
HAL Id: hal-00102585
https://hal.science/hal-00102585v1

Submitted on 3 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A proposal for annotation, semantic similarity and
classification of textual documents

Emmanuel Nauer, Amedeo Napoli

To cite this version:
Emmanuel Nauer, Amedeo Napoli. A proposal for annotation, semantic similarity and classification
of textual documents. The 12th International Conference on Artificial Intelligence: Methodology,
Systems, Applications - AIMSA 2006. AI, people and the web, 2006, Varna, Bulgaria. pp.201-212,
�10.1007/11861461_22�. �hal-00102585�

https://hal.science/hal-00102585v1
https://hal.archives-ouvertes.fr

A proposal for annotation, semantic similarity
and classification of textual documents

Emmanuel Nauer and Amedeo Napoli

LORIA — UMR 7503
Bâtiment B, B.P. 239

F-54506 Vandœuvre-lès-Nancy cedex, France

{nauer,napoli}@loria.fr

Abstract. In this paper, we present an approach for classifying docu-
ments based on the notion of a semantic similarity and the effective rep-
resentation of the content of the documents. The content of a document
is annotated and the resulting annotation is represented by a labeled
tree whose nodes and edges are represented by concepts lying within a
domain ontology. A reasoning process may be carried out on annotation
trees, allowing the comparison of documents between each others, for
classification or information retrieval purposes. An algorithm for clas-
sifying documents with respect to semantic similarity and a discussion
conclude the paper.
Keywords: content-based classification of documents, domain ontology,
document annotation, semantic similarity.

1 Introduction and motivation

In this paper, we propose an approach for defining a semantic annotation of Web
textual documents based on the content of the documents. The core of the ap-
proach relies on the notions of annotation tree and semantic similarity, allowing
to manipulate documents with respect to their content, for, e.g. reasoning and
information retrieval. An annotation is represented as a labeled tree according
to a domain ontology, and is named annotation tree. Annotation trees can be
compared and classified, and are the basis for evaluating a semantic similarity
between documents.

Most of the information retrieval systems are based on keyword search, with
a more or less sophisticated use of keywords, including for example normalized or
weighted keywords, weighted or thesaurus-based relations between keywords for
document matching and retrieval [16]. These information retrieval approaches
are based on a rather rough and direct use of the set of –unrelated– keywords
associated to a document, whereas it could be useful to take into account the
semantic relations existing between keywords. These approaches are efficient
for simple and standard tasks, but show their limits within more complex ap-
plications, e.g. applications for semantic Web, where an actual, explicit, and
semantic access to the content of documents is needed. In addition, research

work on information retrieval and semantic Web is mainly based on the use of
domain knowledge and reasoning, for improving document representation and
query answering. Research work on semantic annotation of documents aims at
making inferences using a knowledge-based annotation of documents, turning
a human-understandable content into a machine understandable content [10, 9,
18].

In this research work, we present a content-based classification of textual
Web documents based on a semantic annotation of the content of documents.
A semantic annotation is represented as a labeled tree, where a node is typed
by a concept of the domain ontology, while an edge is typed by a relation be-
tween two concepts. The ontology holds on the domain of the documents, and
includes concepts and relations organized by a subsumption relation. This kind
of labeled-tree representation can be likened to graphs of rdf statements or to
the xml object model of documents (dom), where the semantics associated to
the elements of an annotation relies on a domain ontology.

This content-based annotation of documents supports a classification process
using semantic similarity between document annotations. The classification pro-
cess allows to organize documents in categories with respect to their contents
and domain knowledge. Semantically similar documents are classified within a
class describing their common characteristics according to the domain ontology,
where an individual document is reified as an instance of a class. In this way,
documents holding on some topics of interest may be classified according to the
classes representing these topics in the domain ontology. For example, it can
be useful for a researcher looking for specific scientific publications to navigate
within a hierarchy of classes, where a class represents a set of documents hold-
ing on some selected topics, instead of consulting a flat and unordered list of
documents. In this context, a query is represented as a class whose instances
(representing individual documents) are considered as answers to the query. For
answering a query, the class representing the query is built and then classified in
the hierarchy of document categories. Once the query is classified, the instances
of the classes subsumed by the query are returned as potential answers to the
query.

