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Abstract: Within the model based diagnosis community, Fault 
Detection and Isolation (FDI) techniques for hybrid systems 
require the ability to discern between all the modes and to identify 
at each time the current mode. Unfortunately, these necessary 
conditions are very restrictive because, on one hand, only few 
partial results have been reported on the notion of discernability 
between the modes and, on the other hand, all the switching 
sequences must be systematically investigated. To overcome these 
drawbacks, this paper proposes to use Feed-forward Neural 
Networks in order to build average models of Hybrid System. This 
alternative can be particularly interesting either when we can not 
describe all the system's modes by Ordinary Differential 
Equations (ODEs) or when we can not investigate all the switching 
sequences. Once the Neural Networks models are obtained they 
are used to generate residuals and to achieve FDI without any need 
to discern or to estimate the current mode.  
 

Index Terms: Fault detection, Neural Network, Hybrid 
Dynamic Systems, Identification 

I. INTRODUCTION  

Over the past years, the study of dynamic systems has focused 
on continuous-time systems and Discrete Event Systems (DES). 
Interest has emerged lately in Hybrid Dynamic Systems (HDS), 
which combines continuous and DES dynamics [5,31]. 

Generally, Hybrid Dynamic Systems can be represented by a 
sequence of continuous behaviours, which represent the modes 
of the system. Therefore, when a discrete event occurs it causes 
a switching from the current mode to another one as well as a 
jump in the values of the state variables and/or a change of the 
state dimensions [31]. 

Recently, many efforts are being spent on the synthesis of 
control laws that improve the performances and guarantee the 
stability of HDS. However, when faults occur these control laws 
become inefficient and Fault Detection and Isolation (FDI) 
techniques [11, 26] must be implemented to safeguard the 
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specified performances and to avoid the eventual shutdown or 
damage. In this context, the existing works show that, FDI 
techniques for hybrid systems require at first the ability to 
identify, at each time, the current mode [14]. Once the farmer is 
identified, a continuous state estimator, such as Kalman filter, 
could be used to track the continuous state [11]. Unfortunately, 
the identification of the current mode is a very hard task that 
implicates that all the modes are known and discernible and that 
involves the investigation of all the switching sequences. 

To overcome these drawbacks, this paper proposes to use 
Feed-forward Neural Networks (NN) in order to build average 
models of the considered Hybrid Dynamic Systems. Such 
models will track all the modes of the HDS, without any need to 
identify the current one or to discern between them. Either there 
is non need to investigate systematically all the switching 
sequences, which can be very time consuming. Finally, it 
permits to decrease the detection time of the faults because the 
residuals are generated in using just some NNs instead of all the 
modes of the HDS. 

The remainder of this paper is organized as follows. Section 2 
presents briefly the modeling approaches of HDS as well as the 
proposed NN modeling approach. The existing FDI approaches 
for HDS and a classification of the faults that may be occurred 
are presented in section 3. The modeling and monitoring results 
of an academic example are presented in section 4 in order to 
show the performances and the drawbacks of the proposed 
approach. A summary and some future works conclude the 
paper. 

II.  MODELLING OF HYBRID SYSTEMS 

A. Overview of Hybrid System models 

A HDS is defined as [5]: >< csGFYXQ σσ ,,,,,,  

Where 
{ }{ }mMMiqQ i ,...,1,: =∈=  is the set of discrete states, 

where M represents the possible modes of the system and m is 
the number of reachable modes. 

n
i

Mi
i XXX ℜ⊆=

∈
,U is the state space of continues 

variables, where Xi is the state-subspace of mode i 
and ii Xtx ∈)( is the continues state vector at time t. 

k
i

Mi
i YYY ℜ⊆=

∈
,U is the output space, where Yi denotes the 
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subspace associated with mode i and ii Yty ∈)( is the measured 

output vector at time t. 
{ }mfffF ,...,, 21= is a finite set of functions such that each 

function Mif i ∈, defines the trajectory of the state vector 

ii Xtx ∈)( . 

