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Abstract  

High-Presssure metabasites embedded in a serpentinite or metasedimentary matrix from the 

Sancti Spiritus dome (Escambray massif, Central Cuba) have been studied in order to better 

understand the origine and the evolution of the Northern Carribean boundary plate during the 

Cretaceous, in a global subduction context. Geochemical analyses (major, trace elements and 

isotopes) of the high pressure rocks show that they could be partially derived from the Cretaceous 

calc-alkaline arc described in Central Cuba, these were probably incorporated in the subduction 

zone by tectonic erosion. The High-Pressure rocks record a prograde path from the epidote 

bearing amphibolite facies to the barroisite bearing eclogite facies (P = 19 ± 2  Kbar, T = 590 ± 

90 °C). These metabasites show evidence of  retrogression starting from the glaucophane bearing 

eclogite facies to the lawsonite bearing blueschist facies. Therefore, these HP/LT rocks are 

characterized by a counter-clockwise cooling P/T path, which can be explained by the 

exhumation of HP rocks while the subduction was still active. Concordant geochronological data 

(Rb/Sr and Ar/Ar) suggest that the main exhumation of HP/LT rocks from the Sancti Spiritus 

dome occurred 70 Ma ago by top to SW thrusting. The retrogressed trajectory of these rocks, 

means that the northeast subduction of the Farallon plate continued after 70Ma. The final 

exhumation can be correlated with the beginning of the collision between the Bahamas platform 

and the Cretaceous island arc that induced a change of the subduction kinematic. 

 

Keywords: HP/LT rocks, subduction, exhumation , accretionary wedge, Cuba.
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Introduction 

 

Because of our incomplete knowledge about the dynamic, chemical and isotopic 

processes operating during exhumation of high-pressure (HP) rocks, the mechanisms by which 

high to ultra high-pressure metamorphic rocks are brought up to the Earth surface are still a 

matter of debate (e.g. Ernst & Liou, 1999). In most cases, high pressure rock exhumation is 

generally modelled in continental collision zones, such as the Caledonides, the Himalaya, the 

Alps and the Dabie Shan, emphasises the role of buoyancy and boundary strengths as driving 

forces of this process (Anhert, 1970; England & Holland, 1979; Davies & Von Blackenburg, 

1995; Chemenda et al., 1995). Because of the importance of late collisional events in most 

orogenic belts, rarely informations relevant to the early exhumation stages can be obtained. 

However, in some active subduction zones where evidence of continental collision is lacking 

(e.g. Marianne Trench, New Guinea, Northern Caribbean), the exposure of large amounts of 

blueschists and eclogites suggests that exhumation of deeply subducted rocks can occur before 

collision. The occurrence of high pressure rocks in such an environment implies that the 

exhumation processes of high pressure rocks during the early stages of convergence are related to 

the subduction dynamics (Platt, 1986; Allemand & Lardeaux, 1997). 

In such a context, the study of the North-Caribbean margin is particularly interesting (Fig. 

1a). HP rocks associated with a relatively well preserved paleo-subduction zone are described in 

several places such as Cuba which has not been affected by the large scale active E-W shearing 

present along of the northern and southern Caribbean plate boundaries. In the central part of 

Cuba, HP/LT rocks cropout in the Escambray massif (Southwestern Cuban terranes Fig. 2). 

Eclogites form metre to hectometre boudins packed in serpentinite or intercalated with 
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metasediments. The eclogites were formed probably during the Cretaceous convergence between 

the Farallon plate and the Atlantic plate (Kerr et al., 1999), but there is no consensus about the 

Mesozoic tectonic scenario for the Caribbean plate. 

According to Ernst (1988) and many others, the precise reconstruction of P-T-t path in HP rocks 

provides constraints on the exhumation context. In order to define the possible mechanisms 

responsible for HP rock exhumation during active subduction, this paper presents new 

petrological, geochemical and geochronological data on the HP/LT rocks from the Escambray 

massif (central Cuba).  

 

Geological setting 

  

The Island of Cuba is a part of the northern segment of the Greater Antilles volcanic arc, 

which fringes the Caribbean boundary plate and results from the collision between the Cretaceous 

island arc and the Bahamas platform in the Late Paleocene to the Early Eocene time (Burke, 1988 

; Pindell, 1993; Mann et al., 1995; Iturralde-Vinent, 1996a ; Huston et al., 1998). Since the 

Paleocene-Early Eocene, Cuba has been isolated from the Caribbean plate by a sinistral strike-

slip fault related to the opening of the oceanic Cayman ridge (Wadge & Burke, 1983; Mann et al., 

1995; Gorndon & Mann, l997)  (Fig. 1a).  

According to current models of tectonic evolution of the Caribbean, the Cretaceous island arc 

was originally built during the subduction of the Farallon plate, beneath the North American plate 

(Fig. 1b). The development of an oceanic plateau in front of the Pacific subduction zone at the 

latitude of Central America between the Cenomanian and the Turonian  (Kerr et al., l997; Sinton 

et al, l998) induced a change of the subduction velocity accommodated by the onset of two strike-

slip fault systems. Progressively, the incorporation of continental sediments in the subduction 
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trench due to the progression of the Cretaceous island arc between the North and South American 

plates induced a change in the island arc magmatism from tholeiitic to calc-alkaline (Kerr et al., 

1999) (Fig. 1c). Around Cenomanian time the north-western part of the Cretaceous island arc 

collided with the Yucatan peninsula (Iturralde, 1996a; Iturralde et al., 1996; Gordon et al., 1997; 

Grafe et al., 2001, García-Casco et al., 2001) which resulted in the end of the arc magmatic 

activity and in a change in the subduction regime in this area (Fig. 1d). Eastwards, the Cretaceous 

magmatism was still active till the Turonian (Iturralde-Vinent, 1996b, 1996c). At the end of the 

Cretaceous, the subduction polarity at the front of the north-eastern part of the plateau reversed 

and the subduction of the Atlantic plate started beneath the proto Caribbean plate . 

