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Modeling and Monitoring of Hybrid Dynamic
Systems with Feed-Forward Neural Networks:
application to two tanks hydraulic system

N. Messdi, P. Thomas D. Lefebvré, B. Riera and A. EImoudi

Abstract: Within the model based diagnosis communit, Fault
Detection and Isolation (FDI) techniques for hybrid systems
require the ability to discern between all the modg and to identify
at each time the current mode. Unfortunately, thesenecessary
conditions are very restrictive because, on one hdnonly few
partial results have been reported on the notion ofliscernability
between the modes and, on the other hand, all theveching
sequences must be systematically investigated. Teeocome these
drawbacks, this paper proposes to use Feed-forwardNeural
Networks in order to build average models of HybridSystem. This
alternative can be particularly interesting eitherwhen we can not
describe all the system's modes by Ordinary Diffemtial
Equations (ODESs) or when we can not investigate athe switching
sequences. Once the Neural Networks models are oioted they
are used to generate residuals and to achieve FDIithout any need
to discern or to estimate the current mode.

Index Terms: Fault detection, Neural Network, Hybrid
Dynamic Systems, Identification
I. INTRODUCTION

Over the past years, the study of dynamic systemsédtused
on continuous-time systems and Discrete Event 8ys(BES).
Interest has emerged lately in Hybrid Dynamic SystéHDS),
which combines continuous and DES dynamics [5,31].

Generally, Hybrid Dynamic Systems can be represeoyea
sequence of continuous behaviours, which reprekennodes
of the system. Therefore, when a discrete eventredtcauses
a switching from the current mode to another one/g@ls as a
jump in the values of the state variables and/cinange of the
state dimensions [31].

Recently, many efforts are being spent on the ggighof
control laws that improve the performances and autee the
stability of HDS. However, when faults occur thesetrol laws
become inefficient and Fault Detection and Isofati@&DI)
techniques [11, 26] must be implemented to safehubhe
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specified performances and to avoid the eventuatiskivn or
damage. In this context, the existing works showt,ttrDI

techniques for hybrid systems require at first #iglity to

identify, at each time, the current mode [14]. Otieefarmer is
identified, a continuous state estimator, such akniin filter,
could be used to track the continuous state [1hjokiunately,
the identification of the current mode is a verychtask that
implicates that all the modes are known and disbkrand that
involves the investigation of all the switching seqces.

To overcome these drawbacks, this paper proposeseo
Feed-forward Neural Networks (NN) in order to bualderage
models of the considered Hybrid Dynamic SystemschSu
models will track all the modes of the HDS, withaualy need to
identify the current one or to discern between theitmer there
is non need to investigate systematically all theétching
sequences, which can be very time consuming. kindll
permits to decrease the detection time of theda@dtause the
residuals are generated in using just some NNsadsf all the
modes of the HDS.

The remainder of this paper is organized as foll@&estion 2
presents briefly the modeling approaches of HD®elkas the
proposed NN modeling approach. The existing FDrepghes
for HDS and a classification of the faults that nheyoccurred
are presented in section 3. The modeling and mdmitoesults
of an academic example are presented in sectionodder to
show the performances and the drawbacks of theopsub
approach. A summary and some future works concthde
paper.

Il. MODELLING OF HYBRID SYSTEMS

A. Overview of Hybrid System models
A HDS is defined as [5k Q, X,Y,F,G,0,0, >
Where
Q={g :iOM,M ={1...m}} is the set of discrete states,
whereM represents the possible modes of the systemmaisd
the number of reachable modes.

X=UX;,X; 00O" is the state space of continues
iOM
variables, whereX; is the state-subspace of mode
andx; (t) O X; is the continues state vector at time

Y = JY,,Y; O O¥is the output space, whe¥edenotes the
ioM



subspace associated with madend y; (t) O, is the measured interesting either when we can not write all theE3br when
output vector at time we have not any physical knowledge about the paeamef the

F ={f,, f,....f, }is a finite set of functions such that eacHNodels. It can also be used in a modular way ambgeed with

rphysu:al models, when it is possible to decompbsegiobal
system into several smaller parts.
x O OX;. In the next sections, we will consider feed-forwareliral

G ={0;.9,...0,} is a finite set of functions such that eactnetworks (NN) as global parametric models of HD8t Choice
is motivated by the fact that feed-forward neuretiworks can
- extract powerful models from experimental data aitthaving

Usz{ag}:Qxx - QxX is an application that defines atg carry out any assumptions on the general fornthese
spontaneous switching from the made the modg. models [7].However, to the best of our knowledg®share
o, ={02} :QxE - Qx X is an application that defines aonly used to approximate continu_ous systems and IRE&ey

have never been used to approximate HDS.

