(1 + Qt)

2
where «; 1s an arbitrary real constant and where the unim-
portant phase in the cosine have been dropped. Let us
notice the transition at the same value of the wave num-

ber than in the eulerian self-similar case, kirqpns, which
according to Eq. (26), is given by:

X CO8

(65)

25 Q
ktrans: _5 J

24 ¢,

(66)

It must be noted that, now, the transition wave number is
no longer defined in a rescaled space, but it applies directly
in the physical one.

Case v # 4/3. From the inversion of the independent
variables (z and t in Eq. (53)) and the dependent ones
(0S and 67 in Eq. (54)), it turns out that for all £ and for
¢ = 1, we have:

STE(t) = (14+ Q)™ % x

X |:Olk:ln (7N’°(1+m)”) + B Ky, (7N’°(1+m)”)}

Tl Tl (67)

where I, and K, are respectively, the modified Bessel
functions of first and second kind of order n.
The other case is ¢ = —1, and we get:

STH(t) = (1 + Q)™ % x

X [akJn (7N"(1+m)u) + Bk Yn (*N"(H'm)”)} .

Tl Tl (68)

The functions J, and Y, are respectively the first and
second, classical Bessel functions.

3.3. Stability of eigenmodes

From the analytical expressions of the eigenmodes, it is
possible to derive their asymptotic behaviour. In the case
where Q > 0 (expanding background), the time elapses
from¢ = 0 to ¢t — 400. On the other hand, in a collapsing
background (€2 < 0), the initial time is again ¢t = 0, while
the final one is defined when the singularity at r, = 0
arises, i.e., t — —1/Q.

3.3.1. Stability of the eigenmodes for v = 4/3

According to Eq. (64) and Eq. (65), the asymptotic time
behaviour of the perturbation is given by the value of the
limit of (1 4+ Q)¢ where the exponent ¢ is either s§ or
—13/6, according to the studied case. This value depends
upon the sign of ¢ and Q.

Now, the relevant quantity is the density contrast §p/p,.
Keeping in mind the square contained into Eq. (6), the
asymptotic variations of the hyperbolic modes (¢ = 1)

are readily obtained. Since from Eq. (61), we have the
inegality si(k) > st (k), it is clear that in equation (63)
the asymptotic leading behaviour for a collapse (resp. for
an expansion) is given by the variation of the second term
(resp. the first term) of the right hand side of Eq. (63). A
trivial calculation provides:

ST"

Q<0 = =« lim (14 Q)20+ = (69)
Po to—3%
STE

Q>0 = = « lim () +®)+? = (70)

Po t— 00

As a consequence, all hyperbolic modes are unstable for
any value of the wave number.

The behaviour of trigonometric modes (¢ = —1) intro-
duces the Jeans wave number through the exponant sign,
like in the eulerian derivation. A transition beetween os-
cillating and non-oscillating modes is also obtained for the
“pivot” value, kirans, given by Eq. (66). For the implosions
(€ < 0), it becomes:

6T]j : s_(k)+2

k < kirans = o lim (14 Q¢)°- = 0 (71)
Po t—>—é
5Tk In(1+4 Qt

k> ktrans = — x lim —COS ( n( + T )) =0 (72)
Po to—% (1 + Qt)E

and for the explosion (Q > 0):

§T* -

0<k<ky = — o lim () +®*2 = (73)
Po t—o00
oTE sT(R)42 _ .

ky <k <kirans = o lim (Qf)°+ =0 (74)

Po t—o00
5T In(Qt

k> kans = = o lim <26 o g5
Po t— oo (Qt)g

where kj is the Jeans wave number given by:

2 (76)

o

ky=

Similarly to k¢ygns, the wave number k; is now significant
in the physical space. Here, again, we have kept the leading
order term in §7% (t). The trigonometric modes are found
to be unstable only for £ < k; in a expanding background
and for all £ in a collapsing one. This wave number is
identical to k.r;¢ defined in Sect. 2.2. We fit closely, there-
fore, with the self-similar approach. However, an oscillat-
ing phase occurs before the final divergence for & > kirans

for collapses. For expansions, an oscillating phase arises
for the stable case too (see Eq. (75)).