A consequence of the collision of the western segment of the Cretaceous island arc with the 

Yucatan peninsula and of the approach of the collision between the Bahamas platform and the 

Greater Antilles arc is the rotation of the north strike slip-fault system from Northeast to East. 

This involved the progressive accretion of the northern part of the Yucatan basin and of the 

western and central Cuba to the North American plate from the Paleocene to the Mid-Eocene 

(Bralower & Iturralde-Vinent, l997; Gorbon & Mann, 1997; Huston et al., 1998). This was 

followed by the accretion of southern part of Cuba and Hispaniola during the Mid to Late-Eocene 

(Gordon & Mann, 1997; Huston et al., 1998), and finally of Puerto Ricco during the Oligocene 

(Dolan et al., 1991) (Fig. 1e). 

 

Thus, Cuba appears as a serie of post-Jurassic accreted terranes of both continental and 

oceanic affinities (Iturralde-Vinent, l994) (Fig. 2a). Western Cuba is essentially composed of 

Jurassic sediments correlable with Jurassic continental beds of Central America and Jurassic 

sediments from the gulf of Mexico. Eastern Cuba represents an upflited part of the Cayman rise 

(Perfit & Heezen, 1978). This paper focuses on the central part of Cuba (Fig. 2b). Which can be 

divided into two main units: autochthonous units that are part of the Bahamas platform to the 
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North, and allochthonous terranes belonging to the Caribbean plate to the South. Autochthonous 

terranes are composed of folded Jurassic to Cretaceous sediments (Fold Belt) and Paleocene-

Eocene foreland basin sediments. To the North, allochthonous terranes consist of an ophiolitic 

melange (Zaza zone) with remains of the Cretaceous island arc and associated back-arc basin 

(Kerr & al., 1999) that thrusts onto the autochthonous fold belt. Eclogitic lenses occur here as 

boudins in a melange made of serpentinite (Somin & Millán, 1981; Millán, 1996a; García-Casco 

et al., 2002).  

The Cretaceous island arc in the central part thrusts the ophiolitic melange up to the north. The 

southern part is composed of Jurassic to Cretaceous sedimentary rocks of continental margin 

type, along with some ophiolites and Cretaceous volcanic arc suites outcrop (Somin & Millan, 

l98l, Blein et al., 2003). This southern unit is divided in two massifs, the Mabujina and the 

Escambray massifs separated by a sinistral strike slip fault. The Mabujina amphibolitic unit is 

interpreted as  the basement of the Late Cretaceous island arc (Somin & Millan, 1981; Millán, 

1996b) and could represent an older Pacific arc accreted to the Early Cretaceous Carribean arc 

(Blein et al., 2003) . Ar-Ar and Rb-Sr dating of granodiorites and pegmatites cross-cutting the 

massif yielded ages between 90 and 75 Ma (Graffe et al., 2001) which have been previously 

interpreted as collision ages between the Cretaceous island arc and the Yucatan peninsula. 

The Escambray massif, one of the three metamorphic complexes of the southwestern Cuban 

terranes, is compose of two metamorphic domes (Fig. 2c): the Trinidad and the Sancti Spiritus 

domes separated by a Paleogene sedimentary cover (Somin & Millan, 1981; Millan & Somin, 

1981, 1985, Millán, 1997b) (Fig. 1b). The Escambray massif is mainly composed of siliciclastic 

metasediments and subordinate marbles, metabasic rocks and serpentinites. Paleontological 

evidences (Millan & Somin, 1985) reveals that the metasediments are Jurassic to Cretaceous in 

age and can divided into three units. Unit I is the lower structural unit and is composed of 

greenschist facies rocks of pelitic and carbonate composition which record metamorphic 
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conditions below 500°C for 7-8kbar (Grevel, 2000). Unit II is characterised by basic to ultrabasic 

boudins showing a lawsonite blueschist metamorphic overprint. Eclogitic lenses preserved in a 

serpentinite or metasedimentary matrix compose the uppermost unit III. Peak metamorphic 

conditions for this unit are estimated at 530°C-630°C for a pressure of 16 to 25 kbar (Grevel, 

2000). Structural and cartographic evidence (Fig. 2b-c) shows that unit I is pluri-kilometer thick 

whereas units II and III are very thin (± 1 km). They form a nappe pile associated with early top 

to the WSW or SW thrusting structures (Millan, 1989 and pers. obs.) underlined by eclogitic 

minerals (garnet-omphacite-rutile) in unit III, blueschist minerals (glaucophane-lawsonite) in unit 

II and greenschist minerals (chlorite-epidote) in unit I. Late extensional tectonics, top to the SE 

developed from blueschist facies to brittle conditions are responsible for the opening of a 

continental basin during the Paleocene. This latter was infilled by sediments and debris derived 

from the exhumed eclogites and blueschists during the Eocene (Millan and Somin, 1981). 

Previous geochronological studies on the Escambray massif yield ages between 68 and 85 

Ma (K-Ar dating on white micas, Somin & Millan, l981; Millan & Somin, 1985; Hatten et al., 

1988; Iturralde-Vinent et al., 1996) and around l00 Ma for U-Pb dating on zircon (Hatten et al., 

l988; 1989). The100 Ma old ages are interpreted as the age of the HP metamorphism, while upper 

Cretaceous ages are interpreted as exhumation ages. In order to better constrain the timing of 

exhumation of the Escambray massif, three unweathered samples (LV66, LV69, and CUl6) were 

selected for petrological study, Rb/Sr and Ar/Ar geochronology. LV69 was collected from 

eclogitic lenses packed in serpentinites from the Sancti Spiritus dome and LV66 and CU16 were 

collected from an intercalation within the metasediments of Loma la Gloria formation, which is 

correlated with Jurassic sediments from Guaniguanico (Millán, 1997a). (Fig. 2b-c) 
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Analytical Procedures 

Mineralogical analyses procedures and calculation methods : 

Mineral analyses were performed at the Université Montpellier II on a microprobe CAMECA 