The paper is organized as follows. In section 2, the notion of semantic anno-
tation of documents is introduced. Then, in section 3, semantic similarity and
document classification are detailed and illustrated. A discussion on the anno-
tation and classification processes ends the paper.

2 The annotation of textual Web documents

2.1 Introducing the domain ontology

Given a reference domain D, an ontology OD is considered as a hierarchy of
classes and relation classes: classes represent the concepts of the domain D while
relation classes represent relations between concepts [13, 17]. The ontology OD is
used for studying a set of documents Docs related to the domain D. A class has

Fig. 1. A fragment of an ontology of classes and relation classes holding on computer
science documents.

a name and is either primitive or defined by a set of attributes. As in description
logics, the attributes of a defined class act as necessary and sufficient conditions
for declaring an individual as an instance of a defined class [3]. In the same way,
a relation class has a name, a domain, a range, and additional properties such
as reflexivity, symmetry, transitivity. . . Classes are organized within a hierarchy,
namely OD, by a subsumption relation: whenever the class C1 is subsumed by
the class C2, written C1 v C2, then the individuals that are instances of C1
are also instances of C2. For relation classes, the relation R1 is subsumed by the
relation R2, written R1 v R2, when, given two individuals a and b, R1(a, b) implies
R2(a, b). All classes and relation classes are subsumed by > (Top), the root of
the hierarchy OD. A fragment of an ontology is given in figure 1, where the
relation class keyword subsumes the relation class title keyword, and the class
Document subsumes the classes HtmlPage and BibTexEntry.

2.2 The annotation of documents

Definition 1. An annotation associated to a document D, denoted by A(D), is
defined as a labeled rooted tree A(D) = (N, E) where N is a set of nodes having
a label and a type, and E is a set of edges having the form e = (n, a, n′) where
n, n′ ∈ N and a is the label of the edge. The labeled tree A(D) = (N, E) associated
D is called the annotation tree of the document D.

In such a tree-based annotation, a node and an edge have a label and a type.
The type makes reference either to a class of OD or to the special datatype
String (not explicitly represented in OD, and unique datatype considered in
the present framework). For notational convenience, the type of an element x is
supposed to be returned by the function type(x). In addition, the label of a node
or an edge is derived from the associated type. Then, for an edge e = (n, a, n′),
we will indifferently write type(e) or type(a) for denoting the type of the edge
e. A uri, i.e. a Uniform Resource Identifier, may be associated to a node for
pointing to a specific resource (as in rdf statements). In case the node is a leaf
in the annotation tree (i.e. the node has no descendant), a “value” whose type is
String may be attached to that node. By analogy with types, the value or the
uri attached to a node are supposed to be returned by the function value(x).
It is assumed that a leaf can have a value or a uri, but not both (exclusive or).

At the moment, an annotation is represented as a tree and not as a graph (as
it could be the case with rdf statements). One main reason is for keeping things
more simple, i.e. a simple structure of an annotation allowing efficient comparison
procedures and a simple conceptual representation (using description logics).

The figure 2 gives an example of two documents D1 and D2 with their associ-
ated annotation trees. The annotation tree associated to D1 describes an HTML
webpage about a publication in the ERCIM News journal, where the authors,
the title, the keywords, the journal keywords. . . are extracted from the HTML
page. In the same way, the tree associated to D2 describes a BibTex entry using
the main characteristics of this entry.

Fig. 2. Example of two documents with their annotation trees.