3.3.2. Stability of eigenmodes with v # 4/3

We use the same method as in the previous section. How-
ever the eigenmodes are now expressed in terms of the
Bessel functions. It is, therefore, necessary to know their
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asymptotic form when their argument goes to zero or to
infinity. We have (Abramowitz & Stegun 1972):

Jn(z) ~ r(njj) (%)n
N Va(e) ~ =2 (2)" -
-0 = L(z) ~ Fn1+1) <§>n (77)
Kn(z) ~ an (%)n
and:
Talw) ~ \/Zcos (e - 2F - %)
r o o ) Yale) ~ /i sin(e -5 - 5) (78)
In(@) ~ /2 exp (@)

Kn(z) ~ /35 exp(—2).

Moreover, in equations (67) and (68), the exponent p,
e., the quantity (y — 4/3) appears and, consequently,

the asymptotic behaviour will be dependent on whether

y<4/3ory>4/3.

Hyperbolic modes (¢ = 1). From equations (67), (77) and
(78), the explosion case (£2 > 0) behaves according to:

4 §TY Qt)s—
v< s = —t o lim exp(s/z’w (79)
3 Po t—o0 (Qt) =
4 oTh )
V>3 = > x tl_l}Ig)(Qt)f" =0 (80)
and for < 0 (implosions), we have:
4 (5Tk
<o = o« lim (14 Q)7 =0 (81)
3 Po ts—%
4 T 1+ Qt)s7
v > 2 Tt ) L (82)
3 Po  tm—d (14 Q)7

We conclude that all hyperbolic modes are unstable for
any values of both the wave number k£ and the polytropic
exponent 7. It is important to notice the exponential rise
of the perturbation in equations (79) and (82). Moreover,
it is quite surprising to see that expansions and collapses
behave exactly in the same way for v < 4/3 and v >
4/3, respectively. The dependence upon the value of 7 is
very sensitive and 1t is interesting that, in addition to the
“critical value” v = 4/3, the difference v —5/3 arises quite
naturally. This was not expected from the beginning of the
study. On the other hand, we see that for v > 4/3 (resp.
v < 4/3), the leading time evolution of the instability for
explosions (resp. implosions) does not depend any more
upon the value of 5.

Trigonometric modes (¢ = —1). In the same way, from
the asymptotic form of the classical Bessel functions
(Abramovitz & Stegun 1972), we have in the explosive

case (2 > 0):
4 (STk y¥=5/3 4
- > i) = 3
v < 3 = o x tlgg)(Qt) cos [(Qt) } 0 (83)
4 §T* . 2 .
v>3 = > o tllglo(Qt) 5 = oo0. (84)
and for implosions (€ < 0):
4 §T*
< = o« lim (14+Qt)7 ! =0 (85)
3 Po ts—%
4 5 ST cos [(1 + Qt)%_q
—<v< - = —x lim s = oo (86)
3 3 Po t=—%  (14Qt) >
5 ST* cos [(1 + Qt)%_q
v>- > — x lim i = 0. (87)
3 Po t=—d  (14Qt) >

It turns out that, for an expanding background, all modes
with polytropic exponent v < 4/3 are stable. This pro-
perty is valid for any value of the wave number k. For the
collapsing case, only the modes with ¥ > 5/3 vanish. In
particular, and in the frame of this simple model, the core
of a supernova, which can be described by a polytrope
with v ~ 2, is stable during the implosion regarding the
evolution of density perturbations.

On the other hand, from Eq. (77) and Eq. (78), the bessel
function of the second kind, Y,,, behaves near the origin,
like a power divergent function, whereas it is oscillating
for arguments greater than the first zero. It is, therefore,
possible that the initial value of the argument z be greater
than the first zero of Y,,. In addition, if z decreases with
time, we may have transient oscillating modes.