SX100. Analytical conditions were a 20kV accelerating voltage and 10nA beam current.(rajouter 

les standards etc..) Fe
3+ 

in garnet, omphacite, amphibole, and epidote was recalculated after 

normalisation to 12 oxygens and 8 cations, 6 oxygens and 4 cations (Morimoto et al., 1988), 23 

oxygens and 13 cations (Leake et al., 1997), and 12,5 oxygens and 8 cations (Fetotal=Fe
3+

), 

respectively (report in table 1). Temperature estimates were obtained using garnet-cpx Fe-Mg 

exchange geothermometers (Ellis & Green, 1979; Powell, 1985; Krogh, 2000) (table x) and 

garnet-amphibole Fe-Mg exchange geothermometers (Graham & Powell, 1984; Krogh, 2000) 

(table x). The Graham and Powell thermometer was applied assuming that the Fetot is reduced 

(Fe
2+

) as suggested by the authors. Pressure estimates were obtained by using the garnet-

omphacite-phengite geobarometer (Waters & Martin, 1993; see also Carswell et al., 1997, 

O’Brien et al., 2001). Activiy models correspond to those of Hodges & Spear (1982) for garnet, 

Holland & Powell (1990) for omphacite, and ideal activity for phengite (table x). All the 

uncertainties are quoted at the 2 level. 

 

Geochemical analyses procedures : 

Whole rock major element analyses were performed at the CRPG of Nancy (Table 2). Trace and REE element 

determinations on Whole rocks and mineral fractions were performed by ICP-MS at the Université Montpellier II by 

using acid dilution of 20 mg samples (rajouter les standards). Rb and Sr concentrations were obtained by isotopic 

dilution (Table 2). Mineral fractions were obtained after crushing and sieving (100-125m size fractions) of samples, 

separation using Frantz isodynamic separator, heavy liquids and finally handpicking. The optical study of inclusions 

in garnet reveals abundance of clinozoïsite, apatite and rutile, while a SEM study indicated the occurence of minute 
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zircon inclusions. In order to reduce or eliminate the disturbing effects associated with these inclusions on the 

143
Nd/

144
Nd ratio, a serie of leaching experiments was performed on garnet fractions, following the procedure 

described by Zhou & Hensen (1995). Separated minerals were first washed with acetone, and then with distilled 

water before to being ground in an agate mortar. At this stage, the mineral fractions were leached into hydro-chloric 

acid (2.5N) to remove surface impurities and alteration traces before to be weighed. Garnets were leached in a 

2:HNO3 (13N) / 1:HCl (6N) solution at 120°C for 2 days. This leaching was done in order to remove phosphate 

inclusions (monazite or apatite). Solutions were then centrifuged to remove leachates. Solid residuals were rinsed 

three times with distilled water before weighing. After this stage, the weight difference was important, up to 50% for 

some garnets. As the silicate phases cannot be dissolved in an HCl/HNO3 environment, the weight loss is attributed 

to dissolution of the non-silicate phases. Garnets were oxidised in concentrated HNO3 at 180°C overnight to make 

the digestion easier. Finally garnets were digested over pressure in Teflon


 bombs in a 2:HF (48%) / 1:HNO3 (13N) 

mixture at 180°C for three days. The other mineral phases were digested in Savilex


 beakers with the same mixture 

for two days at 120°C. After dissolution, all mineral fractions were evaporated and then put in a HCl 6N solution for 

several hours in order to complex the REE. After a last centrifugation to eliminate the undigested solid residue 

(zircon and rutile for instance), and amorphous silica, a fraction of each solutions was recover and spiked for Rb and 

Sr concentrations calculations. Finally all solutions were evaporated again, and then dilute HCl was added before 

introduction on ion exchange resin (AGW1X12). Separations were carried out following the procedure described by 

Birck &  Allègre (1978).
 87

Sr/
86

Sr ratios were measured on a VG sector mass spectrometer at the Université of 

Montpellier II, 
87

Sr/
86

Sr ratios of standard NBS 987 were at 0.710245+/-0.0000015. 
143

Nd/
144

Nd ratios were 

measured on a Finnigan MAT spectrometer at the Université Paul Sabatier of Toulouse,
 143

Nd/
144

Nd ratios of 

standard Renne were at 0.511987+/-0.000006.
 
As we don’t know the age of the protolith, corrections for the 

87
Sr/

86
Sr 

and 
143

Nd/
144

Nd initial ratios were carried with the age of the regional metamorphism (70 Ma, see Geochronological 

section) (Table 3). Isochrons were calculated using the ISOPLOT program (Ludwig, 1994) (Fig. 9). 

 

Ar/Ar dating procedure : 

After crushing, 1000-500 m size fractions were recovered and micas and amphiboles were hand-picked under a 

binocular microscope for Argon analyses. After acetone, alcohol and distilled water washing, single grains were 

irradiated in the Mc Master nuclear centre (Canada) together with several MMHb monitor grains (Samson and 

Alexander, 1987). Single crystals were degassed with a laser-probe using two procedures, step heating and spot 
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ablation at the Université of Montpellier II. The analytical device is similar to that described by Dalrymple (1989) 

and consists of a continuous 6W argon-ion laser equipped with a programmable beam shutter, optics for laser beam 

focusing, a CCD camera used to monitor the experiments, a 300cc extraction-cleanup line and a MAP 215-250 mass 

spectrometer with a Nier ion source and Johnston MM1 electron multiplier (Monié et al., 1994). Minerals were 

placed in drilled cores made on a copper plate and heated with a focused or defocused laser beam depending on the 

procedure chosen for degassing. For step heating experiments, minerals were exposed to the laser beam during 30s 

for each step. Spot ablation was achieved using an exposure time of 30ms for each spot on the beam shutter. Each 

age determination requires approximately 20 min for lasering, gas cleaning and data acquisition. Blanks were 

monitored every two or three experiments, and were about 3.10
-12

 CC and 6.10
-14

 CC for masses 40 to 36 

respectively. For each analysis, classical isotope corrections including blanks, mass discrimination, radioactive decay 

of 
37

Ar and 
39

Ar and irradiation-induced mass interferences were applied. The quoted errors represent 1 deviation 

and were calculated after MacDougall and Harrisson (1988). Isochron ages were calculated following the regression 

technique of York (1969) (Fig. 10, Table 4). Generally, the low-temperature heating steps exhibit scatter on isochron 

diagrams and have been excluded from the regression. 