Hence, this work intends to show that the behagiofiHDS
can be predicated with feed-forward neural networKsis
o X alternative is interesting for complex real worn@gtems, which
switching. Hence, - the equy attempt' to provide an@ are generally equipped with sensors that can givethe
framework for the modelling of hybrid phenomena tlie experimental data.

;jlff_er(intl_al balg%néata dWhICh.d r?Erej_ent tthe _contqwou In comparing with the existing works, this appro&ets the
rajectories by S and consider the discretegmpiecewise potential advantage to avoid the identificationgpagters of all

_constants [27]. This model was generalized _by thining the modes as well as the switching sequences. ©rottrer
jumps of the state, abrupt changes as well asalanputs [4]. hand, the proposed technique has the originalitgaimbine

¢ Altzrnatl\f[e dezcrllptl_?ns. Ofl Hyt()jrlclj S);st:]e.mslacﬂasn k?“m(: continuous behaviours and discrete events in time séructure.
rom discrete modeis. 1 ypical mocels ol this cassautomata -, taer  at each step timKT, the measured output vector

[23]'and Petr_| Nets [22]. Unforf[unately, PN andqmata have y; (KT)OY; as well asog and g, are presented to the NN,
the inconvenience to refer to time only by orderting events. ) ) i . )
Hence, these models were extended by the addifitimers Which will predicate the continuous outputs atrileat step time
that define the durations of the continuous behasitimed PN (i-€., the spontaneous and the forced switchingsapgposed
[34] as well as timed automata has been definedififimed Observable and they are equal to 1 when the des@eent
PN the time is taken into account by means of thmat happen). Finally, let us note that these glpbal elodre very
associated either with places or with transitiodd] [and in useful for the control of some HDS, particularlypse which

timed automata a set of clocks running at the saesis added €xhibit periodical behaviours [3].
[1]. In this context, the modelling problem of HDS by $IWill

Hybrid automata can be viewed as a generalizatidimed be solved by selecting the optimal NN structure landhoosing
automata. This model includes continuous dynamiod athe regressors vector (i.e., the inputs of the NN).
discrete transitions which may depend on the eissiunf the 10 deal with the first problem, different approashieat find
continuous behaviours. In a hybrid automaton a cheit automatically the appropriate network architecthee been
continuous system is unfolded into different diserecations Proposed. One consists in training an oversizedorét and
that correspond to the possible discrete modesoAsimed Fémoving the parts that are not needed. The metisidg this
automata, the conditions for transitions of thewite state can @pproach are called pruning algorithms [25]. Théeot
be expressed by logical conditions and events fethto the @PProach, which corresponds to constructive algost
arcs or by invariants. Unfortunately, writing thet of all attempts to start with a small network and thentadden units
differential equations of a real-world hybrid systis very time  until a satisfactory solution is found [15].
consuming. As a consequence, hybrid automata areraty Concerning the selection of regressors, the balasfce
well appropriate to model complex systems. FinaHyprid discussions recommends to start with the NNARX ctme
Petri Nets (HPNs) are a tool which can treat integeiables 9iven by [19]:
simultaneously with real and symbolic variables][1Bhey y(k/8) = fly(k =1),.....y(k =ny),

function f;,iOM defines the trajectory of the state vecto

function g;,i O M defines the output vector of the mdde

forced switching from the moddo the modg.
One natural approach to model HDS [5] is to extémel
existing models of continuous systems by addingrdis

. - . (1)
have the advantage to combine intuitive graphical Uk -ny),....U(k=-n, —n, +1)]
representation and powerful analytic expressionsweéver, where:
they present the same drawback as hybrid automata. 6 is the parameters vector
B. Description of the NN modelling approach y(k) and y(k) are respectively the estimated and the real

A possible alternative approach, that permits tercome outputs of the system at tirk@,
some drawbacks of the existing HDS models, congists U(K) are the inputs of the system at tikie
consider the plan as a black-box model and try apture N,, Ny andny are respectively the orders of the system and the
globally its behaviour's. This solution can be pafarly delay.