{ }mgggG ,..., 21=  is a finite set of functions such that each 

function Migi ∈, defines the output vector of the mode i. 

{ } XQXQij
ss ×→×= :σσ  is an application that defines a 

spontaneous switching from the mode i to the mode j. 

{ } :ij
c c Q E Q Xσ σ= × → ×  is an application that defines a 

forced switching from the mode i to the mode j. 
One natural approach to model HDS [5] is to extend the 

existing models of continuous systems by adding discrete 
switching. Hence, the early attempt to provide a formal 
framework for the modelling of hybrid phenomena is the 
differential automata which represent the continuous 
trajectories by ODEs and consider the discrete part as piecewise 
constants [27]. This model was generalized by introducing 
jumps of the state, abrupt changes as well as control inputs [4]. 

Alternative descriptions of Hybrid systems can be derived 
from discrete models. Typical models of this class are automata 
[23] and Petri Nets [22]. Unfortunately, PN and automata have 
the inconvenience to refer to time only by ordering the events. 
Hence, these models were extended by the addition of timers 
that define the durations of the continuous behaviours: timed PN 
[34] as well as timed automata has been defined [1]. In timed 
PN the time is taken into account by means of duration 
associated either with places or with transitions [24] and in 
timed automata a set of clocks running at the same rate is added 
[1].  

Hybrid automata can be viewed as a generalization of timed 
automata. This model includes continuous dynamics and 
discrete transitions which may depend on the evolution of the 
continuous behaviours. In a hybrid automaton a switched 
continuous system is unfolded into different discrete locations 
that correspond to the possible discrete modes. As for timed 
automata, the conditions for transitions of the discrete state can 
be expressed by logical conditions and events attached to the 
arcs or by invariants. Unfortunately, writing the set of all 
differential equations of a real-world hybrid system is very time 
consuming. As a consequence, hybrid automata are not very 
well appropriate to model complex systems. Finally, Hybrid 
Petri Nets (HPNs) are a tool which can treat integer variables 
simultaneously with real and symbolic variables [16]. They 
have the advantage to combine intuitive graphical 
representation and powerful analytic expressions. However, 
they present the same drawback as hybrid automata. 

B. Description of the NN modelling approach 

A possible alternative approach, that permits to overcome 
some drawbacks of the existing HDS models, consists to 
consider the plan as a black-box model and try to capture 
globally its behaviour’s. This solution can be particularly 

interesting either when we can not write all the ODEs or when 
we have not any physical knowledge about the parameters of the 
models. It can also be used in a modular way and combined with 
physical models, when it is possible to decompose the global 
system into several smaller parts.  

In the next sections, we will consider feed-forward neural 
networks (NN) as global parametric models of HDS. Our choice 
is motivated by the fact that feed-forward neural networks can 
extract powerful models from experimental data without having 
to carry out any assumptions on the general form of these 
models [7].However, to the best of our knowledge, NNs are 
only used to approximate continuous systems and DES but they 
have never been used to approximate HDS. 

Hence, this work intends to show that the behaviours of HDS 
can be predicated with feed-forward neural networks. This 
alternative is interesting for complex real world systems, which 
are generally equipped with sensors that can give us the 
experimental data. 

In comparing with the existing works, this approach has the 
potential advantage to avoid the identification parameters of all 
the modes as well as the switching sequences. On the other 
hand, the proposed technique has the originality to combine 
continuous behaviours and discrete events in the same structure. 
In fact, at each step time KT, the measured output vector 

iYKTiy ∈)(  as well as sσ  and cσ  are presented to the NNs, 

which will predicate the continuous outputs at the next step time 
(i.e., the spontaneous and the forced switching are supposed 
observable and they are equal to 1 when the discrete event 
happen). Finally, let us note that these global models are very 
useful for the control of some HDS, particularly those which 
exhibit periodical behaviours [3]. 