 

Petrology 

Metabasites LV66, LV69 and CU16 contain the assemblage garnet (grt) + amphibole 

(am) + clinopyroxene (cpx) + white mica + epidote (ep) +/- quartz (qtz) +/- rutile (rt) +/- calcite. 

Mineral abbreviations used in the text are after Kretz (1983). All samples show a foliation 

defined by the preferential orientation of micas, cpx and am. 

 

Garnet: 

In eclogite LV66 garnet occurs as i) large porphyroblasts (l-0.5 mm) with inclusion-rich cores 

(core 1) (inclusions of qtz, rt, ap, and graphite) surrounded by inclusion-poor rims (rim 1), and ii)  

inclusion-poor small neoblasts (100- l 25 m). 

These garnets are in textural equilibrium with clinopyroxene, epidote and mica. The large garnet 

porphyroblasts are almandine-rich and strongly zoned (Fig. 4a, Table 1). Inclusion-rich cores 
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(core 1) are characterized by a decrease of the Mg/(Mg
2+

+Fe
2+

) ratio from 0.2 to 0.09, and an 

increase in grossular content from 17 to 32%. The Mg/(Mg
2+

+Fe
2+

) ratio of garnet rims (rim l) 

rises from 0.09 to 0.3, which is indicative of prograde growth zoning (Alm 56 Prp 5 Grs 32 Sps 7 to 

Alm 54 Prp 22 Grs 23 Sps 2). Small garnet is compositionally similar to rim l (Alm 56 Prp l8 Grs 25 

Sps 1). 

In CUl6, the eclogitic minerals (garnet and clinopyroxene) are fractured and show significant 

signs of retrogression. Garnet (l-3 mm) does not show any euhedral boundary, excepted in some 

contacts with clinopyroxene (Fig. 3c). Small garnets (l00 m) are also present in the matrix, and 

appear to be in equilibrium with the blueschist assemblage (glaucophane, paragonite and 

clinozoïsite). CU16 garnets show complex zonation with three distinct parts (Fig. 4b, Table 1). 

The inner cores (core 2a) is almandine-rich and grossular-poor (Alm 62 Prp l7 Grs l7 Sps 4), and is 

surrounded by an outer cores (core 2b) marked by a sharp decrease in Fe content, an increase in 

grossular content (Alm 57 Prp 8 Grs 33 Sps 2), and a strong decrease in Mg/(Mg
2+

+Fe
2+

) ratio from 

0.2l to 0.l3. This zonation is similar to that described for the LV66 core l. Finally the 

Mg/(Mg
2+

+Fe
2+

) ratio rises rimward (rim2) to 0.2 (Alm 56 Prp l5 Grs 27 Sps 2), tracing a prograde 

growth similar to the LV66 and LV69 garnet. However the final Mg/(Mg
2+

+Fe
2+

) ratio of CUl6 is 

lower than the 0.3 ratio measured in LV66. The small garnets present in the matrix have a similar 

composition to those of the resorbed rim 2. Eclogitic garnet from CU16 shows similar zoning to 

that in LV66, but their reequilibration in the blueschist facies is much more significant. Their 

rims have been resorbed since their composition ( Mg/(Mg
2+

+Fe
2+

) of 0.2) equilibrated with the 

blueschist paragenesis.(8??) 

In LV69, garnet is generally euhedral and often rimed by chlorite. However some unaltered rims 

preserve the Grt- Cpx- Am- mica textural relations. Garnet cores are rich in qtz, rt, ap, gr, ep and 

blue-green amphibole inclusions which define a previous foliation (Fig.3b). Cores of LV69 

inclusion-rich garnet (core 3) show a plateau-like pattern around Alm 56 Prp l3 Grs 30 Sps 2 (Fig. 
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4c, Table 1). Rimward (rim 3) the Mg/(Mg
2+

+Fe
2+

) ratio increases sharply from 0.2 to 0.3 while 

grossular content decreases from 30 to 23% (Alm 53 Prp 23 Grs 23 Sps 1). This prograde profile is 

similar to that described for the LV66 rim l and CU16 rim2. The decrease in the Mg/(Mg
2+

+Fe
2+

) 

ratio at the cores of LV66 and CU16 seems to represent a pre-eclogitic-peak retrogressed feature 

(comprends pas ??). The lack of this feature in LV69 may be related to contrasting geological 

settings, and may to indicate  different pre-subduction histories. (8 ??) 

Clinopyroxenes: 

Clinopyroxene chemical composition of the three analysed samples fall in the range of 

omphacite (Jadeite between 40 and 45%, (Table 1) according to the Morimoto (l988) 

classification. No zonation ?? 

 

Micas: 

Representative mica analyses are reported in Table 1. In LV66, mica consists mainly of 

paragonite (Na
+
 ≈ 0.4-0.7. and Si

4+
 ≈ 3 per 11 oxygen). Phengite occurs in the contact zone with 

garnet and in the matrix (K
+
 ≈ 0.9 and Si

4+
 ≈ 3.4 per 11 oxygens). In CU l6, mica is an abundant 

phase in the matrix and occurrs as fine flakes of paragonite (Si
4+

 ≈ 2.97 and Na
+
 ≈ 0.85 per 11 

oxygen). Paragonite inclusions in omphacite have the same chemical composition. Microprobe 

analysis show the appearance of albite in the paragonite-clinozoïsite contact, corresponding to the 

following low temperature reaction: Clinozoïsite + paragonite = albite.(8), (9) Micas are 

relatively large up to l mm long in eclogite LV69, only phengite were observed (Si
4+

 ≈ 3.27 and 

K
+
 ≈ 0.88 per 11 oxygens). 