It can be useful to distinguish between generic and specific annotations. A
generic annotation is associated to a set of different documents while a specific
annotation is associated to only one particular document. Firstly, a node n is
specific or instantiated whenever it has an associated uri or a value (whose
type is String) ; otherwise the node is generic. Accordingly, an annotation
A is specific whenever the root of A, denoted by root(A), and the leaves of A

are specific nodes ; otherwise, A is generic. For example, the annotation trees
associated to the documents D1 and D2 in figure 2 are specific annotations. By
contrast, the common subtree of A(D1) and A(D2) given in figure 3 is a generic
annotation to which more than one document can be attached, here for example
D1 and D2.

Let D1 and D2 be two documents, and A(D1) = (N1, E1) and A(D2) = (N2, E2)
their respective specific annotation trees. When there is no ambiguity, A(D1) =

Fig. 3. The subtree generalizing the two annotation trees given in in figure 2.

Fig. 4. The links existing between specific annotations, generic annotations and the
domain ontology.

(N1, E1) and A(D2) = (N2, E2) are written for short respectively A1 and A2. As intro-
duced just above, a subsumption (a partial order relation) and an instantiation
relations are defined on specific and generic annotations (these subsumption and
instantiation relations are inspired from subsumption of molecular structures de-
tailed in [15]).

Definition 2. An annotation A1 = (N1, B1) is subsumed by an annotation A2 =
(N2, B2), denoted by A1 v A2, if there exists a subtree A1

′ = (N1
′, B1′) of A1, and

an isomorphism µ between A1
′ and A2 preserving types, i.e. for each edge e2 =

(n2, a2, n
′
2) in A2, there exists an edge e1 = (n1, a1, n

′
1) in A1

′, where n2 = µ(n1)
and type(n1) v type(n2), a2 = µ(a1) and type(a1) v type(a2), n2

′ = µ(n1
′)

and type(n1
′) v type(n2

′).
A specific annotation A1 = (N1, E1) is an instance of a generic annotation

A2 = (N2, E2) if and only if A1 v A2.

Two remarks have to be made: (i) the most general annotation is supposed
to be identified with >, the root of the hierarchy of concepts and relations,
(ii) subsumption on annotations is supposed to hold only between connected
annotation trees.

Figure 4 illustrates how generic and specific annotations are related to each
other. A specific annotation is associated to a particular document and is com-

posed of several elements of annotation (annotation items) that are typed by
classes of the ontology OD. Moreover, a specific annotation is an instance of a
generic annotation.

The different elements composing semantic annotations may be represented
using semantic Web languages such as rdf, rdf-schema or owl [8, 2]. The an-
notation trees can be considered either as rdf graphs or xml document models.
In this way, the present work can be appliqued to the comparison of xml doc-
uments (considered as trees). Moreover, based on annotation trees, it becomes
possible to compare two documents on the basis of their content, by computing
the “semantic similarity” of the two documents. For example, the documents
D1 and D2 in figure 2 are “semantically similar” because they both describe a
document written by an author named Amedeo Napoli, in collaboration with
another author that is a PhDStudent, published in a periodical, and concerned
with Description Logics and Semantic Web. Such a comparison is based on a sub-
sumption test of the annotation trees of the considered documents. Moreover, the
generalized common subtree of the annotation trees must be sufficiently sized,
i.e. the size of the subtree must be greater than or equal to a given threshold.
These constructions, based on annotation trees and subsumption of annotation
trees, are made explicit in the next section.

3 Semantic similarity and document classification

The semantic similarity between two documents is based on the semantic similar-
ity between their annotation trees. The similarity tree shared by two annotation
trees is also defined, for being used in a classification process aimed at catego-
rizing Web documents.

3.1 Semantic similarity and similarity tree

First of all, the notion of least common subsumer (lcs) within a class hierarchy
is introduced, than can be likened to the lcs operation in description logics [4–6]
or to the projection in the conceptual graph theory [7, 14].

Definition 3. Given the ontology OD and two classes C1 and C2, the class C

is the least common subsumer (class) of the classes C1 and C2, denoted by C =
lcs(C1, C2), if C 6= >, C1 v C and C2 v C, and whenever C1 v C′ and C2 v C′

then C v C′, i.e. C is minimal among the subsumers of the classes C1 and C2.