In this context, the modelling problem of HDS by NNs will 
be solved by selecting the optimal NN structure and by choosing 
the regressors vector (i.e., the inputs of the NN).  

To deal with the first problem, different approaches that find 
automatically the appropriate network architecture have been 
proposed. One consists in training an oversized network and 
removing the parts that are not needed. The methods using this 
approach are called pruning algorithms [25]. The other 
approach, which corresponds to constructive algorithms, 
attempts to start with a small network and then add hidden units 
until a satisfactory solution is found [15].  

Concerning the selection of regressors, the balance of 
discussions recommends to start with the NNARX structure 
given by [19]: 

 
)]1(),....,(

),(),.....,1([)/(ˆ

+−−−
−−=

kbk

a

nnkUnkU                     

nkykyfky θ
               (1) 

where: 
θ  is the parameters vector, 

)(ˆ ky and y(k) are respectively the estimated and the real 

outputs of the system at time kT,  
U(k) are the inputs of the system at time kT,  
na, nb and nk are respectively the orders of the system and the 

delay. 



 

Since one starts with the preceding structure, the construction 
of the best model becomes a problem of estimating both the 
orders na, nb and the dealy nk. A methodology that permits the 
estimation of the delay consists to [19]:  

• Choose a sufficiently high identical values for na and 
nb, 

• Estimate the parameters of the model for various 
values of nk , 

• Select the model corresponding to both the minimum 
of the sum quadratic error and the bests cross 
correlation functions. 

Once the delays are fixed, the model orders are determined by 
analyzing the auto correlation functions and studying both the 
sum quadratic error (SQE) and the final prediction error (FPE) 
for various combinations of na, nb. 

Let us note that the obtained NNs do not estimate all the 
modes of the HDS but the average continuous outputs. 
Furthermore, the parameters of these NN depend on the 
sequence of excitation (sσ  and cσ ) and consequently on the 

sequence of discrete states visited by the system. Hence, in 
order to obtain NNs, which can be considered as global models 
of the HDS, it is necessary to use data sets that represent all 
switching between the modes. 

III.  DIAGNOSIS OF HYBRID SYSTEMS 

Several model based methods [11] approaches have been 
investigated for faults detection and isolation of HDS. 
According to the modelling point of view, these approaches can 
be divided into two classes that correspond to continuous time 
model and discrete event ones. 

In [13], a local linearization has been proposed in order to 
apply continuous methods like residual generation. Similarly, 
local linearization has also been investigated in [10] before 
using the parity space approach. The main drawback of such 
methods is the small size of the domain of validity. In fact, these 
methods are local ones. As a consequence, they are applied only 
in a single mode and the residual synthesis and analysis must be 
computed again when the system commutes from one mode to 
another. The projection of residuals in parity space can be used 
in order to study the discernability between faults and operating 
modes [6]. Similar results have been obtained by using 
observers with finite memory [14]. The main drawback of such 
methods is that they result in NP complexity because the 
diagnoser must build, at each time, all admissible trajectories in 
order to discern a possible fault occurrence from a mode 
commutation. The Mixed Logical Dynamic approach (MLD) 
has been also investigated in order to improve the diagnosis of 
HDS [28]. Some results obtained for identification of piecewise 
affine systems could be adapted in order to provide on line 
parameter estimation and fault detection [9]. For such methods, 
a huge difficulty remains: cluster the data that result from a 
mode switching and the ones that result from the occurrence of a 
fault.  