 

Amphiboles: 

In eclogite LV66 amphiboles are aligned in the foliation or cross-cuting it . They are often 

developed around clinopyroxenes. Some of them are optically zoned suggesting the possible 
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occurrence of inherited cores (Fig. 3a), both core and rim compositions were determined. Core 

composition falls in the field of barroisite (sodic-calcic amphiboles) whereas rim composition 

falls in the glaucophane field ( Table 1, leake (1997)). According to textural criteria, barroisite is 

interpreted to have grown during the eclogitic stage, whereas glaucophane is attributed to a 

retrogressed stage under blueschist facies conditions. 

Only glaucophane is observed in CU16 (Fig. 3c, Table 1). This glaucophane forms large patches 

closely associated with paragonite and including skeletons of garnet and omphacite. 

Two generations of amphibole have been distinguished in sample LV69, both on textural and 

chemical grounds (Fig. 3b, Table 1). Barroisite belongs typically to the eclogitic paragenesis and 

is mainly present in the matrix. At some contact zones with garnet, glaucophane has been 

observed, attesting to a partial blueschist facies overprint.  

 

Epidotes: 

Two types of epidote have been optically recognised: zoïsite and clinozoïsite. Both are 

found in the matrix and as inclusions in garnet for the LV69 and LV66 eclogites. Only 

clinozoïsite was found in CU16. Chemical analyses do not show any significant differences 

between these two epidotes (Fe
3+

/(Fe
3+

+Al) = 0.14-0.16) (Table 1). 

 

Paragenetic evolution: 

According to the textural relationships between the minerals described above, three successive 

metamorphic stages are recognized in the studied metabasites: 

Eclogitic stage: garnet + barroisite + omphacite + phengite + zoïsite + rutile +/- quartz. 

Blueschist stage: garnet + glaucophane + paragonite + clinozoïsite +/- quartz +/- titanite 

(destabilisation of rutile). 
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Thermobarometric estimates of the eclogitic grade: 

 LV66: Garnet - clinopyroxene thermometry for twelve mineral pairs gives 615 ± 80°C at 20 

kbar. This temperature is relatively poorly constrained (12), probably because Fe-Mg equilibrium 

between garnet and clinopyroxene is rarely preserved. These temperatures plot outside the 

glaucophane stability field (Maresh, 1977), which is consistent with the fact that Na-amphibole 

growth occurred after the development of the eclogitic paragenesis (11) 

For this sample, the maximum pressure (eclogitic conditions) is estimated at 21 ± 2 kbar (Fig. 

5).(13) 

 

CUl6: The temperature is poorly constrained (12) in this sample as blueschist retrogression is 

well developed. Nevertheless, thermometry on two garnet – clinopyroxene pairs yields 565 ± 

70°C, while the pressure is estimated at 18 ± 1 kbar. (13). The occurrence of secondary 

glaucophane in equilibrium with paragonite and clinozoïsite roughly limits the temperature field 

at 550°C for 20 kbar, and 400°C for 5 kbar for the blueschist stage (Maresh, 1977). (Fig. 5) (11) 

 

 LV 69: In this sample, the eclogitic paragenesis is not in textural equilibrium with glaucophane, 

suggesting that eclogitic metamorphic temperature was over 550°C (Maresh, 1977). 11) Garnet-

amphibole thermometry was applied, and there conditions were verified (spessartine in garnet 

<10%, T<850°C). Graham & Powell (1984) however advise that this thermometer is used with 

caution for eclogitic paragenesis, because the Fe-Mg equilibrium between garnet and amphibole 

is not always reached in HP rocks.(14) The average temperature obtained with the garnet-

amphibole thermometer is 570 ± 55°C on ten pairs, that agree within error with the results of the 

garnet-clinopyroxene thermometer on four pairs (600 ± 70 °C). These temperatures are in good 
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agreement with those obtained on sample LV66. The pressure is estimated at 19 ± 1 kbar for an 

average temperature of 590 ± 80°C. (Fig. 5). 

 

  

Summary of the Escambray metamorphic conditions: 

Petrological analysis of the LV69 metabasite indicates a prograde path from epidote-

bearing amphibolitic to barroisite-bearing eclogitic conditions. The P-T conditions for the 

eclogitic peak is estimated at 19 ± 1 kbar and 590 ± 80 °C. A similar path is recorded by the 

eclogite LV66 (21 ± 2 kbar, 615 ± 80 °C). Both metabasites show evidence of retrogression 

beginning in the field of the glaucophane bearing-eclogites. The CUl6 metabasite garnet zonation 

is in accordance with this prograde path. For this sample, peak metamorphic conditions are 

located in the eclogitic facies (18 ± 1 kbar, 565 ± 70 °C). The retrogressed path is well preserved, 

showing a cooling under epidote blueschist facies conditions. Therefore these rocks preserve a 

counter-clockwise path (Fig. 5) which has been previously reported for eclogites from the 

Franciscan complex (Wakabayashi,1990; Oh and Liou, l990; Krogh and al., 1994) and described 

by Smith et al. (1999) for blueschists from the Venezuela. 

 

 

Geochemistry 

 

Eclogites LV66 and CU16 from Loma La Gloria formation 

These samples have intermediate concentrations in SiO2 = 46.3-50.4%, Mg0 = 4-4.8% 

and K2O = 0.6-1 %, high in Al2O3 = 20.1% and relatively low in TiO2 ≤1%, (Table 2). REE 

chondrite - normalised patterns (Sun & Mc Donough, 1989) for eclogites are presented in Fig. 6a. 
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The REE abundances of LV66 and CU16 are between 10 and 80 higher than chondritic value and 

are highly enriched in light REE ((La/Yb)n = 4.4-5.3 and (La/Sm)n = 2.2-2.3) (Table 2). 

  

The CU16 and LV66 HP rocks are rich in LILE (K, Rb, Ba and Pb) and slightly depleted in 

HFSE (Nb and Ti) (see Fig. 6b and Table 2). In a Ba/TiO2 ratio versus Ba content diagram (Fig. 