Based on this definition, given two annotation trees A1 and A2, two nodes
n1 ∈ N1 and n2 ∈ N2 are said to be semantically similar whenever one of the
following conditions is verified:

– type(n1) = type(n2) = String and value(n1) = value(n2).
– type(n1) 6= String, type(n2) 6= String, and C = lcs(type(n1), type(n2))

exists in OD.

By convenience, the class C is said to be the least common subsumer of the
two nodes n1 and n2, denoted by C = lcs(n1, n2). In the same way, two edges
e1 = (n1, a1, n

′
1) and e2 = (n2, a2, n

′
2) are semantically similar whenever the

following is verified: n1 is semantically similar to n2, n
′
1 is semantically similar

to n′2, and the class A = lcs(type(a1), type(a2)) exists in OD. By analogy with
nodes, the edge e = (n, a, n′) where n = lcs(n1, n2), n

′ = lcs(n′1, n
′
2), and a =

lcs(a1, a2), is said to be the least common subsumer of the edges e1 = (n1, a1, n
′
1)

and e2 = (n2, a2, n
′
2), denoted by e = lcs(e1, e2).

For example, considering the two annotation trees in figure 2, the following
elements of semantic similarity may be extracted:

– The root of A1, labeled by type = HtmlPage, is similar to the root of A2,
labeled by type = BibTexInproceedings, with Document = lcs(HtmlPage,-
BibTexInproceedings).

– The edges labeled in A1 by has author, author, and has keywords, are
identical to the corresponding edges in A2.

– The edges issued from the roots root(A1) and root(A2), labeled by has se-
ries and published in, are similar to published in = lcs(published in,
has series).

– The two leaves labeled by type = PhDStudent are similar, even if their
values are not equal.

The notion of semantic similarity can be generalized to annotation trees and
thus to documents in the following way. Let D1 and D2 be two documents, and
A1 and A2 their respective specific annotation trees. As A1 and A2 are specific
annotation trees, they have an associated generic annotation tree, namely the
generic annotation they are an instance of. Then, the annotation trees A1 and A2
are similar if there exists an annotation tree that is the least common subsumer
of A1 and A2. For example, the similarity tree of the two annotation trees shown in
figure 2 is given in figure 3. More precisely, the semantic similarity for annotation
trees is defined as follows.

Definition 4. The two annotation trees A1 = (N1, E1) associated to the document
D1, and A2 = (N2, E2) associated to the document D2, are said to be semantically
similar with degree α, if there exists an annotation tree denoted by AS(A1, A2) =
(N, E) that is the least common subsumer of A1 and A2. Moreover, the degree α
is given by:

α((A1, A2)|AS(A1, A2)) =
|AS(A1, A2)|2
|A1| · |A2|

where |Ai| denotes the cardinal of the node set of the tree Ai, and |AS(A1, A2)|
the cardinal of the node set of the tree AS(A1, A2).

A constraint can be set up on the similarity degree, such that the degree of
the similarity tree AS(A1, A2) of A1 and A2 must be greater or equal to a fixed
similarity threshold σsim. For example, the two annotation trees A1 and A2 on
figure 2 are semantically similar with the similarity tree shown on figure 3, and

a degree equal to α((A1, A2)|AS(A1, A2)) = 92/(14.19) ≈ 0.305. This similarity is
acceptable for a threshold σsim of 0.25 for example.

3.2 An algorithm for constructing a similarity tree

The semantic similarity between documents depends on their annotation trees,
thus on the semantic similarity between nodes and edges of the annotation trees,
on a similarity degree, on a similarity threshold σsim, but also on isomorphism
between trees (linked to subsumption between annotations). Indeed, the building
of AS(A1, A2) is based on two generalizations, say γ1 and γ2, such that AS(A1, A2)
= γ1(A1) = γ2(A2) (as in a unification process). Moreover, it has already been
remarked that the building of the similarity tree can be likened to the building
of the least common subsumers in description logics [4–6], or to the projection
of conceptual graphs [7, 14].