Let z2 be the first zero of Y,. From equation (53), the
argument z(0) of Y, at ¢ = 0 is:

N, k k CAO

2(0) = 5 = Vo—rte
O =T =V a5

(88)
Consequently, for a given «, the value of this argument can
be greater than z7 if the wave number is large enough, and
satisfies:

|4 — 39|
V6

In this derivation, we have used equation (76). At time ¢,
the argument of Y, is written from equation (53):

z(t) =

and provided the condition Q(y — 4/3) > 0 is satisfied,
the variable z will decrease to zero as the time will elapse.
This is the proof of our claim that, if z(0) > z2, the first
zero will be crossed over in that case. The consequence
for the evolution is that the expanding (resp. collapsing)
configuration will oscillate for v > 4/3 (resp. v < 4/3)
before the final divergence at ¢ — oo (resp. t = —1/Q).
The amplitude of such oscillating modes increases with

k>

Zrolkj = ]CJ’,Y. (89)

2(0)(1 + Qt)5 ™ (90)
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time and as soon as z < z2, the mode grows as a power
of time according to Eq. (84) and Eq. (85). Note that this
behaviour is observed only for eigenmodes with & > k.
The other ones grow immediatly as a power of time. This
is also a result found by Bouquet (1999) and he calls it the
“dynamic Jeans criterion”. In fact, this is just a change in
the behaviour, but it might lead to a true criterion in an
improved model. Thus, we have:

dT* I

k<kjy = — oo no oscillation (91)
Po
§T* . I

k>ksy = — oo transient oscillations (92)
Po

3.4. Perturbations in a finite medium and influence of
boundary conditions

Each eigenmode, of wave number &, can be written as (46):

50k (m, 1) = SRE(m)STE (1). (93)

Moreover, we have to distinguish between the two cases
v = 4/3 and v # 4/3. The evolution of the radius, R, of
a configuration with total mass, M, is given by Eq. (5)
and the special form of the density, Eq. (6), means that
the mass is preserved during the evolution. Considering
that the configuration is embedded into the interstellar
medium, we consider that the pressure remains constant
at the surface » = R(t). The equation of state (1) and
the continuity of the pressure through the surface make
the density perturbation zero at » = R(t). Thus, we must
have dp(M,t) = 0 at all times. Since each eigenmode has
its own time variation, this condition should be applied
to each of them. Equations (59) and (60) provide respec-
tively, for all k:

sin(kf:i)

Spf__ (M, t)=0 = =0 94

Pe= 1( ) iR ( )
inh(k R

Sk (1,0 =0 = BN (95)

where R is the initial radius of the configuration. The
second condition leads to & = 0, and, thus, all hyper-
bolic modes are zero. The first one (trigonometric modes,
¢ = —1) gives a quantification for the values of the wave
number k:

1
b T _ Q2 * ng
TR T\3G) M3
As we can see in this equation, the lagrangian representa-
tion with (R,?) is more useful than the (M,t) one. How-
ever, both of them are strictly equivalent and the con-
nection between the (7,,t) and the (m,t) coordinates is
obtained from the conservation of mass:
o 1 o 1 0
om

with ¢ € N*. (96)

(97)

Amr3p, dr,  4nr,3p, Oy

The most general expression for the density perturbation
is a discrete sum over the eigenmodes satisfaying Eq. (96):

Zaps——l r‘?it

(98)

To:

3.4.1. Case v # 4/3.
Plugging Eq. (96) into Eq. (68) and using Eq. (46) the

density perturbation is, therefore:

Sp(ro,t) = (1 +Qt)~ % E sinlkero)

g=1 kq To

o (SR 207 (S5

where constant factors and integration constants have
been absorbed in the coefficients a; and 4. The orthonor-
malization of trigonometric functions allow us to find their
expressions (Abramovitz & Stegun 1972). For the sake of
simplicity, let us introduce the quantities:

(99)

2R
L = / dp(7s, 0)7, sin(ky7,)dr, (100)
0
2R
. ddp , . .. JENA
r = / E(T’O,O)To sin(k,7,)dr, (101)
0
k 60 ! dJn(,L)
JE = J, JE = c;) 102
(pr) =202 s (102)
kyc, rdY,
YP =Y, < rC ) N @ . (103)
|,LLQ| dz T=Taa]
After easy but rather long calculations, we obtain:
(a9 Y72 13 69
el - ("7 vy - ?5—) 1
a, = (104)
R(Jp YP —JEYP )
L0122 — (kg — 221220
g =0 (105)
R(JEYY_ | —JP_ VP
3.4.2. Case v = 4/3.