7a), these samples plot in the calc-alkaline arc field (Sorensen et a1., 1997). In the Pb/Ce ratio 

versus Pb content diagram (Fig. 7b), samples LV66 and CU16 plot close to the Cretaceous calc-

alkaline arc field defined by Kerr et al. (1999). Moreover our trace element data well compare 

with analyses from Cretaceous calc-alkaline arc of Central Cuba (samples MAT1-4 from Kerr et 

al.,1999; Blein et al., 2003) (Fig. 6b), and other Cretaceous calc-alkaline rocks around the 

Caribbean margin (Donnelly et al., 1990; Lebron & Perfit, 1994; Kerr et al., 1999).  

 

These metabasites have relatively low Ndi values (-2.36 and - l .84; Fig. 8 and Table 3). Similar 

values have been reported for the Cretaceous Cuban island-arc rocks (Blein et al., 2003) and in 

various areas such as the Sonde arc (Hoogewerff et al., 1996). These low Ndi values can be 

explained by assimilation of pelagic and/or terrigeneous sediments by magmas formed during the 

melting of the subducting plate which results in a magmatism of arc affinity (Ben Othman et al., 

1989; Hoogewerff et al., 1996). The participation of such sedimentary component is also well 

evidenced in the Pb/Ce ratio versus Pb content diagram (Fig. 7b). 

Eclogite LV69: 

LV69 possess intermediate concentration in SiO2 (47.2%) and MgO  (9.3%), a high Al2O3 

(l4.8%) and TiO2 (l.6%) and a low K2O content (0.2%) (Table 2). It shows a REE chondrite-

normalised pattern characterized by a subtle but distinctive light REE depletion  (La/Yb)n = 0.8 ; 

(La/Sm)n = 0.7) typical of the N-MORB type rocks (Table 2 and Fig. 6a), and enrichment in 
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LILE elements (Rb, Ba and Sr) and U and Pb compared to typical MORB. Sorensen et al. (l997) 

described similar enrichments for eclogitic rocks associated with MORB type protoliths. These 

authors suggest the importance of the phengitic component to explain such enrichment. In the 

Ba/TiO2 ratio versus Ba content diagram (Fig. 7a) the eclogite LV69 plots on a mixing curve 

between a phengitic and a MORB end-member. The phengitic contribution could be estimated at 

around l% (Sorensen et al., l997). The Pb concentration is also controled by the phengitic 

component as Pb substitutes for K in phengites (Becker et al., 2000). This phengitic contribution 

could result from a late metasomatism at depth or from hydrothermal alteration of the oceanic 

floor before subduction (Sorensen et al., l997). The petrological analysis does not show any 

evidence of a secondary crystallisation of phengite during a metasomatic event as demonstrated 

in the previous section. We thus favour the pre-metamorphic hydrothermal alteration hypothesis. 

Moreover the positive anomalies in U and Pb compared to MORB (Sun & Mc Donough, l989) 

can be explained by an early alteration of the oceanic seafloor. LV69 falls in the field of altered 

MORB defined by Becker et al. (2000) where Pb and U are added to oceanic basalts during 

hydrothermal alteration of pelagic sediments and MORB (German et al., l995; Becker et al., 

2000). Addition of Pb to a MORB protolith originating from pelagic sediments is well 

demonstrated on a Pb/Ce ratio versus Pb content diagram (Fig. 7b) where  LV69 plots between 

the MORB end member (Sun & Mc Donough, l989) and the pelagic sediment domain. 

LV69 eclogite yields an Ndi ratio of +9.16 (Fig. 8, Table 3), in the typical range of MORB. Its 

high (
87

Sr/
86

Sr)i initial value (0.70569) (Table 3) points to a seawater hydrothermal component. 

Since(
87

Sr/
86

Sr)i value for the whole rock, pyroxenes and amphiboles have identical (
87

Sr/
86

Sr)i 

ratio in LV69, an early alteration  of the protolith prior to subduction is likely.  
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Geochronology 

Rb/Sr dating results: 

Isochron ages, 65.2 ± 6.6 Ma for LV69 and 67 ± 38 Ma for LV66 (Fig. 19a-b and Table 3), 

calculated with whole-rock, phengite, garnet, omphacite and amphibole experimental points, 

have large MSWD values (110 and 381 respectively). The scattering of the experimental points in 

the isochron digrams and particularly the garnet points which plot significantly above the 

isochron, are responsible for these high MSWD values. The presence of clinozoïsite inclusions in 

garnet can be invoked to explain the location of garnet points in the diagrams. Indeed, 

clinozoïsite has higher levels of Sr compared to Rb (Rb/Sr ≈ 0.0001), whereas the garnet Rb/Sr 

ratio is around 0.1. Therefore, a small amount of clinozoïsite in garnet can completely alter the 

87
Rb/

86
Sr garnet ratio. In this case we find Rb/Sr ratios of 0.05 and 0.07 for LV69 and LV66 

garnets that are tentatively interpreted as reflecting clinozoïsite inclusions. Accordingly, the 

garnet points have been removed from age calculation. The four remaining points define an 

isochron age of 65.9 ± 4.2 Ma (MSWD = 8.4) for LV69 and 69.2 ± 6.9 Ma (MSWD = 15) for 

LV66, with a 
87

Sr/
86

Sr initial ratio of 0.7057 ± 0.0001 for LV69 and 0.7055 ± 0.0001 for LV66 

(Fig. 9a-b). 

Ar/Ar dating: results 

Eclogite LV69: 

Step heating laser probe analysis of single phengite and barroisite grains gives plateau ages of 

69.3 ± 0.6 Ma for 95.5% (Table 4a and Fig. 10a) of the argon released and 69.1 ± 1.3 for 93% 

(Table 4b and Fig. 10b) of the argon released, respectively. For each sample, the first heating 

steps contain a large amount of atmospheric argon probably released from the surface and 

structural defects of the mineral at the beginning of degassing. The 
37

ArCa/
39

ArK ratio of barroisite 
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is constant and close to 15. The corresponding isochron ages are similar to the plateau ages for 

initial 
40

Ar/
36

Ar ratios slightly below the atmospheric ratio of 295.5. 