The building of a similarity tree, given two annotation trees A1 and A2, may
be achieved according to the following rules, the generalizations γ1 and γ2 being
based on the definitions of the semantic similarity between nodes and edges.

– When two nodes n1 ∈ N1 and n2 ∈ N2 are semantically similar, then the node
n in AS(A1, A2) results from the generalization of n1 and n2, with n = γ1(n1) =
γ2(n2).
Practically, a function CreateNode(n1, n2) takes the nodes n1 ∈ N1 and n2 ∈
N2 as inputs, and searches for the class n = lcs(n1, n2) in OD, and then
builds the node labeled by n. In the case n1 = n2, with n1 and n2 having the
same value or uri, this value or uri is attached to the node labeled by n.

– When a node n1 ∈ N1 does not have any similar node in N2, then the sub-
stitution cannot be computed and the node n1 is not taken into account in
the building of the similarity tree. For example, this is the case of the node
type = AssistantProfessor, URI = http : //.../ lieber in figure 2, for A2.

– When two edges e1 = (n1, a1, n1
′) ∈ E1 and e2 = (n2, a2, n2

′) ∈ E2 are
semantically similar, then the edge e = (n, a, n′) in AS(A1, A2) is obtained by
generalizing e1 and e2, with n = γ1(n1) = γ2(n2), a = γ1(a1) = γ2(a2), and
n′ = γ1(n1

′) = γ2(n2
′).

Practically, a function CreateEdge(e1, e2) takes the two edges e1 and e2 as
inputs, and searches for the edge e = lcs(e1, e2) = (n, a, n′) in OD.

– When an edge e1 ∈ E1 does not have any similar edge in E2, then the substi-
tution is not defined and the edge e1 is not taken into account in the building
of the similarity tree.

The similarity tree is built by searching, starting from the roots root(A1)
and root(A2), the largest subtree that can be matched according to the previous
rules. The algorithm produces as output the correspondence between the nodes
of A1 and the nodes of A2:

1. The set of node correspondence between A1 and A2 for semantically similar
nodes, denoted by Πnode(A1, A2). For example, the correspondence for the
annotation trees given in figure 2 is:
Πnode(A1, A2) = {(a, r), (b, s), (c, t), (d, u), (f, v), (g, w), (h, z), (i, x), (j, y)}

2. The set of edge correspondence between A1 and A2 for semantically similar
edges, is denoted by Πedge(A1, A2). For example, Πedge(A1, A2) contains the
pairs of edges associated with the correspondence Πnode(A1, A2).

3. The set of nodes of A1 and the set of nodes of A2 that have not to be taken into
account. For example, all nodes of A1 and A2 that are not in Πnode(A1, A2) are
not taken into account for the construction of the similarity tree AS(A1, A2).

Two remarks have to be done. Firstly, the generalizations γ1 and γ2 are
different only when the nodes n1 or n2, or the edges e1 or e2, do not have any
similar node or edge. Secondly, the lcs operation here is much more simpler
than the general building of a lcs in descriptions logics (see [5]): the lcs is
actually not built but searched for within the OD concept hierarchy, and thus
corresponds to an already existing concept.

3.3 An algorithm for the classification of annotation trees

Let D1 and D2 be two semantically similar documents with the similarity tree
AS(A1, A2) = (N, E), built from the annotation trees A1 = A(D1) = (N1, E1) and A2 =
A(D2) = (N2, E2). A classification algorithm may be proposed, for retrieving the
best instantiation class with respect to the similarity degree for the annotation
tree associated to a given document.

Let Docs be a set of documents, OD the ontology associated to Docs, and
HA a hierarchy of annotation trees associated to Docs (see figure 5). The classes
in HA represent generic annotations related to sets of documents in Docs, with
respect to the ontology OD. Actually, the HA hierarchy may also be considered
either as an ontology of generic annotations related to the documents in Docs,
or to a classification of the documents in Docs.