The discretization of wave numbers obeys Eq. (96). How-
ever, because of the critical value, kirqns (see Eq. (64) to
Eq. (66)), of the wave number, k, we are obliged to sepa-
rate the sum in two parts. With pirans € N defined as:

519 &

rans = Int 1
Pt n (6 s R> (106)
the perturbation is expressed as:

Ptrans—1
~ sin(kqr,)

Sp(7p,t) = Tl 18 (14 Qi)+ (B

= 3 TR [Ba(1 42ty 0 4

b1+ 0000 i sin(karo) | | op-%

4 kg7,

4=Ptrans
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—Af, In (14 Q1)
2

X (rg COS (107)
As in the case v # 4/3, the initial conditions, §p(7,, 0) and
dp(7,,0), completely define the parameters a,, 8, and ~,.
From the orthonormalization conditions, it comes:

ap = ngg (108)
Qiky (2 _
By = 2 (1 =52 (k) 17) (109)
A;p
Qrk o
= L (=15 = s3(kp)12) (110)
k

4. Conclusion

In this paper, we have studied the dynamic stability of a
homogeneous collapsing or expanding spherical polytropic
configuration. In opposition to the usual studies performed
up to now, we have used the lagrangian formalism instead
of the eulerian one. It turns out that the polytrope must
be split in the two cases ¥y = 4/3 and v # 4/3. This
is not really surprising because the v = 4/3-polytrope
is highly self-similar: dv/0t < vdv/Or « (1/p)0p/0r
g < (1 4+Qt)=*3 (Blottiau et al. 1988). However the lan-
grangian approach makes the study more difficult than
the eulerian one because of the lack of dispersion rela-
tion. Nevertheless, we have been able to come to a conclu-
sion about the gravitational stability and, unexpectedly, it
comes out that the polytrope v = 5/3 also plays a special
role.

Let us come back to the particular v = 4/3—polytrope in
more detail. In spite of the decelerated (or accelerated)
motion of the expanding background, part of the stability
criterion is still given by the Jeans’ result derived for a
static configuration (Jeans 1961). We recover the classi-
cal threshold for the wave number, k; = QJ/éo, but, in
addition, a second pivot value, kirans = \/25/24 kj, sep-
arates oscillating solutions (k > kirans) from monotonic
ones (k < kirans), and both of them are stable provided
k > kj. It is really amazing that the macroscopic expand-
ing motion of the background does not alter the Jeans’
criterion. In our opinion, this is due to the beautiful pro-
perty of “sharp” self-similarity. Collapses behave in a quite
different way: although, the pivot value, kirqns, plays ex-
actly the same role as in expansions, we find that any
disturbance is instable.

Now, let us examine the case v # 4/3. As written above,
the lagrangian treatment does not lead to a dispersion
relation. The condition derived by Buff & Gerola (1979)
does not agree with our results. According to us, the time
variation of the coefficients arising in their linearized dis-
persion equation has not been taken into account. In op-
position to the case v = 4/3, we find that the stability

does not depend any longer on the value of the wave num-
ber (excepted for the apparition of transcient oscillating
phases). The critical parameter for the stability is just
the value of the polytropic exponent 7. For expansions,
v = 4/3 is a threshold and stability (resp. unstability) is
obtained for v < 4/3 (resp. v > 4/3). Collapses are more
complicated since two critical values arise, i.e., vy = 4/3
and v = 5/3. For v < 5/3, unstable collapse occurs with
monotonic (resp. oscillating) behaviour for v < 4/3 (resp.
for ¥ > 4/3). On the other hand, for v > 5/3, collapses
are always stable. To our knowledge, this is the first time
that the ¥ = 5/3 has been derived as a threshold for grav-
itational stability. The case v = 4/3 is not surprising, it
corresponds to a perfect gas of photons plus matter and
it is very relevant in astrophysics (Chandrasekhar 1967).
The value ¥ = 5/3 corresponds to the monoatomic per-
fect gas but, up to now, we have not been able to associate
this value with a specially important phenomena in astro-
physics.

Finally, it would be very interesting to check numerically
these theoritical predictions. This will be the next step in
further studies.
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