Since one starts with the preceding structurecdimstruction or as forbidden event sequences [18]. Both appesachn be
of the best model becomes a problem of estimatoth the used in the context of diagnosis under partial olagmon. Fault
ordersn,, n, and the dealyy,. A methodology that permits the diagnosis under state measurement and events tstimes
estimation of the delay consists to [19]: first formulated with automata [26] and then exithdo PN

e Choose a sufficiently high identical values fgrand [29]. The considered PN are live and safe. A labaksociated
Ny, to each transition in order to distinguish “normbBhaviour

» Estimate the parameters of the model for variousom faulty ones. Starting from an initial normal stathe
values ofny, system may evolve according to a “normal” behavimufiring

* Select the model corresponding to both the minimutmormal” transitions or according to a faulty betwawr by firing
of the sum quadratic error and the bests crogsleast one “fault” transition. The diagnoser det@nd isolates
correlation functions. a failure transition in a given firing sequencenirmeasurement

Once the delays are fixed, the model orders aerméted by
analyzing the auto correlation functions and stogyboth the
sum quadratic erroiSQB and the final prediction erroFPE)

of the successive observable markings generatduebsystem.
Faults diagnosis under events measurement ancestatetion
was also considered with automata [30] and Petsi[i&]. The

for various combinations af, n,. PN state estimation consists to estimate the PNintabased
Let us note that the obtained NNs do not estimiittha on complete or partial observation of the everftshe initial
modes of the HDS but the average continuous outputfarking is known, some projections of the incidenatrix
Furthermore, the parameters of these NN dependhen fyer the set of transitions to be measured ansethef markings
sequence of excitationo; and ;) and consequently on the to be estimated can be used [17]. When the initiatking is
sequence of discrete states visited by the systtamce, in unknown [12], state estimators have been propdsegtovide
order to obtain NNs, which can be considered adsajlmodels a lower bound of the actual marking. Asynchronolagbsis

of the HDS, it is necessary to use data sets #mesent all
switching between the modes.

Ill. DIAGNOSIS OFHYBRID SYSTEMS

by means of hidden state history reconstructiomiabtl from
alarm observations was also investigated [2]. Hpproach
relies on Petri net unfoldings and event structutes are
related via some causality relationships. As a equence,

Several model based methods [11] approaches haae bdiagnosis is performed by a distributed architestiof

investigated for faults detection and isolation HDS.
According to the modelling point of view, these eggrhes can
be divided into two classes that correspond toicoatis time
model and discrete event ones.

In [13], a local linearization has been proposediider to
apply continuous methods like residual generat&imilarly,
local linearization has also been investigated1i@] [before
using the parity space approach. The main drawbéauch
methods is the small size of the domain of validityfact, these
methods are local ones. As a consequence, theypplied only
in a single mode and the residual synthesis angsiaanust be
computed again when the system commutes from o tm
another. The projection of residuals in parity €pean be used
in order to study the discernability between faaltd operating
modes [6]. Similar results have been obtained bingus
observers with finite memory [14]. The main drawbat such
methods is that they result in NP complexity beeatlse
diagnoser must build, at each time, all admisdifaljectories in
order to discern a possible fault occurrence frormeade
commutation. The Mixed Logical Dynamic approach (B)L
has been also investigated in order to improvedihgnosis of
HDS [28]. Some results obtained for identificat@frpiecewise
affine systems could be adapted in order to prowiddine
parameter estimation and fault detection [9]. kmhsmethods,
a huge difficulty remains: cluster the data thautefrom a
mode switching and the ones that result from tleeigence of a
fault.

Based on discrete event models and PN theory,ahigy f
behaviours have been modelled either as forbidtsass[12]

supervisors.