Based on discrete event models and PN theory, the faulty 
behaviours have been modelled either as forbidden states [12] 

or as forbidden event sequences [18]. Both approaches can be 
used in the context of diagnosis under partial observation. Fault 
diagnosis under state measurement and events estimation was 
first formulated with automata [26] and then extended to PN 
[29]. The considered PN are live and safe. A label is associated 
to each transition in order to distinguish “normal” behaviour 
from faulty ones. Starting from an initial normal state, the 
system may evolve according to a “normal” behaviour by firing 
“normal” transitions or according to a faulty behaviour by firing 
at least one “fault” transition. The diagnoser detects and isolates 
a failure transition in a given firing sequence from measurement 
of the successive observable markings generated by the system. 
Faults diagnosis under events measurement and state estimation 
was also considered with automata [30] and Petri nets [17]. The 
PN state estimation consists to estimate the PN marking based 
on complete or partial observation of the events. If the initial 
marking is known, some projections of the incidence matrix 
over the set of transitions to be measured and the set of markings 
to be estimated can be used [17]. When the initial marking is 
unknown [12], state estimators have been proposed that provide 
a lower bound of the actual marking. Asynchronous diagnosis 
by means of hidden state history reconstruction obtained from 
alarm observations was also investigated [2]. This approach 
relies on Petri net unfoldings and event structures that are 
related via some causality relationships. As a consequence, 
diagnosis is performed by a distributed architecture of 
supervisors. 

At last, let us mention some works that have investigated 
hybrid approaches for diagnosis with continuous observers and 
output quantification [20], [21]. 

In comparing with the existing works, the proposed approach 
can be considered as a hybrid one because the NNs used to 
model the various modes of the HDS combine continuous 
behaviour and discrete events. This approach has the advantage 
to posses a large domain of validity because the NNs will 
predicate all the modes of the HDS. In addition, it is not difficult 
to implement because there is any need to differentiate a 
possible fault occurrence from a mode commutation. However, 
its huge difficulty remains the obtaining of data sets that cover 
all the modes of the HDS.  

IV.  APPLICATION EXAMPLE  

In order to illustrate and to show the effectiveness of the 
proposed approach let us consider the two tanks flow system of 
the figure 1. This system is the benchmark of the Specific 
Action on the diagnosis of hybrid systems (AS193) which is 
supported by the CNRS4 and the GDR MACS5. 

A. Description of the system 

The system consists of two cylindrical tanks R1 and R2 of 
section S = 0.0154. Each tank has an input pipe and an output 
pipe. The input pipes are respectively built-in identical pumps 
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P1 and P2 that are on-off and the output pipes are controlled by 
two on-off electro valves V1 and V2. Moreover, the tanks are 
connected to each other with two pipes, C1 and C2, which are 
respectively located at the bottom of the tanks and at 0.5 m 
height. These pipes are also controlled by the on-off electro 
valves V3 and V4. Finally, the system is equipped with two 
analogue sensors that measure the levels of the fluid in the tanks. 

Figure 1: the two tanks system 

For the purpose of simulation let us consider that the 
dynamics of the pumps are very fast. Hence, we can suppose 
that the input flows are constants when the pumps are on and 
they are null when the pumps are off. Finally, let us suppose that 
the pump P1 and the electro valve V2 are a perturbation inputs 
that can not be controlled.  

According to the Torricelli model, the considered system can 
be described by the following equations:  

{ }1,0                    ,. 111 ∈= PPDQP                                          (2) 

{ }1,0                   ,. 222 ∈= PPDQP                                         (3) 

{ }1,0           ,..2 1111 ∈= VVhgAQ                                         (4) 

{ }1,0         ,..2. 2222 ∈= VVhgAQ                                        (5) 

{ }1,0                                       

   ).(.2.

3

321213

∈

−−=

V

VhhhhsigngAQ
                            (6) 

{ }1,0                                         

 ,)5.0,sup()5.0,sup().sgn(..2

4

421214

∈

−−=

V

VhhhhgAQ
  (7) 

where: D is the constant input flow of both the pumps (D=10-4 
m3/Sec ), { }2,1, ∈iPiQ is the input flow of the tank i, { }2,1, ∈iiQ is the 

output flow of the tank i, Q3 is the flow in the pipe C1 and Q4 is 
the flow in the pipe C2. 