 

Eclogite LV66: 

Step-heating laser probe analysis of a single phengite grain gives a plateau age of 68.2 ± 0.6 Ma 

for 99.5% of the argon released, (Table 4c and Fig. 10c) and a similar isochron age. Spot fusion 

analyses on a second grain give ages between 66.6 and 72.2 Ma, which is consistent with the 

step-heating age (Fig. 10f and Table 4d).  

 

Eclogite CU16: 

Step-heating laser probe analysis of a phengite grain gives a plateau age of 71 ± 0.7 Ma for 

99.2% of argon released (Fig. 10d and Table 4e) which is consistent with the isochron age of 69.8 

± 0.8 Ma. A paragonite grain from the same sample has been analysed and was degassed in 

essentially two steps because of its low K concentration. Nevertheless, the total gas age of this 

mica (68.9 ± 0.7 Ma) is compatible with the previous results (Fig. 10e and Table 4f).  

 

Age interpretation: 

Since the pioneering work of Dodson (1973), geochronological data have been widely 

used to constrain the cooling history of rocks. Closure temperature for white mica ranges from 

350 to 450°C for the Ar/Ar system (Purdy and Jäger, 1976; Blankenburg et al., 1989; Kirschner 

et al., 1996) and from 500 to 550°C for the Rb/Sr system (Purdy and Jäger, 1976; Blankenburg et 

al., 1989). Closure temperature for the Ar/Ar system in barroisite is expected to be between 550 

and 650°C (Dahl, 1996a; Villa et al., 1998). It has been demonstrated that a wide number of 

parameter can affect the diffusion kinetic of the system (i.e.; pressure, fluids, chemical 
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composition, deformation, rock’s mode…) (Harrison et al., 1985; Monié, 1985; Scaillet et al., 

1992; Baker, 1993; Chen et al., 1995 ; Jenkin et al., 1995 ; Dahl, 1996b, Lister & Baldwin, 1996 ; 

Agard et al., 2002). Since, no consensus exists on the way to interpret geochronological data (as 

cooling age or crystallisation ages), especially for phengite. Recent 
40

Ar/
39

Ar work on various 

generations of phengite from the French Alps  demonstrate that ages obtained in this study should 

be interpreted as crystallisation ages in respect of the metamorphical history (Agard et al., 2002).  

Taking this into account, we would not discussed our geochronological data in terms of cooling 

ages, but as crystallisation ages. Previous geochronological work on the Escambray massif gave 

ages between 68 and 85 Ma using K-Ar dating on white micas (Somin and Millan, l981; Millan 

and Somin, 1985; Hatten et al., 1988; Iturralde-Vinent et al., 1996) that were interpreted as 

exhumation ages. The scatter of ages probably results from combined effects of argon loss, 

excess argon or complex mineralogy.  We consider the Ar/Ar and Rb/Sr ages of 66 to 70 Ma as 

corresponding to the minimum age for the eclogitisation of samples LV66, LV69 and CU16 as 

dating were carried on eclogitic minerals (except for CU16 paragonite). Moreover if the protolith 

for samples LV66 and CU16 is the Cretaceous calc-alkaline arc, the age of the HP metamorphism 

must be less than 85-110 Ma.  

 

Geodynamic implications and discussion: 

 

The cold retrogressed P-T path observed for the Escambray eclogites is characteristic of rock 

exhumation during an active subduction (Ernst, 1988; Schwartz et al., 2000). A continuous 

burying of cold oceanic crust will maintain a cold thermal gradient (thermal depression) in the 

area of the rock exhumation and thus could result in a cold retrogressed path (Ernst, 1988; Krogh 

& Liou, 1994). Several models invoking initiation of a new subduction have been proposed to 
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explain counter-clockwise P-T paths observed in some eclogites (Cloos, 1985; Peacock, 1987; 

Wakabayashi, 1990, 1992; Krogh et al., 1994; Encarnación et al., 1995). In this case, during the 

early stages of the subduction, the hanging wall will cool progressively with a decrease of the 

thermal gradient between the time of burial and that of exhumation. Smith et al. (1999) adapted 

this model to the subduction reversal occurring in the late Cretaceous in the Caribbean to explain 

the counter-clockwise PT path recorded in Venezuela. However, no evidence of a subduction 

reversal has been found in Cuba.  

The geochemical study demonstrates that protoliths of the LV66 and CU16 eclogites 

exhibit geochemical characteristics similar to those of the Cretaceous calc-alkaline arc (Donnelly 

et al., 1990; Lebron & Perfit, 1994; Kerr et al., 1999). As Loma La Gloria formation is a 

metasedimentary unit of Jurassic age (Millan, 1997a), the eclogites intercalated within cannot be 

coherent with this formation if they are interpreted as fragments of the Cretaceous calc-alkaline 

arc. We propose that slices of the Cretaceous arc were tectonically intercalated with sediments as 

the subduction was still active. If eclogites CU16 and LV66 derived from the Cretaceous calc-

alkaline arc, another model can be proposed to explain the metamorphic history of these samples. 

The collision between the Early Cretaceous island arc and the Yucatan peninsula may have 

caused several perturbations in the subduction regime. The decrease of the subduction velocity 

due to the collision around the Cenomanian is thought to induce an increase of the thermal 

gradient in the slab area related to a slab retreat (Papier des Japonais). New activation of the 

subduction and the cooling of the hanging wall at the end of the arc activity will induce a 

decrease of the thermal gradient after Cenomanian. In this model, rocks subducted around 

Cenomanian time will record a warmer path during their burial than during their exhumation. If 

the protolith of samples CU16 and LV66 is the calc-alkaline island arc, burial has necessarily 

occurred after Albian. More precisely, incorporation of some arc fragments to the subduction 



 

 22 

trench should be contemporaneous with the Cenomanian collision. This temporal constraint is 

consistent with the model proposed above. 