At last, let us mention some works that have ingagtd
hybrid approaches for diagnosis with continuousokesrs and
output quantification [20], [21].

In comparing with the existing works, the propoaggroach
can be considered as a hybrid one because the bidtsta
model the various modes of the HDS combine contisuo
behaviour and discrete events. This approach lesadbantage
to posses a large domain of validity because thes MMI
predicate all the modes of the HDS. In additiois itot difficult
to implement because there is any need to differtenta
possible fault occurrence from a mode commutatitowever,
its huge difficulty remains the obtaining of datdssthat cover
all the modes of the HDS.

IV. APPLICATION EXAMPLE

In order to illustrate and to show the effectivene$ the
proposed approach let us consider the two tanksdistem of
the figure 1. This system is the benchmark of tipec8ic
Action on the diagnosis of hybrid systems (AS193jcl is
supported by the CNR@&nd the GDR MAC3

A. Description of the system

The system consists of two cylindrical tarfRsand R, of
sectionS = 0.0154 Each tank has an input pipe and an output
pipe. The input pipes are respectively built-inntieal pumps

4 Centre National de la Recherche Scientifique
5 Groupe de Recherche "Modélisation, Analyse et Qitadies Systémes
dynamiques"”



P, andP, that are on-off and the output pipes are contidilg are thresolds that are chosen in order to avaigsfie draining
two on-off electro valve¥; andV,. Moreover, the tanks are or the overflow of the tanks.

connected to each other with two pip€s,andC,, which are
respectively located at the bottom of the tanks and.5 m
height. These pipes are also controlled by the forlectro

valves V; and V,. Finally, the system is equipped with two

analogue sensors that measure the levels of fldarflthe tanks.

P1
C P2

“ e

L2

M2

Vs

Rz

11 §0.5m m2

v A

Figure 1: the two tanks system
For the purpose of simulation let us consider tted
dynamics of the pumps are very fast. Hence, wescg@pose
that the input flows are constants when the pumesoa and

hi>M 1 M1>hi>my m>hy

ha(kK-1)>M; P.()=0 P1(K=Py(k-1) Pk =0
Vi(K)=1 Vi(K)=Vi(k-1) Vi(K) =0

Vs(k)=1 Va(K)=1 Va(k) = 1

VaK) = 1 Va(K)=1 Va(k) =1

Mz>hy(k-1)>m, Py(k)=1 P.(K=Py(k-1) | Py(K=Py(k-1)

Vi(K)=Vik-1) | Vi(K=Vi(k-1) Vy(K)=1

Vs(K)=0 Va(K)=Va(k-1) Va(K)=1

Va(K)=0 Va(K)=Va(k-1) Va(K)=1

mp>hy(k-1) P1(K)=0 Pi(k)=P1(k-1) Pi(K)=1
Vi(K)=0 Va(K)=Vy(k-1) Vy(K)=0

Vs (=1 V3(k)=1 V3(K)=1

V(=1 V4(k)=1 Va(K)=1

Table 1: The control Algorithm

B. The NN modeling results

The precedent system, which can have as well ascties,
has been modelled by two feed-forward neural netsvor
according to the methodology presented in sectidba2h NN
corresponds to the nonlinear NNARX structure gibgnthe
equation 1 and it predicts the level of the ligimc tank.

In order to obtain the structures of the two black-average
models, the identification and the validation o tNNs were
carried out, with two different data sets contagnéach oné\ =
5000 . The latter were obtained by simulating thkdviours of
the system, in using equations 2 to 7 and by cerisig that the

they are null when the pumps are off. Finallyuesuppose that sampling period i\t =1sand by considering that the initial
the pumpP; and the electro valvé, are a perturbation inputs condition of the identification and the validatidata set are

that can not be controlled.
According to the Torricelli model, the considergdtem can
be described by the following equations:

Qp1 =D.R;, R 0{og} 2

Qp, =D.P, P, 0{og}

Q = Ay2ghVy, v, 0{og}

Q, = AJ2gh,V,, V,0{o1 (5)

Q3 = A\/ESIQr(hl - h2)'V |h1 - h2 3 (6)
v, 0{o1}

Q, = AJ2.g.sgnfy —hz).\/|suphl 05) —supf, 05)V,, @)

v, 0{og}

where:D is the constant input flow of both the pumps=(D™
m’/Sec), Qpij{12} Is the input flow of the tank Q; j,5}is the

output flow of the tank Qs is the flow in the pip€&€; andQ, is
the flow in the pipeC,.