Concerning the control laws, let us consider that the electro 
valves V1, V3 and V4 as well as the pump P1 are governed 
according to the algorithm depicted in the table 1 [12].This 
algorithm, which does not make the objective of this paper, 
guarantee that the levels of the fluids in the tanks R1 and R2 are 
respectively given by the equations: 

111 Mhm ≤≤                                                                        (8) 

222 Mhm ≤≤                                                                      (9) 

where : M1 = 0.6 m ; M2 = 0.75 m ; m1 = 0.4 m and m2 = 0.2m 

are thresolds that are chosen in order to avoid eitherthe draining 
or the overflow of the tanks.  

Table 1: The control Algorithm 

B. The NN modeling results  

The precedent system, which can have as well as 44 modes, 
has been modelled by two feed-forward neural networks 
according to the methodology presented in section 2. Each NN 
corresponds to the nonlinear NNARX structure given by the 
equation 1 and it predicts the level of the liquid in a tank. 

In order to obtain the structures of the two black-box average 
models, the identification and the validation of the NNs were 
carried out, with two different data sets containing each one N = 
5000 . The latter were obtained by simulating the behaviours of 
the system, in using equations 2 to 7 and by considering that the 
sampling period is st 1=∆ and by considering that the initial 
condition of the identification and the validation data set are 
respectively 010 == hh and .110 == hh  Finally, Gaussian 

noises of mean m=0 and variance 01.0%.1 max == hσ  were 

added to the data sets. 
Hence, after several simulations, carried out by fixing na and 

nb to 5 delays and varying nk from 1 to 5, we have opted for two 
NNs with: 

• 21 input neurons that receive the last three outputs of  
the sensors as well as last three state of the valves, 

• 8 hidden neurons that calculate the weighted sum of 
their inputs, then transform it by means of a hyperbolic 
tangent activation functions, 

• 1 outputs neuron using a linear activation function. this 
out permit to predicate the level of the liquid in the 
considered tank.  

P2 and V2 were opened and closed according to two SBPA of 
length: ]30,10[2∈pl  and ]50,30[2 ∈vl  

On the other hand, the network’s parameters were estimated 
with 20 different initializations and 5000 iterations at the 
maximum, by means of Levenberg-Marquardt algorithm. Then, 
starting from a structure using (ne= na +2nb) inputs and 7 hidden 
neurons, the Optimal Brain Surgeon (OBS) algorithm was used 
to remove the parts that are not needed.  

The figures (1-a), (1-b), (1-c), (2-a), (2-b) and (2-c) present, 
respectively, the identification and the validation results of the 
selected models. The analysis of these curves shows that the 
predicted levels closely matches the data and indicates that the 
sum quadratic errors correspond to the added noise. On the 
other hand, the statistical tests express that the residuals and the 
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inputs are independent and that the auto correlation functions 
belong to the confidence interval. In addition, the histograms of 
the residues distributions indicate that the errors of modelling, 
in the absence of faults, can be regarded as a white noise. 
 

C. The NN model-based fault detection results 

In this section we will consider simple fault that can affect 
either the sensor or the actuator 

1) Detection of the sensor faults  
During this simulation let us consider that the two sensors 

provide biased values and that initial conditions are:  
.5.010 == hh  Thus, the NNs obtained in the previous section 

were used in order to simulate the system behavior. The 
residuals, resulting from the comparison of the two sensors 
outputs with the predictions of the two NN, are then exploited in 
order to detect the simulated faults. Finally, let us note that the 
biases were injected in different mode of the HDS and that the 
faults of the 1st sensor are detected by using the NN that 
predicate h1 (NN1) and the faults of the 2nd sensor are detected 
by using the NN that predicate h2 (NN2).  

Tables 2 and 3 summarize the results concerning the 
detection of the injected faults. The letters correspond to biases 
with amplitude which varies from σ5.0 to .3σ The analysis of 
these results which correspond to a probability of false alarm P= 
1%, indicates that detection is independent of the moment of 
occurrence of the faults and that the detection time varies 
between 1sec and 3sec. 