Given the ontology OD and an annotation hierarchy HA, the principle of the
classification algorithm is the following. The classes subsuming A1 = A(D1) =
(N1, E1) are searched in HA using a depth-first search. More precisely, there is a
search for the classes C in HA subsuming the generic annotation associated to
A1, i.e. A1 is an instance of C (as stated in definition 2). Zero or more subsuming
classes may exist in HA:

– When no subsuming class exists, then the type of the document D1 is not
represented in HA. A new class representing D1 can be created, as in an
incremental classification algorithm [11]. Maybe, this means that the themes
of the document D1 are out of the scope of those underlying the ontology OD
and the documents in Docs.

– If one or more classes subsume A1, then similar documents to D1 are found,
namely the documents that are instances of classes subsuming A1 or the
subsumers of A1. The subsumers can be sorted according to their similarity
degree, i.e. more a class is close to D1 better it is ranked.

For example, the annotation tree A2 associated to the document D2 is clas-
sified in the hierarchy HA as follows (cf. figure 5). According to the ontology

Fig. 5. A hierarchy HA of annotations

OD and to the hierarchy HA, the class ‘‘Periodical references’’ may be
selected (assimilating the series ‘‘LNCS’’ to a periodical publication), and then
the class ‘‘LNCS references about SW with DL in the title’’ is also se-
lected, as the most specific subsumer: both classes subsume the annotation tree
A2. Then, the class ‘‘SW + DL documents’’ is selected, but the class ‘‘PDF

documents of AIMSA’’ is discarded. Documents similar to D2 have been found,
namely the instances of the classes ‘‘Periodical references’’ and ‘‘LNCS

references about SW with DL in the title’’.

Such an algorithm can be used for classifying documents according to their
content, for comparing documents and for finding similar documents. Moreover,
the classification algorithm can be used for extending the HA hierarchy, with
respect to the OD ontology, by proposing new annotations classes. Actually,
these aspects of the present work are research perspectives and a straightforward
continuation of this work.

In addition, a semantic similarity measure between the two documents D1 and
D2 may be defined, taking into account the proportion of semantically similar
nodes in A1 and A2 with respect to AS(A1, A2), and the similarities between the
types, uri and values of the leaves in A1 and A2. A first formalization is proposed
in [1], and the definition of a more acceptable and efficient form is currently
under investigation.

4 Discussion and conclusion

The present approach proposed for comparing documents represented by anno-
tation trees shows a number of advantages. On the one hand, relations existing
between terms describing the content of documents can be taken into account
and used for having a better understanding of the documents, i.e. for knowing
whether a document D1 is more general than a document D2, with respect to the
ontology OD and to the content of documents. On the other hand, annotation
trees can be manipulated, matched, and compared, using standard tools adapted
to xml document manipulation. Moreover, the present approach takes explicitly
advantage of the domain ontology OD, allowing sophisticated reasoning, e.g. for
finding analog documents, where two documents D1 and D2 are considered as
analogs when there exists a “similarity path”, i.e. a sequence of similar docu-
ments, between their annotation trees (see for example [12]).

This approach has been implemented, and an experiment has been carried
out on bibliographic documents, for comparing the behavior of the present ap-
proach and more classical information retrieval approaches, based on vectors
and a thesaurus (organized by a generic/specific relation). The annotations are
composed of relations such as written-by (an author), published-in (a year),
edited-in (publication-support), talking-about (a keyword), etc. Some doc-
uments are found to be similar with the vector model, while they are found
to be not similar according to the annotation tree approach. For example, two
references containing the same type of authors, or published in a same type of
publication support, are found to be similar in the annotation tree approach,
while they are not (because of the need of exact matching) in the vector ap-
proach. It would be interesting then to combine both approaches, the robust
and efficient methods based on keyword vectors, and the approach based on the
annotation trees and the domain ontology. Moreover, the ontology that has been
used for the experiment remains to be improved, with more complex concept and
relation descriptions.