Concerning the control laws, let us consider thatelectro
valves V4, V; andV, as well as the pump, are governed
according to the algorithm depicted in the tabl§l2].This
algorithm, which does not make the objective ot thaper,
guarantee that the levels of the fluids in the sdtkandR, are
respectively given by the equations:

m <h <My (8)
m, <h, <M, 9
where :M; =0.6 m; M, =0.75 m; m; = 0.4 mandm, = 0.2m

respectively hy =h; =0 and h, =h; =1. Finally, Gaussian
noises of mearm=0 and variancer =1%.h

added to the data sets.
Hence, after several simulations, carried out kyndn, and

max = 001 were

(3) ny to5 delays and varying, from 1 to 5, we have opted for two

21 input neurons that receive the last three outpfits
the sensors as well as last three state of thesalv

» 8 hidden neurons that calculate the weighted sum of

their inputs, then transform it by means of a higpéc
tangent activation functions,

* 1outputs neuron using a linear activation functibis
out permit to predicate the level of the liquidtire
considered tank.

P, and \, were opened and closed according to two SBPA of

length: 1 ;,0J[1030] andl,, O[3050]

On the other hand, the network’s parameters wenaated
with 20 different initializations and000 iterations at the
maximum, by means of Levenberg-Marquardt algorithhen,
starting from a structure using.€ n, +2ny) inputs and 7 hidden
neurons, the Optimal Brain Surgeon (OBS) algoritheas used
to remove the parts that are not needed.

The figures (1-a), (1-b), (1-c), (2-a), (2-b) ardc) present,
respectively, the identification and the validati@sults of the
selected models. The analysis of these curves statshe
predicted levels closely matches the data and atekcthat the
sum quadratic errors correspond to the added n@isethe
other hand, the statistical tests express thaetiduals and the



inputs are independent and that the auto correldtinctions o Distribution_of the trainingresidues
belong to the confidence interval. In addition, iigograms of
the residues distributions indicate that the eradrsiodelling,
in the absence of faults, can be regarded as & whise.

q
04 003 002 -001 O 001 002 003 O
Distribution of the validation residuals

Training

AW NWA
-8.05 -0.04 -0.03 -0.02 -0.01 0 0.01 002 0.03 0.04

o2 Figure 2-c: distribution of the residues for tffé2N

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Trainingresidual C. The NN model-based fault detection results

100

ML A In this section we will consider simple fault thean affect
‘HJMJMHHMMUMI\\“mmm\MWHMIJ\‘u\.H‘LHMmemm MMM either the sensor or the actuator
R T T T T 1) Detection of the sensor faults
Figure 1-a: training results of the liquid levelRa During this simulation let us consider that the tsensors
. Validation provide biased values and that initial conditionse:a
“l hy =h, = 05. Thus, the NNs obtained in the previous section
NP A/ W] were used in order to simulate the system behavibe
residuals, resulting from the comparison of the tsemsors

_ Validatio residyals outputs with the predictions of the two NN, aretlesploited in

bt m " m i order to detect the simulated faults. Finally,ustnote that the
A biases were injected in different mode of the HD8 that the

1 \ faults of the 1st sensor are detected by usingNNethat
oo o mm o e e predicate h1 (NN and the faults of the 2nd sensor are detected
by using the NN that predicate h2 (BN
Distribytion ofthe {raining residual Tables 2 and 3 summarize the results concerning the
detection of the injected faults. The letters cgpond to biases
with amplitude which varies fron®.50 to 30. The analysis of
B, these results which correspond to a probabilifialsie alarm P=
Distribution ofthevalidationresiduals 1%, indicates that detection is independent ofrtimenent of
occurrence of the faults and that the detectiore tvaries

between 1sec and 3sec.