Amplitude of the bias  

0.5σσσσ 0.8σσσσ 1.5σσσσ 3σσσσ 
1000 ND 1sec 1sec 2sec 
2000 3sec 2sec 2sec 2sec 

Instant of the 
default 

3000 2sec 2sec 2sec 2sec 
Table 2: Detection of the 1st sensor faults 

Amplitude of the bias  

0.5σσσσ 0.8σσσσ 1.5σσσσ 3σσσσ 
1000 2sec 2sec 1sec 1sec 
2000 ND 1sec 1sec 1sec 

Instant of the 
default 

3000 1sec 1sec 2sec 2sec 
Table 3: Detection of the 2nd sensor faults 

2) Detection of the actuator faults  
During this simulations let us consider that one of the 

actuators (P1, V1, V3, V4) is blocked opened or closed either 
from the instant t1 = 300 sec or from the instant t2= 500 sec (i.e., 
the defaults affect two different modes). 

Tables 4 to 7 present the detection results obtained in using 
both the NN and by considering a probability of false alarm P= 
1%. The analysis of these results indicates that the defaults of P1 
were detected only by the NN1 and that the defaults of V3 were 
detected by the two models jointly. 

We can also note that the detection times are relatively high 
and that they depend on the current mode of the system at the 
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Figure 1-a: training results of the liquid level in R1 

Figure 1-b: validation results of the liquid level in R1 

Figure 1-c: distribution of the residues for the 1st NN 

Figure 2-a: training results of the liquid level in R2 

Figure 2-b: validation results of the liquid level in R2 
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Figure 2-c: distribution of the residues for the 2ed NN 



 

moment of the occurrence of the default. Finally, it is difficult to 
conclude definitively on the detection of the fault concerning V1 
and V4 because of the weak results obtained in tables 5 and 7.  

P1=0 P1=1 NN 
t1=300sec t2=500sec t1=300sec t2=500sec 

NN1 85sec 100sec 20sec 97sec 

NN2 ND ND ND ND 

Table 4: Detection of the fault of P1 

V1=0 V1=1 NN 
t1=300sec t2=500sec t1=300sec t2=500sec 

NN1 FD FD FD FD 

NN2 FD 71sec FD 71sec 

Table 5: Detection of the fault of V1 
V3=0 V3=1 NN 

t1=300sec t2=500sec t1=300sec t2=500sec 
NN1 164sec 44sec 164sec 44sec 

NN2 376sec 249sec 376sec 249sec 
Table 6: Detection of the fault of V3 

V4=0 V4=1 NN 
t1=300sec t2=500sec t1=300sec t2=500sec 

NN1 59sec FD 59sec FD 
NN2 FD 69sec FD 69sec 

Table 7: Detection of the fault of V4 

Consequently, the FDI indicate that only two defaults can be 
isolated (i.e., defaults of V3which are detected by the two NN 
and the defaults of the 2nd sensor which are detected by NN2). 
Moreover, the defaults of the 1st sensor and the default of the 
actuator P1 can be detected without a possibility of isolation 
(both of them are detected by NN1). 

V. CONCLUSIONS  

Our contributions were to build average models of HDS and 
to show that these models can be used for the Diagnosis of HDS. 
The behaviors of HDS were predicted by feed-forward neural 
networks that track all the modes of the system and the structure 
determination of these neural networks was viewed as a system 
identification problem. The performances of this approach were 
shown on a simulation example and the obtained results provide 
strong evidence of the good performance the NN average model 
Once the Neural Networks models are obtained they has been 
used to generate residuals and to achieve FD without any need 
to discern the modes, to estimate the current mode or to 
investigate systematically all the switching sequences. The 
application example results shows that the proposed approach is 
very useful to detect sensors faults but it is not enough well for 
the detection of the actuators faults. Our future works are to 
exploit other information as the occurrence of the alarms and the 
causalities in order to improve the performances of the 
diagnosis results.  
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