Finally, it must be remarked that the present approach, based on annotation
trees, may be well-suited for: (i) the detection or search of resources represented
as rdf graphs (a format that is in accordance with annotation trees), (ii) the
more general task of retrieval of xml documents according to a set of con-
straints, because of the tree-based representation that can be associated to an
xml document.

References

1. R. Al-Hulou, A. Napoli, and E. Nauer. Une mesure de similarité sémantique pour
raisonner sur des documents. In J. Euzenat and B. Carré, editors, Langages et
modèles à objets, Lille (LMO’04), pages 217–230. Hermès, L’objet 10(2–3), 2004.

2. G. Antoniou and F. van Harmelen. A Semantic Web Primer. The MIT Press,
Cambridge, Massachusetts, 2004.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, Cambridge, UK,
2003.

4. F. Baader and B. Sertkaya. Applying formal concept analysis to description logics.
In P. Eklund, editor, Second International Conference on Formal Concept Analysis,
Sydney (ICFCA 2004), Lecture Notes in Artificial Intelligence 2961, pages 261–286.
Springer, Berlin, 2004.

5. F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common subsumer
w.r.t. a background terminology. In J.J. Alferes and J.A. Leite, editors, Proceedings
of the 9th European Conference on Logics in Artificial Intelligence (JELIA 2004),
Lisbon, Portugal, volume 3229 of Lecture Notes in Computer Science, pages 400–
412. Springer-Verlag, 2004.

6. Franz Baader. Computing the least common subsumer in the description logic EL
w.r.t. terminological cycles with descriptive semantics. In Proceedings of the 11th
International Conference on Conceptual Structures, ICCS 2003, volume 2746 of
Lecture Notes in Artificial Intelligence, pages 117–130. Springer-Verlag, 2003.

7. M. Chein and M.-L. Mugnier. Conceptual graphs: Fundamental notions. Revue
d’intelligence artificielle, 6(4):365–406, 1992.

8. D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster, editors. Spinning the
Semantic Web. The MIT Press, Cambridge, Massachusetts, 2003.

9. S. Handschuh and S. Staab, editors. Annotation for the Semantic Web. Volume 96
Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, 2003.

10. J. Heflin, J.A. Hendler, and S. Luke. SHOE: A blueprint for the semantic web. In
Spinning the Semantic Web, pages 29–63, 2003.

11. P. Langley. Elements of Machine Learning. Morgan Kaufmann Publishers, San
Francisco, California, 1996.

12. J. Lieber and A. Napoli. Correct and Complete Retrieval for Case-Based Problem-
Solving. In H. Prade, editor, Proceedings of the 13th European Conference on
Artificial Intelligence (ECAI’98), Brighton, UK, pages 68–72. John Wiley & Sons
Ltd, Chichester, 1998.

13. A. Maedche, S. Staab, N. Stojanovic, R. Studer, and Y. Sure. SEmantic portAL:
the SEAL Approach. In D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster,
editors, Spinning the Semantic Web, pages 317–359. The MIT Press, Cambridge,
Massachusetts, 2003.

14. M.L. Mugnier. On generalization/specialization for conceptual graphs. Journal of
Experimental & Theoretical Artificial Intelligence, 6(3):325–344, 1995.

15. A. Napoli, C. Laurenço, and R. Ducournau. An object-based representation system
for organic synthesis planning. International Journal of Human-Computer Studies,
41(1/2):5–32, 1994.

16. F. Sebastiani, editor. Advances in Information Retrieval, 25th European Con-
ference on IR Research, ECIR 2003, Pisa, Italy, April 14-16, 2003, Proceedings,
Lecture Notes in Computer Science 2633. Springer, 2003.

17. S. Staab and R. Studer, editors. Handbook on Ontologies. Springer, Berlin, 2004.
18. V. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera, E. Motta, and

F. Ciravegna. Semantic annotation for knowledge management: Requirements and
a survey of the state of the art. Journal of Web Semantics, 4(1), 2005.