)
1

-0.05

Figure 1-b: validation results of the liquid levelR,

200

100

400

m: Amplitude of the bias
Figure 1-c: distribution of the residues for tHeNIN 050 0.8 iy £
o Instant of the 1000 ND 1sec 1sec 2sec
s Validation default 2000 3sec 2sec 2sec 2sec
. 3000 2sec 2sec 2sec 2sec
ol Ll A AL A Table 2: Detection of thesensor faults
PO W R Y Amplitude of the bias
o 500 1000 1500 2000 ) 250? 3000 .3500 4000 4500 5000 O . &- O . &- 1 . &- 30-
008 ——r— Validafion fesiduals Instant of the | 1000 2sec 2sec 1sec 1sec
‘ (Ll GE QU default 2000 ND 1sec 1sec 1sec
Ll il 3000 1lsec 1lsec 2sec 2sec
T T T 1 1 1 1 | Table 3: Detection of the'2sensor faults
.' 0 500 1000 .15<.)o 2000 2500 3000 3500 A.ooo 14500 5000 2) DeteCtIOﬂ Of the actuator faults
Figure 2-a: training results of the liquid levelFta During this simulations let us consider that one tioé
o Training actuators (B Vi, V3, Vy) is blocked opened or closed either
ﬁ ﬁmﬂ% NAV ?“T;/\ Wmﬁfh}gﬁfﬁﬂ* from the instant;t= 300 sec or from the instaptt500 sec (i.e.,
#_"’HU sy R VL the defaults affect two different modes).
Tables 4 to 7 present the detection results oldaimeising

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

both the NN and by considering a probability osé&blarnP=

1%. The analysis of these results indicates thadéfaults ofP;

il gl b were detected only by the Nidnd that the defaults b were
! ! ! i detected by the two models jointly.

0 0 o 0 I 00 om0 a0 s We can also note that the detection times areivelgthigh

Figure 2-b: validation results of the liquid levielR, and that they depend on the current mode of thiersyat the

Training residuals
7 7

T e o
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moment of the occurrence of the default. Finatlig difficult to
conclude definitively on the detection of the faxdhcerning/,
andV, because of the weak results obtained in tablesl>a

NN P,=0 P.=1
t,=300sec 1=500sec #=300sec 1=500sec
NN, 85sec 100sec 20sec 97sec
NN, ND ND ND ND
Table 4: Detection of the fault of P
NN V=0 V=1
t,=300sec 4=500sec #=300sec 4=500sec
NN; FD FD FD FD
NNz FD 71sec FD 71sec
Table 5: Detection of the fault of;V
NN V3=0 Va=1
t,=300sec 1=500sec #=300sec 1=500sec
NNy 164sec 44sec 164sec 44sec
NN, 376sec 249sec 376sec 249sed
Table 6: Detection of the fault ofsV
NN V,=0 V=1
t,=300sec 1=500sec #=300sec 4=500sec
NN, 59sec FD 59sec FD
NN, FD 69sec FD 69sec

Table 7: Detection of the fault ofsV

Consequently, the FDI indicate that only two defaaln be
isolated (i.e., defaults of which are detected by the two NN
and the defaults of thd®sensor which are detected by )N

(4]

(6]

(71

(8]

(9]

(10]

[11]
[12]

[13]

[14]

[15]

Moreover, the defaults of thé'kensor and the default of thelt6
actuator P can be detected without a possibility of isolation; 7

(both of them are detected by NN

V. CONCLUSIONS

Our contributions were to build average models BiS-and
to show that these models can be used for the D&gof HDS.
The behaviors of HDS were predicted by feed-forwaedral

networks that track all the modes of the systemthadtructure
determination of these neural networks was vievged gystem
identification problem. The performances of thipaach were

shown on a simulation example and the obtainedtsgstovide

strong evidence of the good performance the NNagemodel
Once the Neural Networks models are obtained tlasyk®en
used to generate residuals and to achieve FD withouneed

to discern the modes, to estimate the current mmddo

investigate systematically all the switching seqasn The
application example results shows that the propapedoach is
very useful to detect sensors faults but it isemaiugh well for
the detection of the actuators faults. Our futuerks are to
exploit other information as the occurrence ofdtsems and the

causalities in order to improve the performances tlué
diagnosis results.
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