For the Escambray HP terranes, the exhumation of the subducted plate and arc fragments would 

occur in a context of active subduction. The vergence of the syn-eclogitic thrusts (top towards the 

SW) is compatible with the occurrence of a NE-dipping subdction zone during the Upper 

Cretaceous. In this model, unit III of the Escambray massif would correspond to a slice of the 

Pacific plate; LV69 representing the oceanic crust and CU16 and LV66 arc fragments 

intercalated with oceanic sediments. Since this model has been formulated on the basis of the 

study of only three samples from the Escambray massif, it is not possible to extend our 

interpretation to the whole Escambray massif. Nevertheless this study shows that an extended 

work on the eclogitic protoliths of the Escambray massif should permit a more precise 

understanding of its history. 

 

Independent of this model, a general exhumation mechanism can be discussed. According to a 

corner flow mechanism (Cloos, 1982; Allemand & Lardeaux, 1997; Guillot et al., 2001; 

Schwartz et al., 2001), materials trapped between the slab and the hanging wall will rise up to the 

surface in a viscous return flow due to the dynamics of subduction. This mechanism is generally 

invoked to explain the occurrence of high-grade tectonic blocks in a mud-matrix melange (Platt, 

1993). However, the Escambray massif does not correspond to a melange zone in the sense of 

Cloos (1982) or Schwartz et al. (2000) for which each eclogitic block embedded in a 

metasedimentary or serpentinite matrix records specific P-T conditions. In fact, the studied 

samples record similar P-T evolution suggesting that they belong to the same tectono-

metamorphic slice (unit III). Moreover, previous studies by Millan and Somin (1981) and Grevel 

(2000) clearly show that unit III is thrust over less metamorphosed tectono-metamorphic units. 

(23) This situation is very similar to that described in Hispaniola by Mann and Gordon (1996) 
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and Goncalvez et al., (2000) involving the underplating of metasedimentary and magmatic 

materials (basalts + serpentines) coming from the upper part of the subducted oceanic crust or 

from the island arc. 

It is noticeable that the exhumation of HP/LT rocks from the Sancti Spiritus dome occurred at 

around 70 Ma which corresponds to the beginning of the collision between the Bahamas platform 

and the Cretaceous island arc. Even if the exhumation is synchronous with the northeastward 

subduction of the Farallon plate, the exhumation started with a main collisional event North of 

the Island arc. This observation shows that several changes in the subduction kinematics due to a 

collision forward should set off the exhumation of HP fragments from the slab as suggested by 

Ernst and Liou (1999) for the exhumation of UHP rocks.  

Precise dating of the burial would be interesting to calculate the burial rate and to estimate 

subduction velocity. Geochronological systems used in this study do not allow to calculate 

cooling rate and exhumation velocity. Calculating all these parameters should permit numerical 

modelling of the thermal evolution in a dynamic wedge as a function of the subduction velocity 

and test the model proposed above for the anticlockwise PT path.   

 

Conclusions: 

 

1) The geochemical signatures of the eclogites LV69, LV66 and CU16 suggest that LV69 

derived from a N-MORB type protolith which is likely to be Pacific oceanic crust, and that both 

samples LV66 and CU16 from Loma La Gloria formation derived from a calc-alkaline arc which 

can be correlated with fragments of the Cretaceous calc-alkaline arc tectonically imbricated with 

Jurassic sediments. 
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2) The metamorphic study of the Escambray eclogites and blueschists reveales that these rocks 

followed a cold thermal gradient during their exhumation. This retrogressed trajectory is 

characteristic of an exhumation during an active subduction.  

 

3) Geochronological Ar/Ar and Rb/Sr data suggest a rapid exhumation stage at about 70 Ma. This 

stage can be correlated with the beginning of the collision between the Cretaceous island arc and 

the Bahamas platform. 

 

4) All these data show that the exhumation of the HP/LT rocks from the Escambray massif 

occurred during a period of active subduction. The exhumation of some metamorphosed slab 

fragments should be set off by the collisional events in front of the subduction plate and should 

occur in a context of accretionary wedge by underplating of oceanic and arc-related materials. 
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Figure 1. (a)-(d) Geodynamical evolution of the Caribbean plate from Cretaceous till Eocene, 

modified after Huston et al. (1998) and Kerr et al. (1999). (a) Present day map of the Caribbean 

area after Lebron and Perfit (1991) and Gordon et al. (1997). 

 

 

 

Figure 2. (a) Geological sketch map of Cuba after Iturralde-Vinent (1996a), the line repport to 

the cross section (b) and the box show the area of the map (c). (b) Central Cuba schematic cross 

section with samples location. (c) Geological map of Escambray massif after Millan (1997b) with 

location of samples LV69, LV66 and CU16.  
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Figure 3. Photomicrographs of samples (a) LV66, (b) LV69, (c) CU16. gt : garnet ; gln : 

glaucophane ; pg : paragonite ; prg : pargasite ; ba : barroisite ; omp : omphacite (26) 
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Figure 4. Zoning pattern of garnets from LV69, CU16 and LV66. 

Figure 6. (a) REE normalised patterns of eclogites LV66, LV69 and CU16 normalised to 

chondrites (Sun & Mc Donough,1989). (b) Traces elements spider diagrams normalised to 

primitive mantle(Sun & Mc Donough,1989), cretaceous arc fields after Kerr et al. (1999). 

Figure 7. (a) Ba/TiO2 ratio versus Ba content diagram after Sorensen et al. (1997). (b) Pb/Ce 

ratio versus Pb  content diagram. MORB and OIB points after Sun and Mc Donough (1989), 

cretaceous calc-alkaline field after Kerr et al. (1999). 
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Figure 8. (
87

Sr/
86

Sr)i versus Ndi diagram. (
143

Nd/
144

Nd)i ratios are quoted with Ndi values, 

calculated with actual (
143

Nd/
144

Nd)CHUR = 0.512638 (Wasserburg et al., 1981). Initial values 

are recalculated at 70 Ma. 



 

 42 

 

 

Figure 9. (a) Eclogite LV69 Rb/Sr isochron. (b) Eclogite LV66 Rb/Sr isochron. 
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